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Abstract Seismic site characterization attempts to
quantify seismic wave behavior at a specific location
based on near-surface geophysical properties, for the
purpose of mitigating damage caused by earthquakes.
In recent years, techniques for estimating near-surface
properties for site characterization using geophysi-
cal observations recorded at the surface have become
an increasingly popular alternative to invasive meth-
ods. These observations include surface-wave phe-
nomenology such as dispersion (velocity-frequency
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relationship) as well as, more recently, full seismic
waveforms. Models of near-surface geophysical prop-
erties are estimated from these data via inversion,
such that they reproduce the observed seismic obser-
vations. A wide range of inverse problems have been
considered in site characterization, applying a vari-
ety of mathematical techniques for estimating the
inverse solution. These problems vary with respect to
seismic data type, algorithmic complexity, computa-
tional expense, physical dimension, and the ability to
quantitatively estimate the uncertainty in the inverse
solution. This paper presents a review of the common
inversion strategies applied in seismic site charac-
terization studies, with a focus on associated advan-
tages/disadvantages as well as recent advancements.

Keywords COSMOS guidelines · Inversion · Site
characterization · Earthquake site effects

1 Introduction

Seismic site characterization encompasses a variety
of approaches to assess the hazards associated with
earthquake ground shaking at a specific location, and
is of key importance in mitigating damage caused by
earthquakes. Site characterization generally requires
estimation of the structure and geophysical properties
of the shallow subsurface for the purpose of predicting
seismic wave behavior. As seismic waves propagate
into materials with lower seismic impedance (e.g.,
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near-surface sediments and soils), the wave amplitude
increases due to conservation of energy (Anderson
et al. 1986; Anderson et al. 1996). Amplification of
seismic waves also occurs at specific frequencies due
to resonances within near-surface layers. Furthermore,
larger-scale two- and three-dimensional (2D and 3D)
structures such as sedimentary basins can trap and
focus seismic energy, amplifying waves (e.g., Bard
and Bouchon 1985; Campillo et al. 1989; Graves et al.
1998). Consequently, the geophysical properties at a
site significantly affect the amplitude, frequency con-
tent (spectrum), and duration of ground motions du-
ring an earthquake. Greater knowledge of these prop-
erties (e.g., subsurface seismic velocities, density,
and attenuation), including their spatial distribution,
is therefore critical for understanding and predict-
ing site-specific seismic hazards. Geophysical inver-
sion provides a variety of approaches to estimate in
situ sub-surface properties from surface observations,
and often represents a convenient and economical
alternative to invasive approaches (e.g., drilling and
down-hole methods).

The general topic of geophysical inversion is con-
sidered in several texts (e.g., Parker 1994; Tarantola
2005; Menke 2018; Aster et al. 2018) and reviews
in the literature (e.g., Jackson 1972; Parker 1977;
Treitel and Lines 2001; Sambridge and Mosegaard
2002). This paper presents a review of common inver-
sion approaches for estimating geophysical models
from seismic data for the purpose of site character-
ization. The paper is structured roughly in order of
increasing complexity of the approaches reviewed.
Many of the same inversion approaches considered
here have been applied to estimate earth structure from
local to global scales. Furthermore, these approaches
have been applied to many other types of geophys-
ical data (e.g., gravity, magnetic, electromagnetic).
It is not intended, nor is it possible, for this paper
to provide an exhaustive account of the seismic site
characterization literature. It is also not the inten-
tion to promote one inversion approach over others,
but rather to summarize for the reader the variety of
techniques that are available (with a focus on recent
advancements), and to consider some of the associated
advantages/disadvantages.

The goals of this paper are to review the theory,
assumptions, limitations, and practical application of
inversion methods commonly used for seismic site
assessment and characterization. Many factors in the

inverse problem can influence the recovered model,
and impact site characterization and predicted earth-
quake response. The range of issues considered here
is broad and varies with respect to seismic data type,
algorithmic complexity, computational expense, phys-
ical dimension, and the ability to quantitatively esti-
mate the uncertainty in the inverse solution. Given
the range of methods discussed here, this paper first
provides a brief overview of some general aspects of
inversion (applicable to all problems) in Section 2
before discussing specific inversion approaches in
more detail. Most approaches considered here are
based on recovering an optimal (best-fit) model of
the shallow subsurface. Linearized and fully non-
linear approaches to finding optimal one-dimensional
(1D) models of subsurface structure are reviewed in
Sections 3 and 4, respectively. As an alternative to
methods that find a single optimal solution, Bayesian
approaches which provide a probabilistic result are
also reviewed in this paper in Section 5. Many studies
in seismic site assessment are interested in more-
complex 2D and 3D structures, such as sedimentary
basins. Surface-wave tomography and full-waveform
inversion (FWI) are two approaches for estimating 2D
and 3D models that have recently become more appli-
cable in site assessment studies, and are reviewed in
Sections 6 and 7, respectively.

2 Theoretical overview

2.1 Models and data

Inversion can be defined as the estimation of the
parameters of a postulated model that represents a
physical system of interest, using observations of
some process that interacts with the system (i.e., data).
In the case of seismic site characterization, the physi-
cal system is the geophysical structure of the shallow
subsurface, and the data are observations of seismic
waves that interact with this structure. It is important
to recognize that the model always represents an ide-
alization of the actual physical system. For example,
a model consisting of a 1D profile of seismic veloc-
ity assumes the subsurface is laterally homogeneous
(and typically isotropic). An important issue in all
inverse problems is whether the postulated model ade-
quately represents the physical system. For example,
assuming lateral homogeneity when the subsurface is
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actually laterally heterogeneous introduces modelling
errors that can bias or preclude meaningful results.
Such cases may necessitate more-complex 2D or 3D
models of the system. Furthermore, within the context
of site-specific seismic hazard assessment, such 2D or
3D models may ultimately be required to accurately
predict the response of a site during an earthquake
(e.g., Campillo et al. 1990; Trifunac 2016).

In the case of a 1D profile, model parameters com-
monly represent the shear-wave velocity (VS) and
compressional-wave velocity (VP ) within discrete lay-
ers. Other parameters such as density (ρ) and atten-
uation are also considered. However, it is commonly
accepted that the response of a site to an earthquake is
predominantly influenced by the VS structure. In 2D
or 3D models, parameters typically represent seismic
velocities of discrete cells in a spatial grid. The num-
ber and sizes of layers or cells in the model are also
issues in model selection. Depending on the particular
approach, these spatial properties may also be consid-
ered as model parameters estimated in the inversion
(e.g., the number and thicknesses of layers in a 1D
scenario).

As mentioned above, the data considered in this
review to constrain subsurface structure represent
observations of seismic wave phenomenology (other
types of geophysical data are sometimes used for site
characterization, but seismic data are the most com-
mon and informative). Common seismic data include
measurements of the dispersion (variation of phase
or group velocity with frequency) and the horizontal-
to-vertical spectral ratio (HVSR) of surface waves.
Both of these data types can be extracted from ambi-
ent seismic noise, although controlled-source and
earthquake recordings are also used. In some cases,
surface-wave attenuation curves can be measured
from multi-channel active-source recordings. Detailed
discussions on the measurement and processing of the
various data types here are included in other review
papers in this issue. Furthermore, many site char-
acterizations studies estimate near-surface structure
using body-wave (active-source) imaging methods
(e.g., Williams et al. 2000). These problems are for-
mulated differently than those discussed in this review,
and are considered in other review papers in this issue.
In the case of tomographic inversion, the data typically
represent the travel times of particular seismic phases.
In FWI, rather than considering the data to be spe-
cific features of a recorded seismogram (such as wave

amplitudes or travel times), the data are taken to be the
seismogram itself, which contains more information
(and associated complexities).

Many site characterization applications are based
on estimating specific regulatory-based representa-
tions of near-surface structure (e.g., the travel-time
averaged VS of the upper 30 m, known as VS30). Such
site-characterization parameters can be extracted from
seismic inversion results. However, it is worth not-
ing that other studies estimate these site parameters
directly, based on empirical relationships for surface-
wave data at particular wavelengths (e.g., Martin and
Diehl 2004; Albarello and Gargani 2010), or other
proxies such as surficial geology (e.g., Wills and Cla-
han 2006) and topography (e.g., Yong et al. 2012). As
these approaches do not formally represent inversion,
they are not considered further in this review, but see
Yong (2016) and Savvaidis et al. (2018) for further
discussion on this topic.

The near-surface attenuation properties of a site are
of significant importance in seismic site assessment. A
common technique for studying near-surface attenua-
tion is via the amplitude spectra of earthquake record-
ings, which typically display a decrease in amplitude
at high frequencies that is often modelled by a spec-
tral decay factor κ . The path-corrected component of
κ , called κ0, is believed to be a frequency-independent
site-attenuation (and scattering) parameter (e.g., Pilz
and Fäh 2017; Palmer and Atkinson 2020). Although
useful, κ is typically estimated empirically, and does
not represent the result of an inversion. Hence, this
topic is not considered further here.

2.2 The forward problem

In order to consider an inverse problem, a solution must
be available for the corresponding forward problem
(also called the forward model or direct problem). For
a given set of model parameters, the forward problem
computes (predicts) the data that would be observed
for this representation of the physical system (i.e., the
forward problem simulates the physical processes that
lead to the data). Mathematically, the forward prob-
lem represents a mapping from the model-parameter
space to the data space, while the inverse problem
represents the reverse mapping. Geophysical forward
problems (predicting data for models) produce a
unique solution that is generally stable in the sense that
small changes to the model cause only small changes
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to the resulting data. In contrast, the inverse prob-
lem (estimating model parameters from data) is non-
unique (more than one model can fit the data) and
can be unstable (i.e., small changes to the data, such
as errors, can cause large changes in the recovered
model). Hence, solutions to inverse problems should
always be appraised critically, and quantitative uncer-
tainty estimation, when possible, is valuable.

To briefly consider the forward problem for the
data types mentioned above, predicting surface-wave
dispersion for laterally homogeneous models usu-
ally employs efficient numerical methods such as the
Thomson-Haskell propagator-matrix (Thomson 1950;
Haskell 1953; Knopoff 1964; Dunkin 1965; Gilbert
and Backus 1966). For HVSR, a consensus for the
cause of the shape of the spectral amplitude ratio
has not been established (Lunedei and Malischewsky
2015; Molnar et al. 2018). As such, a variety of tech-
niques have been used to solve the HVSR forward
problem, with the various differences (or simplifica-
tions) in the underlying theories representing possi-
ble sources of error. Most 1D forward models are
based on discrete layers with uniform geophysical
properties within each layer. Model parameterizations
that involve gradients (e.g., a power-law profile) can
be parameterized in terms of multiple uniform sub-
layers. Recently, spectral-element techniques have
been developed to solve the 1D forward problem for
more general profile forms including uniform layers,
smoothly varying structure, or combinations thereof
(e.g., Hawkins 2018). For tomographic inversion, the
forward problem must determine the wavefront evo-
lution or ray path for a particular seismic phase to
accurately predict travel times (e.g., Rawlinson and
Sambridge 2004). FWI requires computation of syn-
thetic seismograms that accounts for complex het-
erogeneity and scattering effects. For this purpose,
numerical approaches for solving the partial differen-
tial equations governing seismic wave propagation are
typically employed (e.g., Bouchon et al. 1989; Virieux
1986; Komatitsch and Vilotte 1998; Akcelik et al.
2003).

All inversion methods discussed in this paper incorpo-
rate an underlying approach to solving the correspond-
ing forward problem, with associated assumptions
that can impact the model solution. However, further
discussion of the forward problem (unique to each
data type and problem) is beyond the scope of this
review.

2.3 Errors and misfit

The goal of most inversion approaches is to determine
the set of model parameters for which the predicted
data best fit the observed data. A perfect fit is gener-
ally not possible (or desirable) because of data errors,
which include measurement errors on the observed
data (e.g., due to instrument effects and competing
seismic vibrations in the environment) and theory
errors on the predicted data (due to simplified model
parameterizations and approximate physics of the for-
ward problem). A common measurement error in site
characterization studies considering surface-wave dis-
persion is the misidentification, or interaction, of dom-
inant modes in the data (O’Neill and Matsuoka 2005).
Data errors (sum of measurement and theory errors)
can be considered to represent all factors that cannot
be modelled or accounted for in the inverse prob-
lem. Measurement errors are often considered to be
statistical (i.e., aleatoric), whereas theory errors typ-
ically introduce systematic (i.e., epistemic) errors. In
some cases, measurement errors can be characterized
statistically from repeated sets of observed data. How-
ever, this approach does not apply to theory errors, the
statistics of which are usually poorly known.

In many inversion approaches, the data misfit func-
tion is formulated based on knowledge or assumptions
on the error processes. Considering the difference
between observed and predicted data (called data
residuals) to represent the errors, the misfit function
can be derived by assuming a particular statistical
distribution of the residuals given the model, which
is then interpreted as the likelihood of the model.
For example, the common assumption of Gaussian-
distributed errors leads to an L2 misfit function (neg-
ative log-likelihood function) consisting of the sum
of squared residuals, weighted by the inverse error
covariance matrix. The Gaussian assumption is sup-
ported by the Central Limit Theorem, which states
that the sum of a number of error processes tends to
a Gaussian distribution regardless of the distributions
of the individual processes. Further, L2 misfit min-
imization corresponds to least-squares methods, for
which analytic solutions exist for linear and linearized
problems. However, the assumption of Gaussian errors
and least-squares misfit can be inappropriate for data
sets containing outliers (data with improbably large
errors). In such cases, the assumption of Lapalacian
errors (i.e., a two-sided exponential distribution) is
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more robust. This assumption leads to an L1 mis-
fit function based on the sum of absolute values of
residuals, weighted by the square-root of the inverse
covariance matrix. No analytic solution to L1 misfit
minimization exists.

