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Abstract Inversions of empirical data and ground-
motion models to find Fourier spectral parameters can
result in parameter combinations that produce over-
saturation of short-period response spectral ordinates.
While some evidence for over-saturation in empiri-
cal data exists, most ground-motion modellers do not
permit this scaling within their models. Host-to-target
adjustments that are made to published ground-motion
models for use in site-specific seismic hazard analyses
frequently require the identification of an equivalent
set of Fourier spectral parameters. In this context,
when inverting response spectral models that do not
exhibit over-saturation effects, it is desirable to impose
constraints upon the Fourier parameters to match the
scaling of the host-region model. The key parameters
that determine whether over-saturation arises are the
geometric spreading rate (γ ) and the exponential rate
within near-source saturation models (hβ ). The article
presents the derivation of simple nonlinear constraints
that can be imposed to prevent over-saturation when
undertaking Fourier spectral inversions.
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1 Introduction

Non-ergodic hazard analyses typically require adjust-
ments to be made to published ergodic ground-motion
models in order to make them more appropriate
for the target region and site location (Bommer
and Stafford 2020). The necessary adjustments are
typically performed using a parametric approach
within the general framework of the Hybrid Empir-
ical Method (Campbell 2003), although empirical
approaches also exist (Atkinson 2008). The paramet-
ric approach involves the identification of two sets of
parameters that describe the far-field Fourier ampli-
tude spectra (FAS) of ground motions in the host and
target regions. A comprehensive overview of these
FAS parameters and the far-field model is provided
by Boore (2003). For the target region, Fourier spec-
tral parameters are inferred through inversions of
empirical data. This empirical data is almost always
dominated by relatively small-magnitude earthquake
scenarios, as site-specific or region-specific instru-
mentation typically covers a relatively short observa-
tion period. In contrast, for the host region, the Fourier
spectral parameters are either adopted from similar
empirical inversions for a region assumed equiva-
lent to that represented by the ergodic ground-motion
model(s), or the parameters are obtained from direct
inversion of the ergodic ground-motion model predic-
tions. As discussed by Stafford et al. (2021), the inter-
nal consistency of obtaining FAS parameters that best
represent the ergodic ground-motion model provides
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distinct advantages over the empirical route where
one can only assume consistency. This is particularly
the case where there is no unambiguous geographi-
cal “host region” associated with the ground-motion
model.

Host-region models are selected using a number of
criteria (Campbell 2003; Bommer and Stafford 2020),
but a fundamental assumption is that these models
implicitly capture the appropriate scaling of large-
magnitude, near-source scenarios that are very rarely
constrained by empirical data. The inversion of such
models therefore requires the consideration of large-
magnitude scenarios where the point-source model
of the FAS does not strictly apply. However, Boore
(2009) has demonstrated that the stochastic method
implemented using point-source models can lead to
very similar results to those from extended or finite
source models—provided that an appropriate distance
metric is adopted (this distance metric is referred
to as the “equivalent point-source distance,” and is
defined shortly). The common basis for Fourier spec-
tral inversions is to therefore adopt a model for the
FAS based upon far-field point-source considerations,
coupled with an equivalent point-source distance met-
ric that approximates the finite-fault effects that are
increasingly relevant as the magnitude increases. A
key effect in this context is the saturation of ground-
motion amplitudes with increasing magnitude. Satura-
tion is the term used to describe the reduced slope in
magnitude scaling of ground-motion models at large
magnitudes. Over-saturation, of concern in the present
article, is the condition where the derivative of ln Sa

with respect to magnitude becomes negative at larger
magnitudes.

The equivalent point-source distance, RPS(M), can
be defined as a function of the rupture distance,RRUP ,
and the magnitude-dependent near-source saturation
length, h(M):

RPS(M) = [
Rn

RUP + h(M)n
]1/n (1)

where the exponent n is most commonly set to n =
2 (Boore and Thompson 2015). However, the distance
scaling in a model such as Chiou and Youngs (2014)
would correspond to a case where n = 1 (Stafford
et al. 2021). The near-source saturation length is used
to reflect the fact that the strongest contributions to the
observed ground-motion intensity measure will not
necessarily come from the point on the rupture that is
closest to the site.