The L1 and L2 misfit functions mentioned above
formally require knowledge of the error covariance
matrix, which is often not available. However, under
the assumption of independent, identically distributed
(IID) errors (i.e., a diagonal covariance matrix with
constant variance), the problem of misfit minimiza-
tion is independent of the covariance matrix and un-
weighted misfit functions apply. This approach is com-
monly used for misfit minimization; however, it does
not apply to parameter uncertainty estimation where
error quantification is required. Furthermore, it should
be noted that if the errors are not IID (common for
geophysical data), the approach can lead to suboptimal
(biased) solutions. In such cases, it may be preferable
to estimate the error statistics from the data as part of
the inverse problem. This requires variance estimation
if the errors can be considered independent, or full co-
variance estimation for inter-dependent (e.g., serially
correlated) errors. Variance/covariance can be estima-
ted using non-parametric approaches where the resid-
uals from an initial unweighted inversion are used to
compute a diagonal or Topeplitz (band-diagonal) co-
variance matrix for a subsequent inversion. Alterna-
tively, parametric approaches can be applied in non-
linear (numerical) inversions by including the param-
eters for a model of the covariance matrix in the
inversion.

Misfit functions can also be defined without a sta-
tistical foundation to serve the same purpose of quan-
tifying the difference between observed and predicted
data. For example, the optimal-transport metric has
gained popularity as a misfit function in several seis-
mological inverse problems (e.g., Métivier et al. 2016;
Hedjazian et al. 2019). This misfit metric enhances
certain desirable properties of the problem such as
linearity of the relationship between data and model
parameters, as well as the uniqueness of the problem.
It is worth noting that several of the inversion strate-
gies reviewed in this paper (particularly non-linear
inversions) need not be based on specific assumptions
on data errors.

Regardless of how the misfit function is defined,
it can be interpreted as a hyper-surface in the model
space (i.e., a multi-dimensional function over the

parameters). The goal for many inverse methods is to
estimate the optimal set of model parameters that rep-
resent the global minimum of the misfit surface. An
important distinction is whether the inverse problem is
linear, weakly non-linear, or strongly non-linear. Lin-
ear inverse problems have a single minimum of the
misfit function over the parameter space. An idealiza-
tion of such a misfit function is illustrated in Fig. 1a. In
particular, for a linear inverse problem with Gaussian-
distributed errors, the L2 misfit function represents the
(negative) logarithm of a Gaussian likelihood function
over the parameter space, and an analytic expression
for this solution exists.

Most inverse problems in geophysics (including
seismic site assessment and characterization) are non-
linear. A rare example of a linear problem is the inver-
sion of measured surface-wave attenuation curves to
estimate near-surface P-wave and/or S-wave attenu-
ation (described by dimensionless quality factor Q)
where, for known velocity structure, the relationship
between surface-wave attenuation and body-wave at-
tenuation is linear (e.g., Xia et al. 2002b). In some
cases, the non-linearity of an inverse problem may be
weak, such that the problem can be solved via linea-
rization, iteratively stepping down the local misfit gra-
dient to the minimum (Section 3). For strongly non-
linear problems, the misfit surface can be complex, po-
tentially including multiple disconnected regions with
low misfit (i.e., local minima) in the parameter space,
as illustrated in Fig. 1b. Linearized inversions can fail
(converge to local minima or diverge) for strongly
non-linear problems, and non-linear approaches are
required (Section 4).

Non-linear inversion in seismic site assessment
and characterization comprises a diverse collection
of methods. These include the downhill simplex
method (DHS, Section 4.1), which moves roughly
down the misfit gradient through geometric moves
without computing derivatives of the hyper-surface;
global search methods such as simulated annealing
(SA) and genetic algorithms (GA, Section 4.2), which
apply a directed random search based on natural opti-
mization processes; and the neighborhood algorithm
(NA, Section 4.3), which sequentially subdivides the
parameter search space to converge to the solution.
Large-scale problems such as tomography and FWI
are typically based on linearization for practical (com-
putational) reasons. An alternative to inversion meth-
ods that seek the best-fit model solution (a point
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Fig. 1 Hypothetical misfit
surfaces in a 2D model
space. A simple misfit
surface for an idealized
linear problem is shown in
(a). A complex misfit
surface, with multiple local
minima, for a non-linear
problem is shown in (b).
The locations of the global
minima of the surfaces are
shown by red stars

estimate in the parameter space), Bayesian inversion
is based on probabilistic (numerical) sampling over
the parameter space to estimate properties of the
posterior probability density (PPD), providing param-
eter estimates together with quantitative (non-linear)
uncertainty analysis (Section 5).

2.4 Parameterization

The approach to parameterizing the model is another
important issue in inversion. Adopting too few param-
eters (e.g., layers in a 1D problem or grid cells in 2D
or 3D) can underfit the observed data, leaving model
structure unresolved and biasing parameter estimates.
Conversely, adopting too many parameters can over-
fit the data (i.e., fit the errors on the data), resulting in
models with spurious (unconstrained) structural fea-
tures. Furthermore, more model parameters typically
means greater computation cost.

The inversion also depends on the form of the mo-
del represented by the parameterization. For example,
as mentioned above, most 1D site-characterization stu-
dies consider the subsurface to be represented by a
discrete stack of uniform layers, with discontinuities
in geophysical properties at layer boundaries. Howe-
ver, some recent inversions consider gradient (smooth)
structures represented by linear or power-law func-
tions (e.g., Molnar et al. 2010) or, more generally, by
polynomial basis functions (Gosselin et al. 2017). In
some cases, these gradient-based parameterizations
have been shown to characterize unconsolidated soils
and sediments better than discrete layered models,
although this is not universal for all sites.

Some approaches to parameterization, particularly
for linearized inversions, include only the geophysical
properties for a fixed discretization of the subsurface
model, since solving for spatial parameters (e.g., layer
thicknesses or cell sizes) can significantly increase
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the non-lineariy of the problem. In this approach, the
model is typically over-parameterized with many layers/
grid cells that are below the spatial resolution of the
data to provide flexibility for the solution. The result-
ing under-determined inversion can be constrained by
regularization (described in Section 3) to explicitly
control the data misfit and structure of the solution.

An alternative parameterization approach is to
solve for the spatial properties of the model (individual
layer thicknesses or cell sizes) as part of the problem.
This is more often applied in non-linear approaches,
where the increased non-linearity is of less concern.
This approach typically assumes a small number of
layers/cells to constrain model structure, but the issue
of over- or under-parameterization is sometimes given
little attention beyond qualitative practices such as
progressively increasing the number of layers until the
data misfit stops decreasing significantly. However,
quantitative approaches to parameterization based on
formal information criteria or by sampling probabi-
listically over the number of parameters have been
applied in site-assessment inversion, and will be revie-
wed herein.

2.5 Practical considerations

The inversion approaches discussed in the following
sections of this paper have various advantages and dis-
advantages. For instance, linearized inversions often
require the fewest data predictions (forward solutions)
and are the least computationally demanding. Bayesian
inversion numerically samples the model probability
over the parameter space, and can require tens to hun-
dreds of thousands of data predictions. Consequently,
Bayesian methods are typically the most computatio-
nally demanding, but also provide the most informative
solutions. Non-linear optimizations generally fall so-
mewhere between these extremes in terms of compu-
tational demand.

Forward solutions for 1D models in seismic site cha-
racterization are quite efficient such that inversions
can generally be solved in a matter of seconds (for li-
nearized methods) to minutes (for Bayesian methods)
with serial algorithms on a desktop computer. In mic-
rotremor array methods for local site-assessment app-
lications (e.g., estimating geophysical properties at a
site over 10s to 100s metres depth), the 1D assump-
tion is required only over the lateral extent of the
seismometer array (also ∼10–100 m). For larger-scale

studies (e.g., tomographic inversion and FWI for sed-
imentary basin structure), 2D or 3D parameterizations
are generally required. In these cases, the computatio-
nal demand of the forward problem is much greater
and most approaches rely on linearized inversion. Ba-
yesian methods have been applied to large-scale seis-
mic inversions at significant computational expense
(e.g., Bodin and Sambridge 2009; Bodin et al. 2012;
Gosselin et al. 2021); however, to date, such methods
have not been applied to site assessment.

Inverse methods are sometimes treated as a “black
box,” with data as input and a model of earth structure
as output, but with little consideration of the underly-
ing processes. However, the output model can be non-
physical or meaningless if the data are of poor quality
or if the error assumptions or model parameterization
do not apply. The observed data should be inspected
(visually or otherwise) for quality control and, when-
ever possible, “sanity checks” applied to assess the re-
liability of model solutions. For example, in HVSR in-
version, the peak frequency for the spectral-ratio curve
is strongly linked to the depth of the largest seismic
impedance contrast in the subsurface (e.g., the soil-
bedrock interface), with a lower frequency indicating
a deeper interface. If the observed HVSR data possess
a low-frequency peak, then it is reasonable to expect
the inversion solution to include a large change in seis-
mic velocity at a deep interface. For all inverse prob-
lems, the agreement between the observed and predic-
ted data should be examined to ensure a meaningful
fit (but note that good data fit is a necessary but not
sufficient condition for a meaningful model solution).
Examining the data residuals after an inversion can
also provide useful insight into the data-error statis-
tics. Further discussion on “guidelines” and details per-
tinent to the processing and inversion of surface-wave
data in particular is provided by Foti et al. (2011), Foti
et al. (2018), and Vantassel and Cox (2021).

Due to the non-uniqueness and potential instability
of inverse problems, it is important to assess the uncer-
tainty of the model solution, when possible. Under-
standing and quantifying the uncertainties in estimated
near-surface structure (and associated effects on site
characterization) is of significant interest for engineer-
ing and planning purposes, and has been identified as
a critical issue in seismic site characterization (Cornou
et al. 2006). However, uncertainty estimation can be
challenging for inverse problems, and many meth-
ods are approximate and/or qualitative. For instance,
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linearization errors as well as regularization schemes
generally preclude quantitative uncertainty estimation
for linearized inversions. Global-search methods are
designed to locate the optimal solution, but not esti-
mate uncertainties. However, Bayesian inversion me-
thods can provide rigorous uncertainty quantification
for non-linear problems, including seismic site assess-
ment (e.g., Molnar et al. 2010; Dettmer et al. 2012;
Gosselin et al. 2017). Furthermore, the estimated
inversion uncertainties can be propagated into site-
assessment analyses to characterize the site and pre-
dict the expected range of seismic amplification and
resonance, representing a valuable result for engi-
neers and planners (Molnar et al. 2013; Gosselin et al.
2018).

3 Linearized inversion

As mentioned in the previous section, although inverse
problems associated with seismic site characterization
are functionally non-linear, in some cases the analytic
theory for linear inversion can be applied via local lin-
earization and iteration. This section reviews common
linearized inversion techniques and their application
to site assessment.

Consider a non-linear inverse problem with vectors
of model parameters m, observed data d, and pre-
dicted data d(m). Equating the observed data to those
predicted for the model sought, and expanding the data
functional (forward problem) about a starting model
m0 to first order leads to

d = d(m)

≈ d(m0) + A(m − m0).
(1)

Here, A is the sensitivity or Jacobian matrix of partial
derivatives, Aij = ∂di(m0)/∂m0j . Neglecting higher-
order terms in the expansion linearizes the inverse
problem about the initial model. Rearranging Eq. 1
and defining data and model perturbations δd = d −
d(m0) and δm = m − m0, respectively, leads to a
linear relation:

δd = A δm. (2)

This is the fundamental relationship between changes
in a proposed model and resulting changes in the
forward-modelled data, which can be used to refine
the initial model.

For some inverse problems, analytic expressions
for the required partial derivatives are available, but in
other cases they must be estimated numerically (e.g.,
via finite differences). The sensitivity matrix encap-
sulates the physics/geometry for the (linearized) prob-
lem, and can provide useful insight. For example, Xia
et al. (1999) examined the sensitivity matrix for 1D
linearized inversion of surface-wave dispersion data,
and concluded quantitatively that dispersion data are
significantly more sensitive to VS than VP or ρ. Fur-
thermore, Xia et al. (2003) determined that, for a given
frequency, higher-order modes are more sensitive than
the fundamental mode to deeper structure, and thereby
provide greater information for, and constraint on,
such structure. Note that we discuss the sensitivity
matrix within the context of a discrete, parameterized
model. The continuous (and analytic) equivalent to the
sensitivity matrix are often called the Fréchet deriva-
tives (McGillivray and Oldenburg 1990).

As mentioned previously, the assumption of
Gaussian-distributed errors for a linear inverse prob-
lem leads to an analytic solution. For Eq. 2, this
assumption leads to a likelihood function

L(δm) = 1

(2π)N/2|C|1/2
exp

[
−Φ(δm)

2

]
, (3)

where

Φ(δm) = (δd − Aδm)T C−1(δd − Aδm) (4)

is the misfit (negative log-likelihood) function and C
is the data error covariance matrix. The best-fit model
perturbation δm (for the linearized problem) can be
found by maximizing the likelihood or, equivalently,
minimizing the misfit: setting ∂Φ(δm)/∂δm = 0
leads to

δm =
[
AT C−1A

]−1
AT C−1δd. (5)

The model solution is given by m1 = m0 + δm. Since
higher-order terms were neglected, this may not rep-
resent a satisfactory solution, but the procedure can
be repeated iteratively until the data are fit appropri-
ately and/or the parameters no longer change between
iterations.

The linearized solution, Eq. 5, requires the matrix
AT C−1A to be well-conditioned. In practice, depend-
ing on the choice parameterization, inversions for
seismic site characterization are often ill-conditioned
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(nearly singular), which leads to unstable inversions.
The inversion can be stabilized using singular-value
decomposition (e.g., Parolai et al. 2006) and/or by
incorporating additional constraints on the model
parameters independent of the data.

A common strategy to incorporate constraints for
stability is regularization (Fig. 2). Rather than mini-
mizing the data misfit Eq. 4, regularization considers
a more general objective function that augments the
data misfit with a model misfit term

�(δm, β) =(δd − Aδm)T C−1(δd − Aδm)

+ β(δm − δm̂)T RT R (δm − δm̂),
(6)

where δm̂ represents a preferred value for δm, R rep-
resents a weighting matrix (the regularization matrix),
and β is a trade-off parameter determining the relative
importance of the two terms. Minimizing Eq. 6 with
respect to δm leads to the regularized solution which
may be expressed by

δm = δm̂+[
AT C−1A + βRT R

]−1
AT C−1 [

δd − Aδm̂
]
.

(7)

In Eq. 7, the term βRT R stabilizes the matrix inver-
sion (cf. Eq. 5), given appropriate choices of β and
R. The role of β as a trade-off parameter is clear:
in the lim β → 0 Eq. 7 simplifies to Eq. 5 which

minimizes data misfit alone, while the lim β → ∞
leads to δm = δm̂ which minimizes model misfit.
The goal is to determine an appropriate value for β

which provides an acceptable data misfit while stabi-
lizing the inversion. If suitable knowledge of the data
error covariance is available, β can be chosen to fit the
data according to a statistical criterion (e.g., χ2 test). If
not, a more subjective approach is to plot the data mis-
fit versus the model misfit to determine a balance near
the inflection point of this curve (the L-curve method,
e.g., Hansen 1992).

The most common form of regularization used in
(1D) near-surface seismic inversion sets R = I (the
identity matrix) and δm̂ = 0 (i.e., a preference for
small linearized step size), such that Eq. 7 becomes

δm =
[
AT C−1A + βI

]−1
AT C−1δd. (8)

This solution adds β to the main diagonal of AT C−1A
to overcome ill-conditioning. For IID errors (i.e., C =
σ 2I), this method is often referred to as damped least
squares. This regularization, favoring small δm, is
consistent with local linearization which may only
apply in a small region around the initial model.

Levenberg (1944) proposed a strategy for assigning
β based on the number of linearized iterations such
that β is larger for initial iterations (consistent with
the local linear assumption) but gradually decreases
for later iterations in order to better fit the observed

Fig. 2 Tradeoff between
data misfit and
regularization. Solid
contours show the misfit
surface with its minimum at
the red star. Dashed
contours show a
hypothetical regularization
surface with its minimum at
the blue star (which does not
fit the data). The regularized
solution balances
minimizing both functions.
Adapted from Sambridge
and Mosegaard (2002)
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data near convergence. Marquardt (1963) improved
the inversion by specifying RT R to be the diago-
nal components of AT C−1A such that the relative
weighting of model parameters in the regularization is
defined by information in the sensitivity matrix. The
Levenburg-Marquart and damped least-squares meth-
ods have been used extensively in linearized inversion
for 1D seismic site characterization (e.g., Xia et al.
1999; Xia et al. 2002a; Xia et al. 2003; Forbriger
2003).

Alternatively, regularizations can be defined to rep-
resent first- or second-order spatial derivative oper-
ators applied to the parameters to minimize model
gradients or roughness, respectively (Constable et al.
1987; Aster et al. 2018). These regularizations min-
imize complex structure, producing simple (flat or
smooth) models. For these regularizations, the lin-
earized problem, Eq. 2, is typically recast as

δd + Am0 = Am, (9)

such that the inversion and regularization are formu-
lated for the updated model rather than the model
perturbation. Minimum-structure regularized inver-
sions are often used in 2D and 3D engineering-scale
problems in site assessment (considered in Sections 6
and 7).

Linearized inversion may fail by diverging, or con-
verging to a local (rather than global) minimum, if
the non-linearity of the problem is strong and/or the
initial model is poor. Non-linear methods, discussed
in the following section, are designed to overcome
these problems. Compared to non-linear methods,
linearized inversion typically requires fewer forward
operations (data predictions) since they exploit mis-
fit gradient information rather than employ directed
random searches. Parolai et al. (2006) considered the
inversion of surface-wave dispersion to estimate near-
surface 1D VS structure using linearization as well
as two non-linear methods (DHS and GA, discussed
in Section 4). Similarly, Lu et al. (2016) compared
linearization to SA. Both studies showed that, given
a relatively accurate starting model, linearized inver-
sion performed as well as non-linear methods. Some
studies have considered multi-step hybrid inversions
that initially apply a non-linear approach (e.g., GA)
to estimate a good initial model for a subsequent lin-
earized inversion (e.g., Picozzi and Albarello 2007;
Lei et al. 2018). Further comparisons between lin-
ear and non-linear inversions of dispersion data for

site characterization applications are given in Garofalo
et al. (2016).

In linear inverse theory, the quality of the model
solution can be assessed through the calculation of
resolution and model covariance matrices. However,
for linearized inversions, these measures suffer from
linearization error, and regularization can preclude
meaningful results; they do not appear to be com-
monly used in seismic site characterization.

4 Non-linear optimization

Linearized inversion methods considered in the previ-
ous section are sometimes referred to as local searches
since, although they move efficiently downhill based
on misfit gradient information, they typically remain
close to the starting model and are prone to become
trapped in local minima. As an alternative, non-linear
search (optimization) methods are designed to widely
search the space and (ideally) avoid sub-optimal solu-
tions. A variety of non-linear optimization methods
have been applied to geophysical inversion for site
assessment. This includes DHS, global search meth-
ods of SA and GA, and NA, all of which are described
in this section. The goal of these methods is to deter-
mine the set of model parameter values that mini-
mizes the data misfit via numerical optimization; i.e.,
the various methods all solve the same problem, but
apply different optimization schemes. NA has been
most widely used in inversion for 1D seismic site
characterization studies due to the availability of a
user-friendly software implementation (geopsypack,
Wathelet et al. 2020). For this reason, and because the
original algorithm has been modified and improved
for this application, the NA is reviewed in greater
detail in Section 4.3. For a more technical discussion
on some of the techniques reviewed in this section (for
general applications in geophysics), as well as for fur-
ther discussion on exploitation vs. exploration of the
misfit hyper-surface in geophysical inverse methods,
see Sambridge and Mosegaard (2002).

4.1 Downhill simplex

The DHS method (Nelder and Mead 1965) is an opti-
mization method based on a geometric scheme for
moving “downhill” in parameter space without calcu-
lating partial derivatives. DHS operates on a simplex
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(convex hull) of M + 1 models in an M-dimensional
model parameter space, as illustrated in Fig. 3 for
M = 3. Computing the misfit for each model of the
simplex provides (limited) information on the local
misfit gradient without derivative computations.

The simplex undergoes a series of transformations
in order to work its way downhill. Each model is
ranked according to its misfit. The algorithm initially
attempts to improve the model with the highest mis-
fit by reflecting it through the face of the simplex (as
shown in Fig. 3b). If this new model has the lowest
misfit in the simplex, an extension by a factor of 2 in
the same direction is attempted (Fig. 3c). If the exten-
sion further reduces the misfit the result is retained;

otherwise it is not. If the model obtained by the reflec-
tion still has the highest misfit in the simplex, the
reflection is rejected and a contraction by a factor
of 2 towards the lowest-misfit model is attempted
(Fig. 3d). If none of these steps decrease the misfit
below the second highest in the simplex, then a mul-
tiple contraction by a factor of 2 in all dimensions
toward the lowest-misfit model is performed (Fig. 3e).
The above series of steps is repeated until convergence
is achieved (generally based on the simplex shrinking
to a point in model space) or a maximum number of
iterations is reached.

The DHS method moves progressively downhill in
misfit without relying on linearization, but as it has

Fig. 3 Geometrical steps of
DHS illustrated for a 3D
parameter space. Initial
simplex of 4 models (a).
Operations are applied to
the model with the highest
misfit including reflection
(b), reflection plus
expansion (c), and
contraction (d). If all of
these fail, a multiple
contraction of M models
towards the lowest-misfit
model is applied (e)
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limited ability to move uphill (except potentially mul-
tiple contractions), it is prone to becoming trapped in
local minima in the parameter space. To improve the
confidence in finding the global minimum, it is recom-
mended to run the procedure several times, initiated
from different starting models.

The DHS algorithm has been widely used in 1D
site characterization studies, particularly consider-
ing surface-wave dispersion data (e.g., Ohori et al.
2002; Parolai et al. 2006; Zomorodian and Hunaidi
2006). Garcı́a-Jerez et al. (2016) developed a widely
used software package (HV-Inv) that applies the DHS
method (among other optional optimization methods)
to invert HVSR data for shallow 1D velocity struc-
ture. The software also supports the joint inversion
of HVSR and dispersion data. Baziw (2002) applied
DHS to seismic cone penetration data, which mea-
sure seismic body waves rather than surface waves and
are typically considered using simplified direct con-
versions to seismic velocities in soils (as opposed to
formal inversions).

As mentioned above and similar to linearized inver-
sion (Section 3), the DHS method is prone to converge
to local minima in the parameter space. DHS has
been combined with global search methods to exploit
the advantages of each. In 1D site characterization
studies considering HVSR and/or surface wave dis-
persion data, the DHS method has often been used
in combination with an initial global search method
(most-often SA, discussed in Section 4.2) to reduce
the possibility of converging to a local minimum (e.g.,
Alfaro Castillo 2006; Poovarodom and Plalinyot 2013;
Garcı́a-Jerez et al. 2019; Maklad et al. 2020).

4.2 Global search: simulated annealing and genetic
algorithms

Global-search methods are designed to explore the
parameter space widely, and explicitly include the
ability to move uphill in misfit in order to escape from
local minima in search of a better solution. Two widely
used global-search methods in geophysics are SA and
GA, which are both based on analogies of non-linear
optimization processes that exist in nature.

SA is based on an analogy with the natural
optimization process of thermodynamic annealing,
by which crystals are grown and metals hardened
(Van Laarhoven and Aarts 1987). The optimization
algorithm consists of a series of iterations involving

random perturbations of the unknown model param-
eters (representing the thermodynamic system) of
m → m′, with a resulting change to the data mis-
fit function (analogous to free energy of the system)
of Φ(m) → Φ(m′). Perturbations that decrease the
misfit are always accepted, while perturbations that
increase misfit are sometimes accepted with an accep-
tance probability given by the Gibbs distribution of
statistical mechanics

A(m′|m) = exp(−�Φ/T ),

where �Φ = Φ(m′) − Φ(m) represents the increase
in misfit due to the perturbation and T is a con-
trol parameter (analogous to absolute temperature).
According to this rule, perturbations that increase mis-
fit are accepted with a conditional probability that
decreases with increasing �Φ and decreasing T . Over
the process of many such iterations the temperature T

is gradually reduced from an initial high value (cool-
ing/annealing the system in thermodynamic terms).
Accepting some perturbations that increase Φ allows
the algorithm to escape from local minima in search of
a better solution. At early iterations (high T ), the algo-
rithm searches the parameter space in an essentially
random manner. As T decreases, accepting increases
in Φ becomes increasingly improbable, and the algo-
rithm spends more time searching regions of low
Φ, eventually converging to a solution which should
approximate the global minimum.

The starting temperature, rate of reducing T , and
the number and type of perturbations define the
annealing schedule, which controls the efficiency and
effectiveness of the algorithm. Adopting an anneal-
ing schedule that is too fast, i.e., decreases T too
quickly or allows too few perturbations, can lead
to sub-optimal solutions. Alternatively, adopting an
annealing schedule that is overly cautious wastes com-
putation time. Determining an appropriate annealing
schedule is problem specific and generally requires
some experimentation and familiarity with the inverse
problem. SA can be related to Markov chain Monte
Carlo (MCMC) methods (described for Bayesian
inversion in Section 5), with the goal of optimization
based on non-convergent sampling with decreasing T

rather than probability estimation based on sampling
to convergence at unit temperature.

SA has been used extensively in near-surface seis-
mic studies, considering a wide range of seismic data
types including surface-wave dispersion (e.g., Beaty
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et al. 2002; Yamanaka 2005; Pei et al. 2007; Lu et al.
2016), surface wave velocity spectra (e.g., Ryden and
Park 2006), HVSR (e.g., Garcı́a-Jerez et al. 2016),
spectral ratios of direct S-waves from earthquakes
(e.g., Dutta et al. 2009), and full seismic wavefields
(e.g., Tran and Hiltunen 2012).

GA is based on an analogy to biological evolution
according to the concept of “survival of the fittest.”
GA simulates the genetic evolution of a collection
(population) of models through many iterations (gen-
erations) to minimize their misfit. This is analogous to
maximizing the population’s fitness to a specific eco-
logical niche (Fogel et al. 1966; Holland and et al.
1992; Sambridge and Mosegaard 2002). Each genera-
tion of models acts as parents for the next generation
of (offspring) models through processes designed to
mimic selection (pairing of parent models), crossover
(recombination of parent genetic information in off-
spring), and mutation (random variations) in a manner
that probabilistically favors models with lower misfits.
To facilitate these processes, each model is normally
coded as a string of parameters represented in binary
(base 2) in terms of a pre-defined number of bits to
represent a gene (and thereby discretizing the param-
eter space). A large variety of approaches to the
selection, crossover, and mutation steps exist, which
will not be discussed here. Like the annealing schedule
for SA, these GA steps (and the tradeoff between their
efficiency and robustness) are specific to the prob-
lem. GA has been widely used in near-surface seismic
studies that invert surface-wave dispersion data (e.g.,
Yamanaka and Ishida 1996; Yamanaka 2005; Parolai
et al. 2006), HVSR data (e.g., Fäh et al. 2001; Fäh
et al. 2003), or both (e.g., Parolai et al. 2005).