In recent years, considerable attention has been
paid to accurately constrain models for the near-source
saturation length, h(M), used within the computa-
tion of equivalent point-source distance metrics. In
the literature, these saturation lengths are sometimes
independent of magnitude, and are also referred to
as finite-fault factors (Boore and Thompson 2015),
effective depths (Atkinson et al. 2016), pseudo-depths
(Yenier and Atkinson 2015), or fictitious depths
(Scasserra et al. 2009). As h(M) has its most signifi-
cant impact upon near-source scaling where empirical
data is very limited, it is very challenging to appro-
priately constrain these terms. However, they can have
a significant influence upon other FAS parameters.
In particular, Boore (2012) has shown that estimates
of the stress parameter, Δσ , depend very strongly
upon the modelling of near-source saturation effects.
Furthermore, as will be demonstrated in the present
article, the scaling of h(M) plays a strong role in deter-
mining whether or not over-saturation of short-period
response spectral ordinates arises.

Ground-motion models have included near-source
saturation lengths for decades, with the values being
inferred as part of standard regression analyses on
empirical data. However, recent years have seen
greater attention being given to the scaling of ground
motions over a broader magnitude range, particu-
larly extrapolating models down to smaller events.
If inappropriate saturation lengths are adopted for
these small events, the implied stress parameters asso-
ciated with the events can be heavily influenced.
Yenier and Atkinson (2014) introduced a model for
h(M) that worked well for relatively large events,
while Yenier and Atkinson (2015) proposed an alter-
native model that works better for smaller magnitude
events. Boore and Thompson (2015) then developed
a new model that merged the models from Yenier
and Atkinson (2014) and Yenier and Atkinson (2015)
to ensure strong performance over an extended mag-
nitude range. Atkinson et al. (2016) focussed upon
these finite-fault metrics further, with a focus on their
applicability for relatively shallow, small magnitude,
induced events (as source depth can play a role similar
to the near-source saturation length). They concluded
that the model from Yenier and Atkinson (2015) was
suitable for application to induced events.

In most cases, near-source saturation models are
developed using empirical observations over a magni-
tude range that is smaller than that relevant in common
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practical applications. As noted above, near-source
saturation models have recently received heightened
attention in the context of small-magnitude events
(Atkinson et al. 2016). However, when these models
are extended to very large magnitudes, their interac-
tion with other components of the stochastic method
can lead to over-saturation of earthquake ground
motions, where predicted amplitudes for very large
events are lower than those from smaller magnitude
events.

The purpose of this short article is to define the
conditions for which over-saturation occurs so that
model developers can impose these constraints if they
deem over-saturation to be an undesirable feature.
This is primarily an issue for short-period response
spectral ordinates. The derived conditions are use-
ful for analysts inverting either empirical datasets, or
ground-motion models, to identify underlying Fourier
spectral parameters. The primary practical application
where this work is relevant is when making host-
to-target adjustments in the context of site-specific
ground-motion modelling. Specifically, when using
the Hybrid Empirical Method of Campbell (2003), one
needs to invert empirical data in the target region and
a ground-motion model from the host region in order
to derive the final ground-motion model for the target
region.

2 Should over-saturation be prevented?

The purpose of this article is to define constraints
explicitly to avoid the occurrence of over-saturation
for large-magnitude, short-period, response spectral
predictions. However, some empirical data provides
evidence of over-saturation (Boore et al. 2014), and a
valid question is whether one should actively attempt
to prevent over-saturation. This issue is primarily of
concern for ground-motion model developers, who
must decide whether to let sparse data drive the scal-
ing of their models, or impose some constraints to
control this scaling (which may allow or prevent over-
saturation). For the present article, this issue is of tan-
gential interest, as the objective when performing FAS
inversions of a ground-motion model is to identify
the parameter combinations that collectively describe
the scaling embedded within the model. While ensur-
ing that these parameters are consistent with physical

expectations is desirable, it is not the primary objec-
tive. Therefore, if a ground-motion model does not
allow over-saturation to occur, then the FAS parameter
sets should be obtained to respect this condition.

Apparent over-saturation can arise for a number
of reasons, such as imperfect calibration of nonlin-
ear site response functions, or even legitimate effects
of nonlinear site response. However, the primary rea-
son why over-saturation can arise is due to the way in
which source-to-site distances are defined in ground-
motion models. It is now standard to use finite-fault
distance metrics such as the Joyner-Boore distance,
RJB , or the rupture distance, RRUP , within ground-
motion models (Abrahamson and Shedlock 1997).
The rupture distance is also recommended for use within
the stochastic ground-motion method (Boore 2003),
when combined with an appropriate finite-fault factor
(Boore and Thompson 2015), as seen earlier in Eq. 1.