Global-search algorithms generally require subjec-
tive choices of tuning parameters that control algo-
rithm performance (e.g., the annealing schedule in
SA and the evolutionary steps in GA). These param-
eters are typically problem and data specific, making
it challenging to know if the algorithm is prop-
erly tuned. Consequently, it is challenging to make
rigorous and objective comparisons between tech-
niques in terms of algorithm efficiency. In any case,
Yamanaka (2005) compared several non-linear global-
search techniques, including SA and GA, for inverting
surface wave dispersion data to estimate shallow VS

structure. They found that both techniques produced
comparable results. In a similarly motivated study,
Garofalo et al. (2016) compared results from several

global-search and local-search techniques (including
NA, SA, GA and linearized methods) for inverting
surface-wave dispersion to estimate shallow VS struc-
ture. They found these methods all recovered similar
velocity profiles over the depth range of data sensi-
tivity. As mentioned in the previous section, Parolai
et al. (2006) considered the inversion of surface-wave
dispersion to estimate near-surface 1D VS structure
at a site near Cologne, Germany, using linearized
inversion as well as DHS and GA. They processed
ambient seismic noise recorded on a 2D (100 m by
150 m L-shaped) array of 11 instruments to calculate
Rayleigh-wave dispersion at 51 frequencies between
1 and 5 Hz (Fig. 4a). In their implementation of
GA, genetic operations were applied to a population
of 30 individual models and the inversion repeated
numerous times with different random initial popu-
lations. The final optimal VS profile obtained from
the linearized, DHS, and GA inversions are shown
in Fig. 4b, with the associated predicted dispersion
curves shown in Fig. 4a. The recovered VS profiles
from the three inversion methods are very similar,
and produce nearly identical predicted dispersion data.
Furthermore, Parolai et al. (2006) showed that the esti-
mated site response (calculated as the amplification
spectra for vertically propagating SH waves) of the
VS profiles obtained from various inversion strategies
were consistent. These studies suggest that the inver-
sion strategies are comparable in terms of recovering
an optimal model (assuming a reasonable starting
model for linearized inversion or DHS) when invert-
ing high-quality surface-wave data for 1D structure.
However, this assumes all other aspects of the inverse
problem (i.e., forward physics, data error assumptions,
model parameterization, etc.) are correct.

The greatest advantage of global-search algorithms
is that they are relatively insensitive to the start-
ing/initial model, unlike linearized inversions. No
global-search algorithm is guaranteed to converge to
the global minimum in misfit within a finite number of
steps, although they can be much more effective than
linearization (at increased computational cost). Fur-
thermore, there is no general approach to determine
whether the solution obtained actually represents the
global minimum, although confidence is increased if
repeated runs of the algorithm (with different random
initializations) produce similar results. As mentioned
previously, several studies in site characterization have
adopted global-search techniques (such as SA and
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Fig. 4 Examples of linearized, DHS, and GA inversions of
surface-wave dispersion data. Measured phase-velocity disper-
sion data from ambient seismic noise recordings over a site
near Cologne, Germany (a). Also shown in (a) are the pre-
dicted dispersion data for the final inversion solutions, which
are nearly identical. The grey bounds around the measured data
are estimated relative data errors. The final VS profiles obtained
from the linearized, DHS, and GA inversions are shown in (b).
Modified from Parolai et al. (2006)

GA) as a heuristic approach to determining a suit-
able initial model for a subsequent local search (e.g.,
linearized or DHS) inversion (e.g., Alfaro Castillo
2006; Picozzi and Albarello 2007; Poovarodom and
Plalinyot 2013; Lei et al. 2018; Garcı́a-Jerez et al.
2019; Maklad et al. 2020). This provides greater
assurance of a suitable initial model for local-search
success, but, again, does not guarantee the global
minimum-misfit solution.

4.3 Neighborhood algorithm

The NA is a popular optimization technique proposed
by Sambridge (1999) with numerous applications in a
wide range of fields, and in particular to the inversion
of surface-wave properties for seismic site assessment
(Wathelet et al. 2004).

Like SA and GA, the NA is based on a ran-
dom search of the multi-dimensional parameter space
for the minimum-misfit model. This is illustrated in
Fig. 5 for a 2D optimization of the Rastrigin func-
tion (Fig. 4a, a non-convex function with multiple
local minima often used as a performance test for
optimization algorithms). The NA is initiated with
a population of random models distributed over the
parameter space (coloured circles in Fig. 5b), and tries
to orient the random generation of subsequent new
models towards regions of the space likely to pro-
vide the lowest misfit. This is achieved by forming
a neighborhood approximation to the misfit surface.
The parameter space is divided into Voronoi cells built
from the model locations in the current population
(generator points). Any location inside a Voronoi cell
is closer to its generator point than to any other model
in the population. A constant misfit is assigned to
each cell, equal to the misfit of each generating point,
leading to a nearest-neighbor interpolation of the mis-
fit function. For example, the Voronoi cell geometry
associated with the initial population (20 models rep-
resented by coloured circles) is shown in Fig. 5b.
The algorithm progresses by randomly generating Ns

new models inside only the Nr Voronoi cells with the
lowest misfits. These are represented by open circles
in Fig. 5b for Ns = 10 and Nr = 10. The data
misfits and Voronoi geometry are updated to include
these new models, as shown in Fig. 5c, where the
coloured circles indicate all models (initial and new).
Another set of Ns new models are generated within
the Nr lowest-misfit cells (open circles in Fig. 5c), and
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Fig. 5 Illustration of the NA for a 2D parameter space corre-
sponding to the Rastrigin function. (a) A dense sampling of the
Rastrigin function showing four minima. (b) 20 random models
of an initial population (coloured circles) and the correspond-
ing Voronoi geometry (solid lines). Ns = 10 new models (open

circles in b) are generated randomly inside the Nr = 10 cells
with the lowest misfit. (c) The new models are integrated into
the Voronoi geometry and their misfits are computed, leading
to a total population of 30 models (coloured circles). (d) This
process is repeated to obtain 40 models

new Voronoi cells are computed (Fig. 5d). The same
process is repeated until convergence to an optimal
solution. As described, the NA has only two tuning

parameters, Ns and Nr , that control the algorithm
behavior between exploration and optimization. Even
if it is temporarily trapped in a local minima, NA can
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quickly evolve to other areas of the parameters space
as demonstrated by Sambridge (1999).

The NA implementation for surface-wave inver-
sion proposed by Wathelet et al. (2004) was built
around the original Fortran code provided by Sam-
bridge (1999). Di Giulio et al. (2006) published one
of the first applications of this inversion method
to multiple ambient vibration (microtremor) arrays.
The NA core was subsequently re-written in C++
by Wathelet (2008) to provide several improvements
detailed below. This latter implementation has been
widely used since 2008, with only minor modifica-
tions. Renalier et al. (2010) analyzed data from passive
and active arrays at 10 documented sites in Europe to
propose a parametrization strategy based on several
repeated inversion trials with an increasing number of
layers. With a database of 14 strong-motion sites in
Europe, Di Giulio et al. (2012) addressed the parame-
terization issue following Akaike’s information crite-
rion. Such quantitative approaches to parameterization
based on formal information criteria are discussed
further in the next section. Cox and Teague (2016)
promoted parameterizations controlled by only a few
tuning parameters: the number of layers and a layer-
ing ratio for VP and VS . This approach was further
refined by Vantassel and Cox (2021). The original
forward code (and inversion) focused on the phase
velocity dispersion curves of Rayleigh waves. How-
ever, Love waves, group velocities (Roux et al. 2011),
and Rayleigh-wave ellipticity (Hobiger et al. 2013)
have also been considered.

Rickwood and Sambridge (2006) proposed an im-
proved algorithm dedicated to parallel computing
architectures that is particularly efficient when the
computational cost of the forward problem is small.
An open-source application dinver (distributed in
geopsypack, Wathelet et al. 2020) implements a mod-
ified NA with a similar parallel structure. Unlike
the algorithm proposed by Rickwood and Sambridge
(2006), dinver was developed to minimize computer
memory usage, which prevents distribution over mul-
tiple computing nodes (limiting the total number of
CPUs that can be used simultaneously). Developed
primarily for the inversion of dispersion curves and
associated observables (autocorrelation and Rayleigh-
wave ellipticity curves), dinver runs on a desktop
computer with 4 or 8 cores in a reasonable computa-
tion time (a few minutes). Several other improvements
of the original NA are implemented in dinver that

are detailed below. Note that many of these improve-
ments may also be applicable to other global-search
techniques.

Wathelet (2008) noticed that, since the Voronoi
geometry is not invariant to axis scales, the NA pri-
marily explores parameters that the data are most
sensitive to (i.e., VS of near-surface layers) and tends
to neglect the variability of other parameters (VP or
VS of deeper layers). With a lack of exploration of
the deepest layers, the obtained population of mod-
els may suggest a better resolution beyond the usual
wavelength (λ) rule of thumb: a maximum resolu-
tion depth between λ/3 and λ/2 (Cox and Teague
2016). Wathelet (2008) implemented dynamic param-
eter axis scaling that maintains the region of interest
to an equal size in all dimensions to overcome this.
Wathelet (2008) also implemented parameter condi-
tions such as constraining Poisson’s ratio (e.g., from
0.25 to 0.5), avoiding multiple low-velocity zones,
parameterizing interface depths or layer thicknesses,
and limiting layer thicknesses to a minimum per-
centage of the total depth (e.g., 5%). Furthermore,
Wathelet (2008) showed the advantage of parameter-
izing interface depths instead of layer thicknesses in
Monte Carlo inversions of surface-wave data, as this
avoids uncontrolled prior information. Specifically,
for a model defined by a set of layers with randomly
generated thicknesses, the depth distribution of the
deepest layers tends to a normal distribution (as sup-
ported by the Central Limit Theorem). Consequently,
this parameterization can introduce structure that is
not supported by the data. In the NA, the generation
of new models that fulfill all parameter conditions
requires that the current population of models also
fulfill these conditions. For very small Voronoi cells,
precision errors can violate this assumption, leading to
unpredictable results. This issue is solved by using dis-
crete parameters (i.e., parameters can only take a pre-
determined discrete set of values), even though these
geophysical parameters are physically continuous.

In the original NA, the sampling density around
the best models is directly influenced by the total
number of generated models, which is a subjective
tuning parameter. With parameter discretization, there
is a minimum distance between models that limits the
sampling density. The algorithm is able to explore
different regions of the parameter space once the sam-
pling density limit is reached for current regions.
Thus, the total number of models in the population
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controls only the exploration level, not the sampling
density. This has the effect of improving overall explo-
ration of the parameter space. For instance, in Fig. 5d,
none of the Nr cells with the lowest misfit are located
near the local minimum of the Rastrigin function in the
upper right corner. This region of the parameter space
is not explored unless there is a mechanism to control
the sampling density. Figure 6 compares parameter
exploration for continuous and discrete parameteriza-
tions distributed on a logarithmic scale (other scale
distributions can also be considered). The compari-
son is based on the inversion of a synthetic dispersion
curve between 2 and 20 Hz computed for the earth
model given in Table 1. The inversion is run five times
with the same 11-parameter model (4 layers). VS is
allowed to vary from 50 to 3500 m/s, and interface-
depths from 1 to 100 m for all layers. In Fig. 6a, the pa-
rameters are distributed continuously, while in Fig. 6b
parameters are discrete. The figure shows improved
relative exploration of the parameter space for discrete
parameters.

Figure 7 compares linear and logarithmic scalings
for discrete parameters based on five repeated inver-
sions of each for the same 11-parameter example.
Figure 7a shows that the five NA inversion runs with

Table 1 Synthetic earth model used in Figs. 6 and 7

Thickness Vp Vs Density

(m) (m/s) (m/s) (kg/m3)

7.5 500 200 1700

25 1350 210 1900

2000 1000 2500

linear parameter scaling are trapped in a local minimum,
which is not the case for the inversions with loga-
rithmic parameter scaling. For interface-depth param-
eters, the linear scale provides a higher probability
of generating deep layers; conversely, the logarithmic
scale provides higher probability for shallow lay-
ers. Figure 7b and d show that Vs structure below
∼30 m depth is not resolvable by the dispersion
data. In Fig. 7b, all layer interfaces are found below
∼20 m depth, where the sensitivity of the disper-
sion data to Vs starts to diminish. Therefore, the
variability (non-uniqueness) linked to the very shal-
low part is better explored in the logarithmic case.
The conditions designed to avoid very thin layers,
the data constraints, and a reasonable minimum depth
imposed by the parameterization (1 m in this case for a

Fig. 6 The effect of parameterization on NA exploration.
(a) Pseudo-continuous parameters distributed on a logarithmic
scale (with a relative parameter precision of 10−4%). (b) Dis-
crete parameters distributed on a logarithmic scale (relative
precision 1%). In both cases, an 11-dimensional model param-
eter space (4 layers with velocities VSi , VPi for i=0–3 and

interface depths Di for i=0–2) is explored with 105 models.
Plots show the relative range of sampled values in the final
50,000 generated models, normalized by the range sampled over
the entire NA run, for five distinct inversion runs (gray lines
connect points from the same run)
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minimum λ of 10 m) prevent the aggregation of all
layers in the shallow part.