However, for the very large ruptures associated
with large-magnitude events, ground motions may
be driven by asperities that are located some dis-
tance from the point implied by these distance met-
rics. Finite-fault factors are defined precisely for this
purpose, to increase the effective rupture distance
as the magnitude increases, but the effectiveness of
these factors when applied to empirical data depends
strongly upon the particular spatial distribution of
recording stations around the rupture. Alternative dis-
tance metrics, such as the mean rupture distance
proposed by (Thompson and Baltay 2018), aim to
remove the need for these finite-fault factors, but come
with additional issues, and also lead to over-saturation
(depending upon the adopted power p used in the
mean distance definition).

3 Mathematical framework

Within the RVT framework (Boore 2003), response
spectral ordinates for a given natural period, Tn, are
computed as:

Sa(fn, ζn) = ψ(fn, ζn)

√
m0(fn, ζn)

Drms(fn, ζn)
(2)

where Sa(fn, ζn) is the spectral acceleration of an
oscillator with natural frequency fn = 1/Tn and
damping ratio ζn, ψ is the peak factor (the ratio
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of the peak response to the root-mean-square, RMS,
response), m0 is the zeroth spectral moment of the
oscillator response, and Drms is the root-mean-square
duration. The zeroth moment is computed from using
k = 0 in the general expression:

mk(fn, ζn) = 2
∫ ∞

0
(2πf )k |H(f ; fn, ζn)|2|A(f )|2df (3)

When deriving ground-motion models, it is most
common to work with the logarithmic spectral ordi-
nates, and we can write:

ln Sa(fn, ζn) = lnψ(fn, ζn) + 1

2
lnm0(fn, ζn) − 1

2
Drms(fn, ζn)

(4)

The RMS duration, Drms , is computed from the
excitation duration, Dex , as:

Drms = Γ Dex (5)

where Γ is a function of the excitation duration, Dex ,
the natural period of the oscillator, Tn, and the damp-
ing ratio, ζn. The term Γ is defined and computed
as the adjustment to the excitation duration that is
required in order that RVT-based estimates of peak
oscillator response match those obtained from time-
domain simulations. Boore and Thompson (2012)
provide a brief history of the development of these
adjustment factors. For the current article, it is impor-
tant to note that these factors are magnitude and dis-
tance dependent, but that the magnitude dependence is
relatively mild.

There are various methods for computing the peak
factor, ψ . The most recent recommendation of Boore
and Thompson (2015) is to use the peak factor
approach of Der Kiureghian (1980) that builds upon
the work of Vanmarcke (1975). This particular formu-
lation is a function of the first three spectral moments,
i.e., m0, m1, and m2, as well as the excitation dura-
tion. As such, the peak factor is also magnitude and
distance dependent. However, like the Γ factor, the
dependence upon magnitude is relatively mild.

Dropping the dependence upon fn and ζn for
brevity, but introducing explicit dependence upon
magnitudeM, we can write:

ln Sa(M) = lnψ(M) + 1

2
lnm0(M) − 1

2
Γ (M) − 1

2
Dex(M) (6)

≈ lnψ − 1

2
Γ + 1

2
lnm0(M) − 1

2
Dex(M) (7)

The validity of the approximation in Eq. 7 can be
appreciated from Fig. 1, where the partial derivatives

Fig. 1 Derivatives of the logarithmic spectral ordinate,
Sa(Tn = 0.01, ζn = 0.05), contributions in Eq. 6 with respect
to magnitude. All derivatives are computed for RRUP = 1 km,
Δσ = 10 MPa, perfect spherical geometric spreading (the geo-
metric spreading rate is γ = 1), the anelastic attenuation of
Q(f ) = 200f 0.5, and κ0 = 0.035 s. The recommendations
of Boore and Thompson (2015) for the peak factor, finite-fault
factor, and RMS and excitation durations are also adopted

of each term in Eq. 6 are shown. The partial derivatives
associated with ψ(M) and Γ (M) are far weaker than
those for m0(M) and Dex(M), particularly at large
magnitudes where over-saturation may arise.

If we wish to prevent over-saturation, we require
that:
∂ ln Sa(M)

∂M
≥ 0 (8)

and this condition is most relevant for large mag-
nitudes and short periods, where over-saturation can
occur.

Assuming that the magnitude dependence of
ln Sa(M) is driven by the scaling within m0(M) and
Dex(M), we can write:

∂ ln Sa(M)

∂M
≈ 1

2

∂ lnm0(M)

∂M
− 1

2

∂ lnDex(M)

∂M
(9)

which is equivalent to:

∂ ln Sa(M)

∂M
≈ 1

2

1

m0(M)

∂m0(M)

∂M
− 1

2

1

Dex(M)

∂Dex(M)

∂M
(10)

For the first term, we can write:

m0(M) = 2 lim
Δf →0

n∑

i=1

|H(fi; fn, ζn)|2|A(fi;M)|2Δf

(11)
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The frequency response function of the oscillator is
not a function of magnitude, so the derivative of the
above expression is:

∂m0(M)

∂M
= 2 lim

Δf →0

n∑

i=1

|H(fi; fn, ζn)|2 ∂|A(fi;M)|2
∂M

Δf

(12)

We can also recognize that for short periods, fn

is very high, and |H(f ; fn, ζn)| ≈ 1 over the
range of frequencies that dominate the summation (or
integral—referring back to Eq. 3) (Bora et al. 2016).
Therefore:

∂m0(M)

∂M
≈ 4Δf

n∑

i=1

|A(fi;M)|∂|A(fi;M)|
∂M

(13)

Assuming a single corner-frequency ω2 source
spectrum, with corner-frequency dependent upon
magnitude (Aki 1967; Brune 1970; 1971), the Fourier
amplitude spectrum of acceleration can be written as:

|A(f,M)| = C M0(M)f 2

1 + (f/fc(M))2

1

R0
g(R;M)q(f, R;M)s(f )

(14)

where fc(M) is the magnitude-dependent corner fre-
quency, M0(M) is the seismic moment, R0 is the
reference distance at which the source amplitude is
defined, g(R;M) is the geometric spreading function,
q(f, R;M) is the anelastic attenuation filter, and s(f )

is the combination of impedance and damping effects
at the site. The term C is defined as:

C = RθφV F

4πρsβ3
s R0

× 10−20 (15)

with Rθφ = 0.55 being the average radiation pattern,
V = 1/

√
2 partitions energy into horizontal com-

ponents, F = 2 is a free-surface factor, ρs and βs

are the density and shear-wave velocity at the source,
and R0 = 1 km is a reference distance (and is inter-
preted as a rupture distance, i.e., R0 ≡ RRUP,0 = 1
km) (Boore 2003).

In the present article, we are most concerned with
the situation in which we are at very short distances,
ideally at the reference distance where the source
motions are defined. The corresponding point-source
distance at the source is therefore:

RPS,0(M) = [
1 + h(M)n

]1/n (16)

At these short distances, geometric spreading func-
tions are also typically characterized as:

g(RPS;M) = R0

RPS(M)γ
≡ 1

RPS(M)γ
(17)

where γ is, again, the geometric spreading rate.
The anelastic attenuation filter is normally written

as:

q(f, R) = exp

[
− πf R

Q0f ηcQ

]
(18)

with Q0 being the quality factor, η being the quality
exponent (which controls the frequency dependence
of the damping along the propagation path), and cQ

being the crustal velocity used to define Q0. Using the
equivalent point-source distance, this is:

q(f, RPS;M) = exp

[
−πf RPS(M)

Q0f ηcQ

]
(19)

The site effects are expressed as:

s(f ) = SI (f ) × SK(f ) = SI (f ) exp (−πκ0f ) (20)

with SI (f ) representing the impedance effects (gen-
erally site amplification, increasing with frequency),
from a model such as Boore (2016), and SK(f )

representing damping effects.
The overall expression for the FAS at the reference

distance R0 can then be expressed as:

|A(f,M;R0)| = C M0(M)f 2

1 +
(

f
fc(M)

)2
1

RPS(M)γ
e

(
− πf 1−ηRPS (M)

Q0cQ

)

s(f )

(21)

where it can be appreciated that magnitude depen-
dence arises from the source model, and path compo-
nents given that the equivalent point-source distance
used within the geometric spreading and anelastic
attenuation filters is magnitude dependent.

3.1 Partial derivative of the zeroth moment

Equation 13 showed how the derivative of the zeroth
moment is directly related to the derivative of the FAS,
|A(f,M; R0)|. We therefore require the specification
of the partial derivative of |A(f,M; R0)| with respect
to magnitude. As |A(f,M; R0)| is a product of four
distinct components that have magnitude dependence,
we make use of the chain rule to compute the overall
derivative.
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The seismic moment can be written as:

M0(M) = 10(aM+b) ≡ exp (αM + β) = exp (αM) exp(β)

(22)

where α = ln(10) 32 and β = ln(10) × 16.05. These
constants are simply conversions of the original con-
stants presented by Hanks and Kanamori (1979) to
account for the change from the base-10 to natural log-
arithm (hence the ln(10) multiplicative factors). The
derivative of the seismic moment can then be defined
as:

∂M0(M)

∂M
= αM0(M) (23)

Following Brune (1970), the source corner-
frequency can be defined in terms of the seismic
moment and stress parameter, Δσ , as:

fc(M) = F

(
Δσ

M0(M)

)1/3

≡ FΔσ 1/3e− β
3 exp

(
−α

3
M

)

(24)

where F is a constant that embeds the effects of the
rupture velocity, source geometry, and slip distribu-
tion. The corresponding partial derivative of the corner
frequency is:

∂fc(M)

∂M
= −α

3
fc(M) (25)

For the equivalent point-source distance, we have
the general expression:

∂RPS(M)

∂M
= [

1 + h(M)n
](1/n)−1

h(M)n−1 ∂h(M)

∂M
(26)

For the most common case, where n = 2, we have:

∂RPS(M)

∂M
= h(M)

∂h(M)
∂M√

1 + h(M)2
(27)

and for large magnitude events where over-saturation
is potentially of concern, we will have h(M) � 1, so
that the above expression reduces to:

∂RPS(M)

∂M
= ∂h(M)

∂M
(28)

When n = 1, we will always have the equivalence
shown in Eq. 28 regardless of how large h(M) is.

So, for typical cases, we have the derivative of
the distance being equivalent to the derivative of the

saturation distance. As the saturation distance scales
according to:

h(M) = hα exp(hβM) (29)

over the large magnitude range (e.g., Chiou and
Youngs (2014), Yenier and Atkinson (2014), Yenier
and Atkinson (2015), and Boore and Thompson
(2015)), we have:

∂RPS(M)

∂M
= ∂h(M)

∂M
= hβh(M) ≈ hβRPS(M) (30)

where the final approximation stems from the condi-
tion that h(M) � 1 for the scenarios of interest.

Finally, for the anelastic attenuation filter, we have:

∂

∂M

⎡

⎣e

(
− πf 1−ηRPS (M)

Q0cQ

)⎤

⎦ = −πf 1−η

Q0cQ

e

(
− πf 1−ηRPS (M)

Q0cQ

)

∂RPS(M)

∂M

(31)

from which we can write:

∂

∂M

⎡

⎣e

(
− πf 1−ηRPS (M)

Q0cQ

)⎤

⎦ = −πf 1−η

Q0cQ

hβRPS(M)e

(
− πf 1−ηRPS (M)

Q0cQ

)

(32)

Due to the underlying exponential nature of all of
the components of Eq. 21, we can express their deriva-
tives in terms of a factor multiplied by the original
component. This makes the application of the chain
rule lead to a relatively compact expression for the
derivative of a FAS ordinate, as shown in Eq. 33.

∂|A(M; f,R0)|
∂M

=
[
α − α

3

2f 2

f 2 + f 2
c (M)

− γ hβ

− πf 1−η

Q0cQ

hβRPS(M)

]
|A(M; f, r0)| (33)

Now, recalling that:

∂m0(M)

∂M
≈ 4Δf

n∑

i=1

|A(fi,M)|∂|A(fi,M)|
∂M

(34)

and that the moment expression (for very high fn,
where |H(f ; fn, ζn)| ≈ 1 over the frequencies that
are of most importance) is:

m0(M) ≈ 2Δf

n∑

i=1

|A(fi,M)|2 (35)
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we can write the contribution to the derivative of ln Sa
as:
1

2

1

m0(M)

∂m0(M)

∂M
≈ (

α − γ hβ

)

−
∑n

i=1

[
2
3α

(
f 2

i

f 2
i +f 2

c (M)

)
+ πf

1−η
i

Q0cQ
hβRPS(M)

]
|A(fi ,M)|2

∑n
i=1 |A(fi ,M)|2 (36)

The final term involving the summations (inte-
grals) provides a weighted average of the terms in
square brackets, with the weighting proportional to the
squared FAS.Within the square brackets, the first term
involving the corner frequency tends to low values
below fc, and tends to unity as fi � fc. Therefore, for
the frequencies where |A(fi,M)|2 is strong, the first
term is essentially a constant equal to 2

3α. Equation 36
can therefore be simplified to:

1

2

1

m0(M)

∂m0(M)

∂M
≈

(α

3
− γ hβ

)

−
∑n

i=1
πf

1−η
i

Q0cQ
hβRPS(M)|A(fi,M)|2

∑n
i=1 |A(fi,M)|2 (37)

In this light, we can see that the second term
provides a reduction based upon a weighting of the
FAS. Replacing the elaborate summation terms by a
function ΨQ, for brevity, we have:

1

2

1

m0(M)

∂m0(M)

∂M
≈

(α

3
− γ hβ

)
− ΨQ(M; Δσ,Q0, η, κ0, hβ)

(38)

The nature of the ΨQ function will be discussed
subsequently in Section 3.3. For now, however, it is
worth stating that it provides a modest reduction to the
main α/3 − γ hβ term, and that the magnitude of ΨQ

depends upon a number of FAS parameters—as noted
by the function arguments.