The selection of the Nr best models for which the
corresponding neighborhoods are sampled is based
on the calculated misfit value. For most problems (as

discussed in Section 2), this is defined by the L2

misfit normalized by the observed data uncertainties
and by the number of data (Wathelet et al. 2004).
Hence, a misfit value of unity indicates that the pre-
dicted data fit the observed data to (on average) one

Fig. 7 Comparison of
linear and logarithmic
discrete parameter scalings.
(a) Misfit reduction versus
the number of generated
models for five runs (with
distinct random
initializations) for linear
scaling (solid lines) and
logarithmic scaling (dashed
lines). (b) and (d) Vs

profiles obtained with the
five linear- and logarithmic-
scaling inversion runs,
respectively. The inset
figures in (b) and (d) focus
on the shallow part with
velocity less than 300 m/s.
(c) and (e) Corresponding
predicted dispersion curves.
The numbers of discrete
parameter values is the same
for both scales: 426, 323
and 452 for VSi , VPi and
Di , respectively. The same
misfit colour scale is used
throughout. Models with
the lowest misfits are shown
on top of other models,
hiding most of the models
with high misfits. The black
curve in (c) and (e) is the
observed dispersion curve
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standard deviation. The NA algorithm can still be
strongly influenced by small details in the observed
data, and attempts to fit small scatters (even if they
are assigned large standard deviations). Lomax and
Snieder (1994) introduced the concept of an accept-
able misfit level for GA inversions that implicitly
considers only first-order details of the misfit function.
Their inversion process was aimed at building as large
an ensemble as possible of models that fit the observed
data to a reasonable level. This represents a simplified
view of data errors that transforms a Gaussian error
distribution into a uniform distribution. This idea was
also tested with the NA by Sambridge (2001).

Hollender et al. (2018) and Chmiel et al. (2021)
used a flattened misfit at a smaller scale (for each fre-
quency sample), as implemented in dinver. Compared
to a usual misfit threshold value, this is a more deman-
ding definition of an acceptable model as it requires
all predicted data to be within one standard devia-
tion of the observed data. However, as noted by Sam-
bridge (2001), the algorithm looses part of the distance
information contained in the misfit which can nega-
tively affect convergence in high-dimensional param-
eter spaces. Generating models with identical misfit
values has practical consequences for the way the NA
behaves. Once all Nr Voronoi cells have an equal mis-
fit value, all new models with the same misfit must
also be included in the area of interest. Hence, dinver
implements a dynamic Nr that increases each time a
new good model (with identical misfit value) is found.
This results in relatively uniform sampling (rather than
oversampling) of the acceptable region of the parame-
ter space. However, the population of models obtained
does not necessarily reproduce the data uncertainty
distribution. Interestingly, joint inversions of distinct
observables such as dispersion data and HVSR result
in an ensemble of models that are acceptable (i.e.,
within one standard deviation) with respect to both
data types. This avoids the use of subjective weight-
ing for each misfit component (i.e., data type) which
is usually problem specific.

5 Bayesian inversion for probabilistic site
characterization

Bayesian inference approaches to geophysical inver-
sion are based on quantifying the PPD of earth models
given observed data and prior information. Bayesian

methods were first applied to active-source dispersion
data by Schevenels et al. (2008) and Socco and Boiero
(2008), and to ambient-noise (microtremor) dispersion
by Foti et al. (2009). Furthermore, Cipta et al. (2018)
applied a Bayesian inversion method to HVSR data.
However, this section concentrates on a series of stud-
ies (Molnar et al. 2010; 2013; Dettmer et al. 2012;
Gosselin et al. 2017; Gosselin et al. 2018) that devel-
oped a rigorous and quantitative overall approach,
and which considered common microtremor disper-
sion data sets (with colocated invasive measurements)
for direct comparison and evaluation.

To quantify model probability over the multi-
dimensional parameter space, Bayesian inversions
generally seek to compute statistical properties of the
PPD. PPD properties of interest include parameter
estimates, such as most-probable and mean values.
More significantly, Bayesian inversion can quantify
parameter uncertainties, which can be expressed as
variances/covariances, credibility intervals, and (most
notably) marginal probability densities. Since rigorous
uncertainty analysis, rather than point estimation, is
central to Bayesian inference, non-linear inversion and
rigorous model selection assume greater significance.
In the common case where appropriate earth and error
models are not known a priori, they can be estimated
from the data, as part of the inverse problem.

To avoid linearization errors in Bayesian inversion,
non-linear parameter and uncertainty estimation is
carried out numerically, typically employing Markov-
chain Monte Carlo (MCMC) methods, as discussed
in Section 5.1. MCMC draws random samples of the
parameters from the PPD, such that statistical param-
eter/uncertainty estimates can be computed from the
ensemble of samples. Efficient sampling strategies are
key for practical inversion algorithms.

In terms of model selection, determining an appro-
priate earth-model parameterization is an important
aspect of quantitative inversion. Over-parameterizing
the model under-constrains parameters and can lead
to spurious structure and to over-estimating parame-
ter uncertainties. Conversely, under-parameterization
can leave structure unresolved, biasing parameter esti-
mates and under-estimating uncertainties. An objec-
tive approach to model selection is to choose the
simplest parameterization that explains the data as
quantified by the Bayesian information criterion
(BIC), which is discussed in Section 5.2. Another
approach is to marginalize over a set of possible
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parameterizations. Since this involves probabilistic
sampling over models with different numbers of
parameters (model dimensions), this approach is
referred to as trans-dimensional (trans-D) inversion.
Trans-D inversion, described in Section 5.3, has the
advantage that the uncertainty in the parameteriza-
tion is included in the parameter uncertainty estimates.
Both of these model-selection approaches avoid sub-
jective regularizations in the inversion, which can
preclude meaningful uncertainty estimation.

Defining the data error model is another impor-
tant component of rigorous uncertainty estimation. In
many practical cases, the error distribution, includ-
ing both measurement and theory errors, is not well
known. The lack of specific information suggests
that a simple distribution be assumed, with statistical
parameters estimated from the data. Error models con-
sidered here are based on the assumption of Gaussian-
distributed errors of unknown covariance, with the
covariance matrix either estimated from data residuals
or represented by an autoregressive (AR) process, as
considered in Section 5.4.

In seismic site assessment, a number of studies
have applied Bayesian methods to the inversion of
Rayleigh-wave dispersion data derived from ambient
seismic noise recorded at a small geophone array. The
primary goal is to estimate the VS profile (VP and ρ

profiles are also estimated in the inversion, but are of
less significance and not considered here).

An important advantage of the Bayesian approach
is that it is straightforward to propagate the uncer-
tainty analysis for VS directly into uncertainties in site
assessment factors, which represent the ultimate goal
of the work. This cannot be accomplished with other
approaches reviewed in this paper. Assessment factors
of interest include VS30, which is used to categorize
sites into classes according to the National Earthquake
Hazards Reduction Program (NEHRP). VS30 is also
used to predict peak ground velocity (PGV) and peak
ground acceleration (PGA) amplification factors (rel-
ative to hard ground). However, amplification spectra
calculated using the full VS profile generally provide
better indicators of site amplification than VS30-based
measures (Boore and Atkinson 2008). In Section 5.5,
the inversion methods described in Sections 5.1–5.4
are illustrated for dispersion data from two distinct
geological settings (Molnar et al. 2010), with com-
parisons to invasive measurements and calculation of
probabilistic site assessments (Molnar et al. 2013).

5.1 Non-linear inversion: MCMC sampling

To briefly describe non-linear Bayesian inversion, let
M represent the choice of model, with m the corre-
sponding set of M unknown model parameters, and
let d be N observed data. Assuming data and parame-
ters to be random variables, they are related by Bayes’
theorem

P(m|d,M) = P(m|M) P (d|m,M)

P (d|M)
. (10)

In Eq. 10, P(m|M) is the prior probability, represent-
ing available information for the model parameters
(given a choice of model), independent of the data.
P(d|m,M), the conditional probability of d given
m and M, defines the data information. Interpreted
as a function of d, this represents the residual error
distribution. However, when d is considered fixed
(once data are observed), the term is interpreted as
the likelihood of the parameters, L(m|M). The nor-
malization term, P(d|M), is referred to as Bayesian
evidence. P(m|d,M) defines the PPD, representing
the state of parameter information given the data and
prior. Henceforth, the dependence on model M is
suppressed for simplicity when not required.

Non-linear Bayesian inversion is typically based on
using MCMC methods to draw (dependent) random
samples from the PPD while satisfying the require-
ment for reversibility of the Markov chain (Gilks
et al. 1996; Sambridge and Mosegaard 2002). In
particular, Metropolis-Hastings sampling constructs a
Markov chain by applying a proposal density func-
tion Q(m′|m) to generate new parameters m′ based
only on the current values m, and accepting the pro-
posed parameters as the next step in the chain with
probability

A(m′|m) = min

[
1,

Q(m|m′)
Q(m′|m)

P (m′)
P (m)

L(m′)
L(m)

]
.

(11)

The acceptance criterion is applied by drawing a uni-
form random number ξ on [0, 1] and accepting the
new parameters if ξ ≤ A(m′|m). If the proposed
step is rejected, another copy of the current model is
included in the Markov chain. Once convergent sam-
pling is achieved, parameter estimates and uncertain-
ties can be computed statistically from the ensemble
of samples (omitting an initial burn-in stage while
stationary sampling is established).
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The choice of proposal density Q(m′|m) controls
the efficiency of MCMC sampling. The goal is to
achieve a well-mixed Markov chain that efficiently
samples the parameter space, avoiding both small,
ineffectual perturbations and high rejection rates. In
Bayesian microtremor array inversion, Molnar et al.
(2010) and Molnar et al. (2013) applied an efficient
proposal density based on principal-component (PC)
decomposition of the parameter covariance matrix
(Dosso and Wilmut 2008). The PC decomposition
provides both directions and length scales for effec-
tive parameter updates. Perturbations are applied in a
rotated parameter space where the axes align with the
dominant correlation directions (i.e., PC parameters
are uncorrelated). The PC proposal is initiated from
an analytic linearized estimate that is subsequently
updated with a non-linear estimate from the on-going
sampling (a diminishing adaptation). To achieve wide
sampling over a potentially multi-modal parameter
space, Gosselin et al. (2017) and Gosselin et al. (2018)
applied the method of parallel tempering (Earl and
Deem 2005; Dosso et al. 2012), which is based on a
series of interacting Markov chains with successively
relaxed likelihoods raised to powers 1/T ≤ 1, where
T is referred to as the sampling temperature (simi-
lar to the temperature parameter in SA, discussed in
Section 4.2). While only samples collected at T =
1 are unbiased and retained for analysis, probabilis-
tic interchange between chains provides a robust and
efficient sampling of the parameter space.

5.2 Model selection: Bayesian information criterion

As mentioned earlier, determining an appropriate
model parameterization is an important aspect of
Bayesian inference. In Eq. 10, the Bayesian evidence
P(d|M), which formally represents the conditional
probability of the data for a particular model, can be
considered the likelihood of the model given the data.
Hence, a natural approach to model selection is to
seek the model that maximizes the evidence. Unfor-
tunately, the integral defining evidence is particularly
challenging to evaluate numerically to sufficient pre-
cision (Chib 1995). Commonly, an asymptotic point
estimate of evidence, the BIC, is applied, defined by
(Schwarz 1978)

BIC(M) ≈ −2 loge P (d|M)

= −2 loge L(m̂|M) + M loge N,
(12)

where m̂ is the maximum-likelihood parameter esti-
mate. Since the BIC approximates the negative of
evidence, the model with the smallest BIC over a set
of possible models is selected as the most appropri-
ate choice. The first term on the right of Eq. 12 favors
models with high likelihood (low data misfit); how-
ever, this is balanced by the second term which applies
a penalty for additional parameters. Hence, minimiz-
ing the BIC provides the simplest model parameter-
ization consistent with the resolving power of the
data.

In Bayesian inversion for site assessment, Mol-
nar et al. (2010) and Molnar et al. (2013) used the
BIC to choose between models based on several fixed
functional forms, including layered profiles and linear
or power-law gradients (in all cases, layers thick-
nesses were unknowns included in the parameteriza-
tion, as were the properties of an underlying semi-
infinite basement). Gosselin et al. (2017) and Gos-
selin et al. (2018) considered depth-dependent model
parameterizations in terms of Bernstein polynomials
(BP) (Farouki and Rajan 1987; Quijano et al. 2016),
which provide general (smooth) gradient forms. In
this approach, a geophysical profile is represented
as a Bth-order BP in terms of B + 1 basis func-
tions with the corresponding coefficients (weights)
comprising the unknown parameters, as as well as
gradient-layer thickness and basement properties. The
BIC was applied to determine the polynomial order.
While other sets of basis functions could be consid-
ered, BPs have the desirable property of optimal sta-
bility in regard to coefficient perturbations (as applied
in MCMC sampling).

5.3 Model selection: Trans-D inversion

Trans-D inversion addresses model selection by sam-
pling probabilistically over models with differing
numbers of parameters (Green 1995; Malinverno
2002; Sambridge et al. 2006; Dettmer et al. 2010;
Dosso et al. 2014). Let k index the choice from K pos-
sible models; Bayes’ theorem for hierarchical models
can be written (Green 1995)

P(k,mk|d)= P(k) P (mk|k) P (d|k,mk)∑
k′∈K

∫
P(k′) P (m′

k′ |k′) P (d|k′,m′
k′) dm′

k′
.

(13)
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In Eq. 13, P(k)P (mk|k) is the prior probability of
the state (k,mk), P(d|k,mk) is interpreted as the
likelihood L(k,mk), and P(k,mk|d) is the trans-D
PPD. The PPD can be sampled numerically using
the reversible-jump Markov chain Monte Carlo (rjM-
CMC) algorithm, which accepts a proposed transition
between the current state (k,mk) and a proposed state
(k′,m′

k′) with a probability given by the Metropolis-
Hastings-Green criterion (Green 1995)

A(k′,m′
k′ |k,mk) =

min

[
1,

P (k′,m′
k′ )

P (k,mk)

L(k′,m′
k′ )

L(k,mk)

Q(k,mk |k′,m′
k′ )

Q(k′,m′
k′ |k,mk)

|J|
]

, (14)

where Q(k′,m′
k′ |k,mk) is the proposal probability

density and |J| is the Jacobian determinant for the
transformation between parameter spaces (|J| = 1 for
the rjMCMC algorithm described here).