3.2 Partial derivative of the excitation duration

The other key contribution to the derivative of ln Sa

is the partial derivative of the excitation duration. The
excitation duration is composed of source and path
contributions. A number of different models for the
excitation duration have been proposed, but they gen-
erally take the form of a source contribution that is
related to the source rise time (the reciprocal of the
corner frequency), and piecewise linear path scaling
components. While the particular linear segments of
the path scaling can change over different distances

depending upon the region (e.g., Boore and Thomp-
son (2014)), in the near-source region a single segment
with slope dβ can be defined. Such a model is shown
in Eq. 39.

Dex(M) = Dsrc(M)+Dpath(M) = 1

fc(M)
+dα+dβRPS(M) (39)

Equation 39 includes a constant term dα that may be
zero, but otherwise represents any linear segment of
the path duration model defined prior to that relevant
for distance RPS(M).

The partial derivative of the excitation duration can
then be defined as:
∂Dex(M)

∂M
= α

3
Dsrc(M) + dβhβRPS(M) (40)

where results from the previous section have been
used.

The contribution to the derivative of ln Sa can then
be defined as:

1

2

1

Dex(M)

∂Dex(M)

∂M
≡1

2

α
3Dsrc(M) + dβhβRPS(M)

Dsrc(M)
(
1 + Dpath(M)

Dsrc(M)

)

(41)

or, after factoring out the α/3 term, and substituting
Dsrc(M) = 1/fc(M).

1

2

1

Dex(M)

∂Dex(M)

∂M
≡ α

3
ΨD(M; Δσ, dα, dβ, hβ)

(42)

where

ΨD(M; Δσ, dα, dβ , hβ) = 1

2

[
1 + 3

α
dβhβRPS(M)fc(M)

]

[
1 + dαfc(M) + dβRPS(M)fc(M)

]

(43)

The behavior of ΨD is explored in Section 3.3. It is
primarily dependent upon the properties of the excita-
tion duration model, but it is also coupled to the FAS
parameter Δσ given that source duration is directly
linked to this parameter.

3.3 Partial derivative of the log spectral acceleration

Returning to Eq. 9, we can now state that the par-
tial derivative of ln Sa with respect to magnitude is
defined by the approximate expression:

∂ ln Sa(M)

∂M
≈ α

3

[
1 − ΨD(M; Δσ, dα, dβ, hβ)

]

−γ hβ − ΨQ(M; Δσ, Q0, η, κ0, hβ) (44)
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As neither ΨD nor ΨQ depends upon the geometric
spreading rate γ , we can specify a condition upon this
rate such that ∂ ln Sa(M)/∂M ≥ 0. This condition is:

γ ≤ α

3hβ

[
1 − ΨD(M; Δσ, dα, dβ, hβ)

]

− 1

hβ

ΨQ(M; Δσ, Q0, η, κ0, hβ) (45)

That is, provided that the geometric spreading rate γ

is less than or equal to the expression on the right-
hand side of Eq. 45, over-saturation of short-period
response spectral ordinates should not arise. Here,
“short-period” refers to cases where the transfer func-
tion of the SDOF oscillator is essentially flat and equal
to unity over the frequency range that dominates the
computation of m0.

For the purposes of performing an inversion of a
ground-motion model, or of empirical data, the con-
dition in Eq. 45 is not particularly convenient as it
involves all of the FAS parameters. To determine
whether simplifications can be made to this expres-
sion, Figs. 2 and 3 show the typical magnitudes of the
ΨD and ΨQ terms, respectively, as well as how these
terms vary with the FAS parameters.

In Fig. 2, we observe some sensitivity to both the
stress parameter and the coefficients of the excitation
duration model (as evidenced by the different values
of ΨD for active or stable crustal regions). In theory,
as M → ∞, ΨD → 1

2 , regardless of the path dura-
tion model. However, over the magnitudes of practical
interest shown in Fig. 2, we can see that ΨQ ≈ 0.4 −
0.45 for active crustal regions, and ΨQ ≈ 0.3−0.4 for
stable crustal regions. Making the simplification that
ΨD = 1

2 is therefore a conservative approximation that
limits the value of γ below the levels strictly implied
by Eq. 45. The performance of this approximation is
assessed shortly.