Dettmer et al. (2012) applied trans-D inversion
to microtremor array data to consider earth models
with unknown numbers of uniform layers. The model
parameters consisted of k interface depths zk above
a maximum depth zmax, and geophysical parameters
for each of the k + 1 layers (including the basement).
rjMCMC sampling involved three types of steps, cho-
sen randomly at each iteration: perturbation, birth, or
depth. In a perturbation step, the parameterization is
unchanged but changes to existing parameter values
are proposed. A birth step proposes adding a layer by
uniformly sampling a new interface depth on [0, zmax]
and choosing geophysical parameters from a Gaus-
sian proposal density centred on the current values at
the depth of the new interface. A death step proposes
removing a random interface and setting the param-
eters of the resulting (thicker) layer to those either
above or below the old interface. After collecting a
large (convergent) trans-D ensemble of model sam-
ples, the number of interfaces is marginalized over in
considering results.

5.4 Error model and likelihood function

Defining the error model requires specifying the statis-
tical distribution of residual errors, which is often not
well known. The lack of specific information suggests
that a simple distribution be assumed, with statis-
tical parameters estimated from the data. Assuming

Gaussian-distributed errors with an unknown error co-
variance matrix C, the likelihood is

L(m,C) = 1

(2π)N/2|C|1/2
exp

[
−1

2
r(m)T C−1r(m)

]
,

(15)

where r(m) = d − d(m) are data residuals. Errors are
often assumed to be IID random variables. However,
significant error correlations can occur, and neglecting
these can bias parameter estimates and under-estimate
uncertainties.

A variety of approaches have been applied to ad-
dress error covariance in Bayesian microtremor array
inversion. Molnar et al. (2010) and Molnar et al.
(2013) applied a non-parametric approach to estimate
C based on residuals from the optimal model of an
initial inversion assuming IID errors. In this approach,
the residuals are considered a realization of the error
process from which statistical quantities can be es-
timated. Assuming the residuals represent an ergodic
random process, a Toeplitz (diagonally-banded) cova-
riance matrix can be estimated from the residual
autocovariance (Dosso et al. 2006); this covariance-
matrix estimate is then used in a subsequent Bayesian
inversion. Dettmer et al. (2012), Gosselin et al.
(2017) and Gosselin et al. (2018) applied a para-
metric approach to error covariance by considering
data residuals to be a first-order AR process, which
is equivalent to a Toeplitz covariance matrix with
exponentially-diminishing off-diagonal (covariance)
terms. The standard deviation and autoregressive
parameter are sampled in the inversion to account for
error variance and covariance. Both non-parametric
and parametric methods can be extended to consider
error statistics that vary over the data set by dividing
the data into segments over which error statistics are
assumed constant.

Finally, the error assumptions should be examined
a posteriori for validity. For instance, under the above
assumptions, standardized residuals (accounting for
variance/covariance) from inversion should be consis-
tent with an uncorrelated Gaussian random process.
Inspection of residual histograms and autocorrela-
tion functions can be used to assess the assumption
of Gaussianity and the applicability of the covari-
ance model, respectively; statistical tests can also
be applied. Bayesian microtremor array inversions
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to date have found the assumed error models to be
generally satisfied.

5.5 Examples

Bayesian inversion for VS profile estimation and site
assessment is illustrated here for two data sets col-
lected by Molnar et al. (2010) at contrasting geo-
logical settings in southwestern British Columbia,
Canada, which have since been considered by several
authors. This region is located in the northern portion
of the Cascadia subduction zone, one of the most seis-
mically active areas in Canada. The highest seismic
risks are associated with the two largest urban cen-
tres, Vancouver and Victoria. The Fraser River delta
in southern greater Vancouver is composed of deep
(up to 500 m) sands and silts overlying over-consol-
idated glacial deposits and bedrock. In contrast, the
local geology of Victoria involves a shallow (0–30 m)
layer of soft marine silts over stiff glacial deposits
and/or bedrock.

Study sites in each setting were chosen at loca-
tions where invasive VS measurements were available
for comparison to inversion results. The Fraser River
delta site was colocated with a 300-m borehole and
within 60 m of three seismic cone penetration test
(SCPT) sites with maximum penetration depths of 31–
62 m. The Victoria site was colocated with an SCPT
site where the cone penetrated 17 m of soft sedi-
ments before meeting refusal. The data collection and
processing followed the guidelines of the European

SESAME workgroup (Jongmans et al. 2005). Arrays
of up to six broadband seismographs were deployed
in cross-shaped and semicircular configurations at the
Fraser River delta and Victoria sites, respectively. To
obtain dispersion over appropriate frequency bands,
the array was expanded several times: for the deep
delta site the array aperture was varied from 15–
180 m; for the shallow Victoria site the array radius
varied from 5–35 m. Computation of phase-velocity
dispersion curves from the recordings was carried out
using geopsy software (Wathelet et al. 2020).

The two observed dispersion data sets are shown
in Fig. 8. As mentioned, various Bayesian inversion
approaches have been applied to these data. Molnar
et al. (2010) determined the model parameterization
from a number of choices using the BIC, and com-
puted the error covariance matrix from the residual
autocovariance of an initial inversion. This analysis
indicated that a power-law gradient was the preferred
parameterization for the delta data, while a linear gra-
dient was preferred for the Victoria data. Gosselin
et al. (2017) applied a BP parameterization with the
polynomial order determined by the BIC, and used AR
error modelling (only the delta data were considered
by Gosselin et al. 2017, but, for completeness, this
approach was also applied to the Victoria data for this
paper). Third- and second-order BPs were indicated
for the delta and Victoria data, respectively. Dettmer
et al. (2012) applied trans-D inversion with AR error
modelling. All inversion approaches provided excel-
lent fits to both observed data sets, as illustrated in

Fig. 8 Microtremor
dispersion data for the
(a) Fraser River delta and
(b) Victoria sites. Open
circles indicate observed
data (Molnar et al., 2010).
Coloured distributions
represent marginal
probability densities of
predicted data (BP inversion
results shown; results for
other inversions are similar)
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Fig. 8 for the BP inversions (fits for other approaches
are similar).

Bayesian inversion results for the Fraser River delta
site are shown in Fig. 9 in terms of marginal posterior
probability profiles for VS and for the basement inter-
face depth zb for each of the three approaches. The
VS marginal profiles are normalized independently at
each depth for display purposes, with warm colours
(e.g., red) indicating high probability and cool colours
(blue) low probability (white is zero). Also included
for comparison are VS estimates from the invasive
measurements in terms of averages over the borehole
and SCPT measurements with one standard-deviation
error bars.

Figure 9 shows similar overall VS structure and
generally good agreement with the invasive measure-
ments for all three inversion approaches. The power-
law model (Molnar et al. 2010) is the least-general pa-
rameterization but appears to be in best agreement with
the invasive measurements which indicate that the VS

profile at this site approximates a power law over
>100 m depth. The BP model (Gosselin et al. 2017)
can represent a wide range of smooth profiles, but the
result approximates a power-law shape (with slightly
lower near-surface curvature). The trans-D model
(Dettmer et al. 2012) is based on uniform layers, but
nonetheless approximates a power-law gradient and
agrees well with the invasive measurements. Trans-D

Fig. 9 Bayesian inversion results for the Fraser River delta
site. (a), (c) and (e) show VS marginal probability profiles
for power-law, BP, and trans-D parameterizations, respectively,
with zoom-ins of the grey rectangles shown in (g), (h) and (i).

Circles indicate averages of invasive measurements with one
standard-deviation error bars. (b), (d) and (f) show correspond-
ing marginal profiles for the basement interface depth. Modified
from Gosselin et al. (2017)
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inversion represents the most general approach and
includes parameterization uncertainties, leading to
slightly wider probability densities in Fig. 9. As dis-
cussed in Molnar et al. (2010), the transition to an
underlying halfspace with large uncertainties near
150-m depth in the inversion results may not represent
actual basement material, but indicates that the disper-
sion data have little structural sensitivity below this
depth.

Figure 10 shows Bayesian inversion results for the
Victoria site. Since there was only a single SCPT here,
no error bars can be associated with these measure-
ments. The linear VS profile indicated by the BIC
(Molnar et al. 2010) is in good agreement with the
invasive measurements, and the BP inversion results
are similar (with slightly smaller uncertainties). The

trans-D inversion results (Dettmer et al. 2012) rep-
resent the upper structure as a uniform layer above
a region of increasing VS , which also agrees well
with the SCPT measurements. As discussed in Mol-
nar et al. (2010), at this site the halfspace interface in
the inversion results is indicative of an actual transi-
tion to consolidated material (i.e., the dispersion data
are sensitive to this depth); however, the high-velocity
basement is poorly constrained by the data. The inter-
face marginal probability profiles in Fig. 10 indicate
this interface occurs at ∼17 m, the depth the SCPT
met refusal.

As mentioned previously, an advantage of Bayesian
inversion is that it is straightforward to propagate
uncertainty analysis from VS profiles directly into site
assessments. Probabilistic site assessments by Molnar

Fig. 10 Same as Fig. 9 for the Victoria site
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et al. (2013) are summarized in Fig. 11 for the Fraser
River delta and Victoria sites. Marginals for VS30

show that the delta site is classified as NEHRP class

E (soil with soft clay) with 95% probability, while
the Victoria site is uncertain between class E and
class D (stiff soil) with 42% and 58% probabilities,

Fig. 11 Probabilistic site assessment results. (a)–(c) show
marginal probability densities for VS30, PGA amplification fac-
tor, and SH amplification spectra for the Fraser River delta site,
respectively; (d)–(f) show the same for the Victoria site. Dot-
ted lines indicate results for the most-probable VS model. Solid

lines in (a) and (d) delineate the boundary between NEHRP
classes D and E, with probabilities indicated. Note that hori-
zontal scales vary between the two sites. Modified from Molnar
et al. (2013)
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respectively. PGA marginals for the delta and Victo-
ria sites show these amplification factors are about
1.5–1.8 and 1.8–2.6, respectively. In fact, VS30-based
assessments may not be appropriate for the Victo-
ria site, given the strong impedance contrast within
the upper 30 m. For such reasons, Molnar et al.
(2013) recommended considering the travel-time aver-
aged VS as a function of depth, VSZ(z) (not shown
here), to determine appropriate amplification indi-
cators for a specific site. Figure 11 also shows
probabilistic amplification spectra for vertically prop-
agating SH waves based on full-wave calculations
including resonance effects (Boore 2005). These spec-
tra demonstrate uncertainties of the fundamental fre-
quency and its amplification of 0.1 and 0.3 Hz and up
to factors of 2 and 5 for the delta and Victoria sites,
respectively.

6 Tomography

The intensity and duration of ground shaking during
an earthquake, at a specific site, are influenced not
only by 1D heterogeneity (depth dependence) of geo-
physical properties (primarily the VS profile), but also
by 2D and 3D subsurface structure. This can be partic-
ularly important in sedimentary basins, which can trap
and amplify seismic waves. In such cases, 1D models
can be inadequate for predicting seismic site effects
and hazards. This section discusses the method of seis-
mic tomography to estimate 2D and 3D structure for
seismic site characterization.

Seismic tomography has been the predominant tool
for imaging heterogeneous structure in the earth over
the last ∼50 years, applied over a wide range of spa-
tial scales and considering a variety of seismic phases
(wave types). The topic is vast and well developed,
with several texts and reviews available (e.g., Nolet
2012; Rawlinson et al. 2014). This section does not
attempt to provide a general review of the subject.
Rather, in keeping with the theme of this paper (to
review inversion for seismic site assessment), this
section discusses the extension of surface-wave dis-
persion measurements to constrain laterally heteroge-
neous structure via surface-wave travel-time tomogra-
phy. Seismic tomography has also been applied to site
characterization with other data types, including body-
wave travel times using active sources at the surface
or installed down boreholes (e.g., Angioni et al. 2003;

Azwin et al. 2013). The underlying principles are
similar in these cases, and this section will concentrate
on the recent and increasingly common application to
surface waves.

Seismic tomography based on surface-wave dis-
persion from earthquake sources is not a recent
imaging technique. However, earthquakes predom-
inately generate surface waves at low frequencies
that are less sensitive to shallow (less than ∼1 km)
structure, and are consequently not suitable for seis-
mic site characterization. More recently, it has been
shown that cross-correlation (interferometric) tech-
niques can be applied to array recordings of ambient
seismic noise to derive part of the Green’s function
(impulse response) between seismic stations, includ-
ing surface-wave travel times (Campillo 2006). Such
techniques have been shown to recover surface-wave
dispersion at frequencies of ∼1 Hz and above (e.g.,
Chávez-Garcı́a and Luzón 2005), making surface-
wave tomography from ambient-noise interferometry
an important emerging technique in engineering-scale
studies, including seismic site characterization (e.g.,
Picozzi et al. 2009; Huang et al. 2010; Lin et al. 2013;
Hannemann et al. 2014; Inzunza et al. 2019; Salomón
et al. 2020). The majority of studies consider disper-
sion of Rayleigh waves (as opposed to Love waves),
since they are easily isolated on vertical-component
seismic recordings (which are also typically less noisy
than horizontal-component recordings).