For the scaling of ΨQ, Fig. 3 shows that magnitude
dependence is relatively weak, and that large varia-
tions in the FAS parameters generally do not lead to
major variations from a representative value of about
ΨQ ≈ 0.1. Whereas making an assumption that ΨD =
1
2 leads to conservative constraints upon γ , neglect-
ing the ΨQ contribution by assuming ΨQ ≡ 0 is
unconservative. However, it is also important to recon-
sider Fig. 1 in which the various contributions to the
overall derivative of ln Sa were shown. From consid-
eration of that figure, it was decided to ignore the
influence of the peak factor, ∂ lnψ(M)/∂M, given

Fig. 2 Sensitivity of the ΨD function to variations in the stress
parameter (controlling the source duration), and the tectonic
region (controlling the dα and dβ parameters within the Boore

and Thompson (2014) excitation duration model). Panel (a) cor-
responds to active crustal regions, while (b) is for stable crustal
regions
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Fig. 3 Sensitivity of the ΨQ function to variations in the FAS parameters. Panel (a) shows ΨQ against M for a range of stress
parameter, Δσ , values. Panels (b)–(d) show similar scaling, with the FAS parameters of Q0, η, and κ0 being varied, respectively

that its magnitude was significantly lower than the
contributions from lnm0(M) and lnDex(M). Closer
inspection of Fig. 1 shows that the peak factor con-
tribution is ∂ lnψ(M)/∂M ≈ 0.1 over the range of
magnitudes shown. The reason why this is important
is that ∂ lnψ(M)/∂M and ΨQ have similar magni-
tudes and opposite signs. As such, neglecting both
allows the overall derivative of ln Sa to still be reason-
ably well approximated, but also permits Eq. 45 to be
significantly simplified.

Making the assumption that ΨD ≡ 1
2 and that

ΨQ ≡ 0 in Eq. 45 therefore allows the following
condition to be established.

γ ≤ α

6hβ

(46)

This very simple condition has the significant advan-
tage of only involving two key FAS parameters.

Furthermore, despite its simplicity, it has proven effec-
tive in ensuring that over-saturation does not arise
when performing FAS inversions of ground-motion
models (Stafford et al. 2021).

4 Performance of the derived constraints

In order to demonstrate the performance of the elab-
orate and simplified constraints from Eqs. 45 and 46,
it is necessary to work with a near-source saturation
model that allows hβ to vary in a sensible manner.

Stafford et al. (2021) presented a near-source satu-
ration model with the functional form shown in Eq. 47.

lnh(M) = hα +hβM+ hβ − hγ

hδ

ln
(
1 + e−hδ(M−hε)

)

(47)
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As described by Stafford et al. (2021), the func-
tional form of this expression is adopted from the
magnitude-scaling parameterization of the Chiou and
Youngs (2014) ground-motion model. The function
is effectively composed of two linear portions (in
lnh(M)-M space), connected by a smooth transition.
It has many similarities with the model of Boore and
Thompson (2015) in this respect. At small magni-
tudes, the slope is equal to hγ , while at large magni-
tudes the slope is equal to hβ . As these linear portions
relate to the scaling of lnh(M), the slopes can be
regarded as exponential saturation rates. The transition
between the two linear portions occurs around a mag-
nitude centered at hε, and hδ controls how quickly this
transition takes place.

When varying the value of hβ , the overall function
in Eq. 47 will shift. Therefore, to preserve the scaling
implied for smaller magnitudes an adjustment to hα

needs to be made. If we define Δhβ as a shift from
some nominal value hβ,0, such that hβ = hβ,0 +Δhβ ,
Eq. 47 can be expressed as:

lnh(M) = h′
α+hβM+ hβ − hγ

hδ

ln
(
1 + e−hδ(M−hε)

)

(48)

where h′
α = hα − Δhβhε. This approach has been

adopted to generate the alternative models shown in
Fig. 4. The value of hβ = 0.5 has been selected to
be similar to both the Yenier and Atkinson (2015) and

Fig. 4 Comparison of near-source saturation models. The
generic saturation model of Eq. 47 is implemented here with
hα = −0.9, hγ = 1.15, hδ = 2.5, and hε = 6.5, to approxi-
mately mimic the scaling of Boore and Thompson (2015)

Boore and Thompson (2015) models at large mag-
nitudes (to match exactly, hβ = 0.541), while the
other parameters noted in the figure caption have been
selected (from visual comparison) to provide similar
scaling to Boore and Thompson (2015).