Because seismic surface waves propagate along the
surface of the earth (rather than propagating in depth),
the associated tomographic problem can be formu-
lated in two steps, involving two different inverse
problems. The first step is the actual “tomography,”
whereby 2D maps of phase or group velocity (depend-
ing on the measurement methods) at various frequen-
cies are constructed on a cellular grid, based on the
spatial distribution of surface-wave travel paths. The
second step is to form dispersion curves at specific
locations throughout the study area (by combining
phase/group-velocity maps at various frequencies) and
perform a series of 1D inversions for structure directly
beneath these locations. These 1D inversion results are
then interpolated to form a pseudo-3D model. This
second inversion step (estimating 1D structure) is typ-
ically solved using any of the methods described in
previous sections of this paper. Hence, this section
focuses on the tomographic aspect of the problem (i.e.,
the first inversion step).
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Consider an array of seismometers that pro-
vides a set of surface-wave travel-time measurements
between N station pairs. Using the high-frequency
(seismic-ray) assumption, the surface-wave travel
time ti (f ), at frequency f , between the ith station
pair is given by the integral of phase or group slow-
ness s(l, f ) over the ray path li along which the wave
propagates,

ti (f ) =
∫

li

s(l′, f ) dl′, i = 1, . . . , N. (16)

Assuming a 2D model of slowness discretized into M

cells of uniform slowness, Eq. 16 can be expressed as

ti (f ) =
M∑

j=1

sj (f )Δlij , i = 1, . . . , N, (17)

where sj (f ) is the slowness of the j th cell and Δlij
is the path length of the ith ray through this cell
(Δlij = 0 for cells that are not along the ith ray path).
This is the forward problem in classical tomography.
For a homogeneous medium, a seismic ray follows the
great-circle path (GCP) connecting the two stations.
However, for a heterogeneous medium, the ray path is
itself a function of the spatial distribution of slowness,
leading to a non-linear problem.

Tomography is often linearized by assuming a GCP
geometry or by calculating ray paths for a starting
(reference) model and assuming stationarity. Within
a linearized formulation, it is clear that the partial
derivatives of the data (travel times) with respect to
the model parameters (cell slownesses) that form the
sensitivity matrix A (cf. Eqs. 1 and 17) are simply
the ray-path length segments (i.e., Aij = Δlij ). Lin-
ear inverse methods (as discussed in Section 3) can
then be applied to solve for the slowness values in the
discretized 2D map. Regularization schemes defined
to represent first- or second-order spatial derivative
operators applied to the parameters to minimize model
gradients or roughness are often employed in tomog-
raphy to overcome the ill-posedness of the matrix
inversion, and to produce simple, minimum-structure
models (Constable et al. 1987; Aster et al. 2018).

As discussed in Section 3, after an initial linearized
inversion the problem can then be linearized about the
resulting model (updating ray path geometry accord-
ingly), and the inversion procedure repeated iteratively
until convergence. However, to date, many surface-
wave tomographic inversions for site characterization
perform only a single iteration assuming straight (or

GCP) rays (e.g., Picozzi et al. 2009; Inzunza et al.
2019; Salomón et al. 2020). In reality, seismic waves
exhibit off-path sensitivity where their true sensitivity
is to geophysical properties in a volume about the ray
path. For surface waves, such volumes can be approx-
imated in 2D by a Fresnel zone (ellipse) around the
ray path (Yoshizawa and Kennett 2002). Hannemann
et al. (2014) used 2D Fresnel zones along straight
paths in high-frequency surface-wave tomography for
site characterization.

The extent/significance of ray path deflections (from
straight or GCP paths) depends on propagation dis-
tance and the magnitude of lateral variability in veloc-
ity structure. In the shallow subsurface, where lateral
variability in VS at a given depth can be significant
(e.g., due to variations in the depth to bedrock), actual
ray paths can deviate significantly from straight-line
or GCP assumptions. These assumptions can lead
to theory errors that bias inversion results. Some
tomographic site characterization studies (e.g., Picozzi
et al. 2009; Hannemann et al. 2014) suggest that mea-
surement errors for high-frequency dispersion data are
significantly greater than the theory errors introduced
by straight-ray assumptions, and consequently dom-
inate the problem. Other studies (e.g., Shirzad and
Hossein Shomali 2014; Fang et al. 2015) use sophisti-
cated wavefront tracking methods to accurately update
ray path geometry over multiple linearized inversion
steps.

Figure 12a–d shows examples of 2D surface-wave
group-velocity maps from Hannemann et al. (2014).
The data in their work were collected using an array
of 27 seismometers deployed in two concentric cir-
cles (with respective diameters of ∼1800 m and ∼700
m) over a region of the Mygdonia basin in north-
ern Greece that exhibits significant lateral variability
in near-surface structure, including depth to bedrock.
Surface wave dispersion data were extracted from
cross-correlations of two weeks of ambient seismic
noise recordings (see Hannemann et al. 2014, for
details on data processing). Dispersion curves were
formed at each location in the study area by combin-
ing the group-velocity maps. A series of 1D inversions
for structure directly beneath these locations was then
performed. Figure 12e shows an approximately north-
south cross-section through the resulting pseudo-3D
model, with depth contours to specific VS values.
Wavelength-based approximations for depth resolu-
tion suggest that the data can resolve VS structure
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Fig. 12 Examples of surface-wave group-velocity maps at
four frequencies estimated from tomographic inversion of high-
frequency travel-time data extracted from ambient seismic noise
(a–d). An approximately north-south cross-section through the
final pseudo-3D model is shown with the depth contours to

specific VS values (e). The light, medium, and dark grey areas
represent the depths to one third, one half, and one maximum
wavelength of the surface-wave data, respectively. The dashed
lines in (e) delineate known geologic units. Figure modified
from Hannemann et al. (2014)
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to greater depth in the northern part of the model
(grey shading in Fig. 12e). Bedrock is shallower in
the northern part of the model, as evidenced by high
group velocity estimates at all frequencies and shal-
low depths for high VS values, which is consistent
with known geology and other geophysical studies.
This work highlights the applicability of surface-
wave tomography with high-frequency data for site
characterization in geologically complex settings with
significant lateral heterogeneity in structure.

There are associated advantages and disadvantages
to performing surface-wave tomography in two inde-
pendent steps. An advantage of the two-step inver-
sion approach to estimating 3D structure is that it
decouples the 1D depth sensitivity of the dispersion
data from the 2D ray path sensitivity (i.e., the tomo-
graphic problem). Furthermore, tomography is typi-
cally performed individually for each frequency, re-
ducing computation cost and complexity. However,
2D phase or group velocity maps at closely-spaced
frequencies are generally expected to show similar
structure. Hannemann et al. (2014) inverted all fre-
quencies simultaneously and applied an additional
regularization term for inter-frequency smoothness to
impose consistent structure between 2D maps at adja-
cent frequencies. However, this requires the numerical
inversion of a significantly larger matrix. Once the 2D
maps are estimated, a series of computationally inex-
pensive inversions can be performed (as described in
previous sections) to estimate 1D VS structure beneath
each point in the study area.

Direct inversion for 3D models from surface-wave
dispersion for specific paths has also been considered,
including studies that invert high-frequency data to
recover shallow structure for seismic hazard assess-
ment (e.g., Pilz et al. 2012; Fang et al. 2015; Li et al.
2016; Pilz et al. 2017; Inzunza et al. 2019). This has
the advantage of skipping the intermediate step of esti-
mating 2D phase or group velocity maps. Further-
more, data errors are propagated directly into the final
inversion result, and are not distorted by the interme-
diate step. However, it is more challenging to define
the sensitivity of the data to model parameters in
the discretized 3D volume. Many approaches assume
straight-ray propagation (e.g., Pilz et al. 2012). How-
ever, Fang et al. (2015) performed surface-wave ray
tracing at each frequency to update the sensitivity
matrix over multiple linearized inversion iterations.
In that work, the sensitivity of the data to the model

parameters was still only 2D (along the ray path). Fur-
thermore, in considering high-frequency dispersion
data in the Taipei Basin of Taiwan, Fang et al. (2015)
showed that the ray paths determined for the final
model deviate significantly from straight-line rays
(Fig. 13). It is worth noting that studies of seismic site
effects in sedimentary basins can vary significantly in
scale. Fang et al. (2015) consider surface-wave prop-
agation paths on the order of ∼10 km, where ray path
deflections are significant. In contrast, the model by
Hannemann et al. (2014) is on the order of ∼1 km,
where ray path deflections are likely less significant.

Accounting for the effects of lateral heterogeneity
on wave propagation is particularly useful for high-
frequency data, which are sensitive to shallow (and
complex) structure, and can lead to higher-resolution
models. Such inversion approaches are similar to FWI
(discussed in the following section), which solves for
2D or 3D models with accurate forward solvers for
full-wave propagation. In these problems, the data
are full seismograms (seismic waveforms), rather than
travel times of specific arrivals. While this provides
greater data information, the associated computational
costs and complexity are increased significantly, and
the problem typically requires an accurate starting
model.

Finally, the model parameterization can also have
a significant effect on tomographic inverse problems.
Equation 17 formulates the tomographic problem with
model parameters representing the slowness of dis-
crete grid cells, but other approaches are possible.
Fang et al. (2015) transform the model from a reg-
ular grid into a sparse wavelet-basis domain, where
the parameters are wavelet coefficients. The advantage
of this approach is that an L1 damping regularization
applied to the wavelet coefficients implicitly creates a
minimum-structure model that (in theory) only allows
detailed structure in the model where required by the
data, as opposed to having two explicit regulariza-
tion terms that apply smoothing and damping over
the entire 2D model. This is particularly attractive in
tomographic inversion, where uneven path coverage
inherently leads to a multi-scale problem (i.e., some
regions of the model are better resolved than oth-
ers). Bayesian trans-D inversion has also been applied
to tomography for large-scale problems (e.g., Bodin
and Sambridge 2009; Bodin et al. 2012; Gosselin
et al. 2021), providing an adaptive multi-scale param-
eterization that is estimated as part of the inversion.
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Fig. 13 Example of
surface-wave ray paths (at a
frequency of 0.71 Hz)
estimated for a model of the
Taipei Basin of Taiwan.
Lateral heterogeneity in the
seismic velocity structure of
the basin causes significant
deflections from great-circle
ray paths (modified from
Fang et al., 2015)

However, to date, this method has not been applied to
site assessment problems.

7 Full waveform inversion

FWI aims to recover high-resolution subsurface mod-
els using all of the information in seismic waveforms.
Observed data are the complete recorded seismo-
grams, including all types of waves and phases, while
the modelled (predicted) data are synthetic seismo-
grams computed for the presumed source and earth
models to simulate the full wavefield. Inversions for
an optimal earth model are based on minimizing
the difference between observed and synthetic seis-
mograms, with appropriate regularization to control
structure and stability.

A fundamental aspect of FWI is the estimation of
sensitivity kernels (matrices) expressing the changes
in the wavefield with respect to perturbations in
model parameters representing material properties
(Chen et al. 2007). An alternative is the adjoint
approach where the gradient of the misfit between
the observed and modelled data is computed without
explicitly constructing the sensitivity matrix (Taran-
tola 1984). The dependence of the seismic wavefield

on model parameters is strongly non-linear, adding to
the inherent numerical complexity of FWI for both
approaches. Global-search techniques for these prob-
lems are mostly limited to low-dimensional cases due
to the high computational cost of the forward problem.
To address realistic, multi-dimensional problems, non-
linear constrained local optimization techniques along
with robust and reliable forward models have been
developed in the frequency domain (Song et al. 1995;
Hicks and Pratt 2001; Brossier et al. 2009) as well as
in the time domain (Akcelik et al. 2003; Tromp et al.
2005; Askan et al. 2007; Bozdağ et al. 2011). Regard-
less of the particular inversion algorithm, the forward
model must be realistic and efficient in representing
the wavefield of interest. It is particularly important
to account for the heterogeneity and scattering effects
of soil media. For this purpose, numerical approaches
for solving the partial differential equations govern-
ing wave propagation have been used extensively, such
as the discrete wavenumber (Bouchon et al. 1989),
finite difference (Virieux 1986), finite element (Akce-
lik et al. 2003) and spectral element (Komatitsch and
Vilotte 1998) methods.

An extensive review of FWI, discussing alternative
forward models and optimization approaches effec-
tive at different scales, can be found in Virieux and

811J Seismol (2022) 26:781–821



Operto (2009) and Fichtner (2011). In this section,
the FWI concept is reviewed through description of a
least-squares adjoint approach which is capable of es-
timating discontinuous distributions of VS and intrin-
sic attenuation in large basins (Askan et al. 2007).
Anelastic attenuation is critical for realistic FWI at all
scales, including global and sedimentary-basin scales,
as well as near-surface velocity models (Komatitsch
et al. 2016). In contrast, dispersion and travel-time
data discussed in previous sections depend only on
the phase information contained in seismic recordings,
and are therefor insensitive to attenuation. The anelas-
tic FWI problem is briefly presented here within the
context of 2D sedimentary valleys subjected to SH-
wave excitation, followed by a simulated example for
the Los Angeles basin. Well-known challenges of FWI
and corresponding remedies are also discussed.

7.1 FWI for shear-wave velocity and anelastic
properties in heterogeneous basins

The total effect of intrinsic attenuation is usually
expressed in terms of the dimensionless quality fac-
tor Q, which is observed to be almost constant in
the seismic frequency range. Viscoelastic stress-strain
relationships can be modelled with relaxation mecha-
nisms while the solution to the corresponding ordinary
differential equation is expressed as a memory vari-
able. To represent the anelasticity, Askan et al. (2007)
used a single generalized standard linear solid (SLS)
per grid point as the relaxation mechanism for sim-
ulating an almost constant Q. The mechanical prop-
erties of the SLS are related to Q through simple
frequency-independent relationships. Q is also related
to VS through a series of forward wave-propagation
calculations with shear-modulus reduction cycles.

Within the context of SH-wave propagation, FWI
is formulated as a non-linear least-squares param-
eter estimation problem with the viscoelastic for-
ward wave-propagation problem as the constraint. The
objective is to obtain elastic and anelastic material
models that minimize, over the time interval t ∈
[0, T ] and spatial domain x ∈ �, the L2-norm dif-
ference between the observed state u∗(x, t) and the
predicted state u(x, t) of the antiplane displacement
field, with the predicted field modelled by the cou-
pled partial and ordinary differential equations for
viscoelastic antiplane wave propagation at receiver
locations xj , j = 1, NR . The objective function with

regularization on the material field μ(x) (elastic shear
modulus) and regularization parameter β is defined as

min
u,v,μ

1

2

NR∑
j=1

T∫
0

∫
�

[
u∗ − u

]2
δ(x − xj ) d�dt+

β

∫
�

(∇μ · ∇μ + ε)1/2 d�

(18)

subject to

ρ
∂2u

∂t2
−∇·[μ∇(u+ηv)] = f (x, t) in �×[0, T ], (19)

∂v

∂t
+ αv = ∂u

∂t
in � × [0, T ], (20)

μ∇(u + ηv) · n = 0 on ΓFS × [0, T ], (21)

μ∇(u + ηv) · n = √
ρμ

∂u

∂t
on ΓAB × [0, T ], (22)

u = ∂u

∂t
= 0, v = 0 in � at t = 0. (23)

In these equations, v(x, t) is the memory variable
corresponding to u(x, t), ρ(x) is the density, α(x)

is the relaxation frequency, η(x) is the spring con-
stant of the SLS, and f (x, t) is the body force vector
representing the seismic source. Constraint Eqs. 19
and 20 are the governing equations of the viscoelastic
model, while Eqs. 21–23 state the traction-free bound-
ary condition on the free (earth) surface (ΓFS), the
absorbing boundary condition (on ΓAB ), and the initial
conditions, respectively.

The regularization function included in the least-
squares full-waveform formulation (second term in
Eq. 18) treats the rank deficiency and ill-conditioning
due to the insensitivity of the objective functional
to high-frequency material-property perturbations.
Among common regularization functionals used in
FWI, total variation (TV) regularization is used in this
formulation, which is the L1 norm of the gradient
of the material model. TV regularization recovers the
material interfaces effectively through smoothing only
along the interfaces. The parameter ε in the objective
function ensures the TV functional is differentiable
when ∇μ = 0. An alternative to TV regularization is
Tikhonov regularization, which employs the L2 norm
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of the gradient of the material model. Tikhonov reg-
ularization smooths the material discontinuities and
thus is not appropriate for FWI for earth models where
sharp interfaces and other discontinuities are expected
(such as the interface between sedimentary basins and
basement).

The solution for the FWI problem as stated typ-
ically involves determining the values of the state
variables, u (predicted data) and v, and the inversion
variables (model), μ, ρ, Q−1, that satisfy the first-
and second-order optimality conditions (Akcelik et al.
2003; Askan et al. 2007). The formulation of the inver-
sion with respect to μ is presented here for simplicity,
but the extension to include Q−1 is straightforward
and can be found in Askan et al. (2007). To obtain
the expressions for the optimality conditions, first
the Lagrangian functional is defined by incorporat-
ing the constraint equations into the the regularized
least-squares objective function as

L(u, v, μ, λ, φ) = 1

2

NR∑
j=1

T∫
0

∫
�

[u∗ − u]2δ(x − xj ) d� dt

+β

∫
�

(∇μ · ∇μ + ε)1/2d�

+
T∫

0

∫
�

λ

{
ρ

∂2u

∂t2
−∇· [μ∇(u+ηv)] −f

}
d�dt

+
T∫

0

∫
ΓFS

λ {μ∇(u + ηv) · n} dΓFS dt

+
T∫

0

∫
ΓAB

λ

{
μ∇(u+ηv)·n−√

ρμ
∂u

∂t

}
dΓAB dt

+
T∫

0

∫
�

φ

{
∂v

∂t
+ αv − ∂u

∂t

}
d�dt, (24)

where λ and φ are the Lagrange multipliers (also known
as adjoint or dual variables) for the partial and ordi-
nary differential equation constraints, respectively.

According to the first-order optimality condition,
the first variation of the Lagrangian with respect to
the state, adjoint and material variables is zero at the
optimum solution:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δuL
δvL
δμL
δλL
δφL

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(u, v, μ, λ, φ) = 0. (25)

These equations are known as the Karush-Kuhn-
Tucker (KKT) conditions. The two equations resulting
from the variation of the Lagrangian with respect to λ

and φ are the state problems for u and v, respectively.
The state equations are the original constraints and
boundary conditions. The variations of the Lagrangian
with respect to the state variables u and v are the
adjoint problems for λ and φ, respectively. The adjoint
problem for λ is similar to the state equation for u.
However, it is a terminal value problem where the
source function is the misfit between the observed and
modelled displacements. A similar formulation exists
between the state equation for the displacement mem-
ory v and the adjoint equation for φ. The variation of
the Lagrangian with respect to the shear modulus μ

yields the material field equation. The resulting KKT
system is a coupled, non-linear system of equations
requiring an iterative solution approach.

7.2 Design of the solution approach for large-scale
FWI: Numerical challenges and remedies

Two decisions required for the approach to solving
large-scale FWI problems involve the algorithm for
computing the search direction, and the algorithm
for computing the step length. The trade-off between
accuracy and computational cost guides these choices.
It is possible to compute the search direction with
gradient-based methods, such as steepest descent or
Newton’s methods. Steepest descent uses a linear
model of the objective function, but generally suf-
fers from slow convergence. Newton’s method utilizes
a quadratic model of the objective function, exhibits
locally quadratic convergence, and can provide robust
and efficient solutions for FWI when used with some
form of globalization such as trust region or line
search methods. The Newton step for the solution of
the KKT system is

⎡
⎢⎢⎢⎢⎢⎣

δ2
uuL δ2

uvL δ2
uμL δ2

uλL δ2
uφL

δ2
vuL δ2

vvL δ2
vμL δ2

vλL δ2
vφL

δ2
μuL δ2

μvL δ2
μμL δ2

μλL δ2
μφL

δ2
λuL δ2

λvL δ2
λμL 0 0

δ2
φuL δ2

φvL δ2
φμL 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ū
v̄
μ̄

λ̄

φ̄

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δuL
δvL
δμL
δλL
δφL

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(26)

Herein, the δ2L operator denotes the second variation
of the Lagrangian with respect to the state, adjoint
and material field variables, and the overbar on each
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variable indicates the Newton direction for that vari-
able. The coefficient matrix is called the KKT
matrix or the Hessian matrix. While the KKT sys-
tem can be solved as a full space problem, such an
approach is not feasible for large-scale FWI problems.
A reduced space approach, however, eliminates the
state and adjoint variables yielding a reduced system
which contains unknowns related only to the material
field:

Wμμ̄ = −δμL, (27)

where Wμ is the Schur complement of δ2
μμL in the

KKT matrix, which is known as the reduced Hessian.
Askan et al. (2007) used a Gauss-Newton approxi-

mation to yield a positive-definite reduced Hessian by
ignoring the terms that depend on the adjoint variables
in the KKT matrix. The conjugate gradient method
is utilized along with a backtracking line search for
the step length to solve the reduced system for μ̄

avoiding construction of the reduced Hessian. Instead,
at each conjugate gradient iteration, only the matrix-
vector product is computed by solving the state and
adjoint problems. A limited memory type precondi-
tioner is also used to treat the potential ill-conditioning
of the reduced Hessian, which speeds up the algorithm
significantly (Askan et al. 2007).

Another well-known challenge in FWI is that the
objective function hyper-surface can possess many
local minima, such that when the starting model is
not in the basin of attraction of the global mini-
mum, quasi-Newton methods converge to sub-optimal
solutions. The size of the attraction basin of the
global minimum decreases with increasing wavenum-
bers (i.e., shorter wavelengths). Hence, multi-level
solutions are utilized to guide the optimizer to the
global minimum by solving the inverse problem on
increasingly finer meshes (Bunks et al. 1995).

Askan et al. (2007) applied the numerical algorithm
described above to reconstruct a (synthetic) 2D VS tar-
get distribution representing a vertical cross-section
of the Los Angeles basin in the San Fernando Val-
ley (Magistrale 2000). The KKT system is discretized
with Galerkin-type finite elements and finite differ-
ences in space and time, respectively. The waveforms
were simulated from the target profile at receivers
on the free (earth) surface as pseudo-observed data.
The causative fault was assumed to run perpendic-
ular to the valley and the source was modelled as

a uniform SH kinematic dislocation. Gaussian ran-
dom noise (10%) was added to the simulated data to
represent observation errors. The forward wave prop-
agations were performed on the finest grid of 64 × 64
finite elements, while the multilevel inversion algo-
rithm worked through increasingly finer optimization
grids until the forward and inverse meshes were the
same size. Figure 14 shows the sequence of VS models
from FWI on increasingly finer grids.

Algorithmic choices such as the preconditioning
approach, type of regularization function, and value of
the regularization parameter have a significant impact
on FWI performance. The inverse problem is also
affected by receiver density and the level of noise on
the data. Askan et al. (2010) performed numerical
experiments to observe the sensitivity of FWI to selec-
ted algorithmic parameters using the same 2D Los
Angeles basin example. Among several parameters, it
was observed that noise levels up to 10% percent did
not have a significant effect on the quality of the inver-
sion solution. In addition, even with sparse receiver
arrays, FWI yielded acceptable profiles. However, use
of a multi-level algorithm was found to be necessary to
reach the global minimum. The selection of an appro-
priate regularization parameter was demonstrated to
be the most significant factor for successful inversion.
Every application of FWI requires a problem-specific
regularization parameter. As discussed in Section 3, if
the regularization parameter is too small, the solution
contains artifacts and spurious structures. Conversely,
if the parameter is too large, the model is overly
simplified.

7.3 Outlook on FWI for site characterization

FWI of measured data remains a challenging problem,
particularly for the shallow seismic wavefield which
is relevant to seismic site assessment. The physical
challenges for FWI for near-surface structural studies
include strong attenuation, strong variability in near-
surface lithology, poor a priori information, and com-
plex surface topography (Nguyen and Tran 2018; Pan
et al. 2018). The high computational cost of numerical
wave propagation governed by the shortest resolvable
wavelengths is another well-known issue. Nonethe-
less, within the context of inversion for near-surface
velocity structure and site characterization, several
FWI methods have been effective with measured data
sets (Bretaudeau et al. 2013; Kallivokas et al. 2013;
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Fig. 14 Estimated VS cross-sections for consecutive levels of a multilevel FWI algorithm for the Los Angeles basin example (grid
sizes given on panels). The target (true model) is shown in the final panel. Modified from Askan et al. (2007)

Fathi et al. 2016; Groos et al. 2017; Nguyen and
Tran 2018). So despite the physical and numerical
challenges discussed here, FWI has the potential to
recover the complex velocity structures of heteroge-
neous basins as well as near-surface soil/sediment
layers, and to be a powerful tool for seismic site
assessment.

8 Summary and conclusion

Geophysical inverse theory is a vast and diverse field,
spanning a wide range of physical problems and
spatial scales from planetary to shallow engineering
applications. In seismic site characterization studies,
inversion is often used to estimate a model of the geo-
physical properties (predominantly VS) of the shallow
sub-surface from observations of seismic waves recor-
ded at the surface. With this information, seismic-
wave behavior can be predicted, and the site-specific
hazards associated with earthquake ground shaking
can be quantified and mitigated.

This paper provides a review of common inver-
sion approaches for estimating geophysical models
from seismic data for the purpose of seismic site
characterization. In engineering-scale (∼10–100 m)

applications, 1D (depth-dependent) subsurface mod-
els are commonly considered, and are (in many cases)
adequate for quantifying seismic-wave behavior. On
these scales, surface-wave dispersion and HSVR data
are commonly employed. However, the site-specific
response to earthquake ground shaking is also influ-
enced by larger scale structures (e.g., sedimentary
basins). These cases necessitate more complex 2D or
3D models, discussed here in the context of surface-
wave tomography and FWI. The complexity of the
model generally affects the complexity of the inverse
problem.

In seismic site characterization studies, inverse
problems are non-linear, non-unique, and potentially
unstable. Hence, suitable mathematical formulations
are required. This paper considers a wide range of
algorithms for estimating models of shallow subsur-
face structure based on seismic data. Most approaches
discussed here are based on recovering an optimal
(best-fit) model, representing a point estimate in
a multi-dimensional model-parameter space. These
include linearized approaches, which are efficient but
prone to become trapped in sub-optimal solutions,
as well as non-linear (numerical) optimization algo-
rithms (e.g., DHS, SA, GA, and NA). An alternative
approach is Bayesian inversion based on sampling the
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PPD over the parameter space to provide parameter
estimates as well as quantitative uncertainty analysis.

Computational effort/time can be a limiting factor
in geophysical inversion. This is generally inconse-
quential for 1D problems in seismic site characteri-
zation, but is a significant constraint in 2D and 3D
problems. Future advancements of inversion for site
characterization are tied to improved computational
capabilities and, more importantly, to emerging tech-
nologies for collecting large volumes of seismic data.
These include dense nodal geophone arrays (involv-
ing thousands of instruments) and distributed acoustic
sensing with fibre optics (e.g., Olivier et al. 2018; Ajo-
Franklin et al. 2019; Parker et al. 2018; Spica et al.
2020). New data processing and inversion advance-
ments will be required to fully exploit the benefits and
information available from these next-generation data
sets.
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