A large number of FAS parameter combinations
are then considered, and the exact partial derivative of
ln Sa is computed for different large-magnitude val-
ues. Specifically, representative values of Δσ = 10
MPa, Q0 = 200, η = 0.5, and κ0 = 0.035 s are cho-
sen, while γ and hβ are allowed to vary. The nominal
FAS parameters of {Δσ, Q0, η, κ0} are comparable
(but not identical) to values obtained from inver-
sion of the Chiou and Youngs (2014) ground-motion
model (Stafford et al. 2021).

The exact derivatives are computed using auto-
matic differentiation (Molkenthin et al. 2014). This
is achieved through the Julia (Bezanson et al.
2017) programming language, and specifically using
the package ForwardDiff (Revels et al. 2016)
in conjunction with the bespoke RVT-based pack-
age StochasticGroundMotionSimulation
(Stafford 2021).

Figure 5 shows the results for four magnitude val-
ues and broad ranges of hβ and γ . The exact boundary
where ∂ ln Sa(M)/∂M = 0 is shown with a labelled
contour. The region to the upper right of this contour
corresponds to parameter combinations where over-
saturation will occur. In addition to Eqs. 45 and 46,
two additional cases are shown in Fig. 5. The dashed
line shows the case where ΨD is considered, but ΨQ is
neglected. The dotted line shows the case whereΨD =
1
2 and ΨQ is considered. These two options for sim-
plifying the complete expression in Eq. 45 bound the
more appropriate constraints given in Eqs. 45 and 46,
with the dashed lines being unconservative, and the
dotted lines being conservative.

In principle, the most accurate constraint should
be obtained using Eq. 45. However, Fig. 5 shows
that this is not always the case, particularly at the
lower magnitudes considered. Recall that a number of
approximations were made throughout the derivation
and that these approximations should improve as the
magnitude increases. This is seen in Fig. 5 where for
the largest magnitudes in the lower panels the expres-
sion of Eq. 45 is essentially parallel to the exact zero
contour, and is slightly on the conservative side. How-
ever, what is more pleasing is that the very simple
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Fig. 5 Comparison of the exact derivatives for ranges of hβ and γ with the approximate constraints presented in the text. The nominal
FAS parameters that are not varied are Δσ = 10 MPa, Q0 = 200, η = 0.5, and κ0 = 0.035 s

constraint of Eq. 46 does a very good (arguably the
best) job at M7.5 and also performs reasonably well
for most γ and hβ combinations at larger magnitudes.
For low geometric spreading rates of γ ≤ 1.0, the sim-
ple constraint becomes slightly unconservative, but
otherwise it provides an excellent approximation to
the true boundary.

Because the constraint of Eq. 46 only involves γ

and hβ , it is very simple to specify this condition as a
nonlinear constraint within an inversion. For this rea-
son, it is recommended that this simple constraint be
favored over the more elaborate expression of Eq. 45.
Note that in the recent inversion of the Chiou and
Youngs (2014) ground-motion model by Stafford et al.
(2021), this simple constraint was adopted, and served
its purpose well.

5 Conclusions

When inverting empirical ground-motion data, or
ground-motion models, it is often desirable to prevent
the over-saturation of short-period response spectral
ordinates. Depending upon how the rupture scenar-
ios within the empirical data are distributed, or how
the parameter space is sampled within an inversion
of a ground-motion model, over-saturation can arise
even when the underlying data or model does not
support this. To prevent over-saturation, the optimiza-
tion process used to identify the FAS parameters can
be conducted with the use of nonlinear constraints
among the parameters. This article has presented two
such constraints. The elaborate expression of Eq. 45
provides a good, slightly conservative, approximation
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to the limiting condition of ∂ ln Sa(M)/∂M = 0
for the largest magnitudes of typical interest. How-
ever, this expression requires the specification of very
complex nonlinear constraints within any inversion
procedure. On the other hand, the extremely simple
result of γ hβ ≤ α/6 (see Eq. 46) performs extremely
well for the vast majority of cases of practical inter-
est. This simplified constraint places a direct limiting
relationship upon the near-field geometric spreading
rate, γ , and the large-magnitude saturation rate, hβ ,
of near-source saturation models. Therefore, for ana-
lysts making general forward simulations under the
stochastic method, respecting the constraints derived
in the present article will ensure that over-saturation
of short-period response spectral amplitudes will be
avoided.
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