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Abstract The development of empirically con-
strained ground-motion models has historically fol-
lowed a cyclic process in which every few years,
existing models are updated to reflect new data and
knowledge that has become available. Ground-motion
developers make use of their prior knowledge to iden-
tify appropriate functional forms for the models, but
the actual regression analysis and model calibration
is effectively performed from a fresh start with each
update. With the anticipated increase in data availabil-
ity coming in the future, this traditional approach will
become increasingly cumbersome. The present article
presents a framework in which Bayesian updating is
used to continuously update existing ground-motion
models as new data becomes available. This new
approach is shown to provide similar results to the
more traditional approach, but is far less data-intensive
and will scale well into the future. The approach is
demonstrated through an example in which an initial
regression analysis is conducted on a portion of the
NGA-West2 dataset representative of the information
available in 1995. Model parameters, variance com-
ponents and crossed random effects are then updated
with data from every other event in the NGA-West2
dataset and the results from Bayesian updating and
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traditional regression analysis are compared. The two
methods are shown to provide similar results, but the
advantages of the Bayesian approach are subsequently
highlighted. For the first time, the article also demon-
strates how prior distributions of model parameters
can be obtained for existing ground-motion models
that have been derived using both classical, as well
as more elaborate multi-stage, procedures with and
without constrained parameters.

Keywords Ground-motion models · Bayesian
updating · Ground-motion prediction equation ·
Continuous integration

1 Introduction

Ground-motion models typically used in seismic haz-
ard and risk applications are empirically calibrated
models with functional forms that are designed to
replicate the physics of strong ground-motion scal-
ing. There is a very long history of development of
these models (Douglas 2018), dating back to 1964.
The initial models developed aimed to capture basic
scaling of peak ground motion parameters with mag-
nitude and distance, and only focussed upon the
predictions of median motions for these scenarios.
However, in time, the models have evolved to enable
them to also capture generic scaling with respect to
the style-of-faulting, geometric effects of finite faults,
near-surface site response effects, and the influence of
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the deeper velocity structure, among other features. At
the same time, it is now recognised very strongly that
these models must specify the expected distribution
of ground-motion intensities for each scenario they
consider, rather than just the median motion (Stafford
2015b).

A simplistic view of ground-motion model devel-
opment is to suggest that a large database of accelero-
grams, and their associated meta-data, is compiled and
uniformly processed before a regression analysis is
performed. In some cases, this is actually a true reflec-
tion of how models have been developed in the past.

However, it is increasingly rare for ground-motion
model development to follow such a simplistic model-
fitting exercise. The Next Generation of Attenuation
(NGA) project (Power et al. 2008) made a significant
impact upon the way in which ground-motion models
were developed as it became abundantly clear that this
simple regression-based approach was no longer suffi-
cient. Indeed, the majority of the NGA models appear
over-parameterised from a simple regression perspec-
tive, but this is due to the fact that many of the model
parameters are constrained from numerical simula-
tions or theoretical arguments. What the NGA project

Fig. 1 Conceptual illustration of the differences between the
traditional empirical approach to ground-motion model devel-
opment and the continuous Bayesian updating approach pre-
sented herein. The passage of time flows down the figure, with
the circular markers representing earthquake events that are
recorded on accelerograph networks and provide observations
yi . On the left, the traditional approach of periodically com-
piling a ground-motion data base and developing a new model

is shown. Here, μi and σ i represent the revised functional
forms at each update, and θ i are the revised model parame-
ters. On the right, we have the continuous refinement through
Bayesian updating. With each new event, the entire probabil-
ity distribution of the parameters, P(θ |x), is updated, and new
observations are absorbed into the prior for the next update. The
functional form on the right-hand-side remains constant
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did was to emphasise the fact that in order for mod-
els to behave well, when extrapolated to scenarios for
which limited empirical constraint exists, functional
forms (and potentially model parameters) need to be
designed with extrapolation in mind from the outset.

The limitations of existing strong-motion databases
have therefore driven a lot of effort into trying to
understand how ground-motions should scale for a
very broad range of rupture scenarios and site prop-
erties. The net result is that we are now relatively
well-placed to understand which functional forms are
likely to be successful for predicting median ground
motions for scenarios of relevance to hazard and
risk applications. At the same time, the data limita-
tions previously referred to will inevitably relax with
time. As more earthquakes are recorded on increas-
ingly dense accelerograph networks, the database of
available records will continue to increase. For some
rupture scenarios, the challenges will shift from being
associated with insufficient numbers of records, to
having too many records to manage.

The purpose of the present article is to outline a
new paradigm in ground-motion model development
in which existing models are continuously updated as
new data becomes available. This is in contrast to the
current approach whereby every few years databases
are consolidated and revisions to existing models are
released. This difference in approaches is schemat-
ically illustrated in Fig. 1, with the details of the
process elaborated upon in the following section.

The key tool used in the present study is Bayesian
updating in which a model is incrementally updated
as new data becomes available, as shown in Fig. 1.
Bayesian methods have previously been used within
Engineering Seismology for a number of applica-
tions. For example, Wang and Takada (2009) demon-
strated how Bayesian updating can be used to adapt
an existing ergodic ground-motion model to target a
particular site (or region). In their study, the exist-
ing ergodic ground-motion model is used to define
a prior distribution for the model parameters, while
local site-specific recordings are then used to update
the prior to find the site-specific posterior distribution
of the model parameters. Arroyo and Ordaz (2010a, b)
showed how a Bayesian framework can be employed
to derive regression parameters for a vector of inten-
sity measures simultaneously, rather than working
on a period-by-period basis, as is commonly done.
Kuehn et al. (2011) used Bayesian networks to explore

the strength of dependencies between ground-motion
intensities and variables within the NGA database, and
a number of other applications can be found (e.g. Moss
and Der Kiureghian 2006; Moss 2011; Hermkes et al.
2013).

Most recently, Stafford (2014), Landwehr et al.
(2016) and Kuehn and Abrahamson (2017) have used
Bayesian methods to fit ground-motion models with
complex variance structures. Specifically, partially
non-ergodic models with regional (Stafford 2014),
or path-specific (Landwehr et al. 2016), parameters
have been developed, and uncertainties in independent
variables have been accounted for in Stafford (2014)
and Kuehn and Abrahamson (2017).

The present study builds upon these previous con-
tributions and can be regarded as an extension of the
work of Wang and Takada (2009) to consider multi-
ple sites simultaneously whilst also accounting for the
more complex random effects structure discussed in
Stafford (2014).

In addition to enabling continuous integration of
data into ground-motion models, the use of Bayesian
regression approaches also enables the probability dis-
tribution of the model parameters to be represented.
For the purposes of prescribing prior distributions,
the present study makes use of a second-moment
representation of the full multivariate distribution.
However, the updating process provides the full distri-
bution of the parameters at each stage of the updating
process. This enables analysts to understand which
parameters of the model are less well-constrained than
others, and which parameter combinations shown non-
trivial correlations. Information regarding parameter
uncertainties and parameter correlations is typically
provided by traditional regression software. However,
the recent developments in ground-motion modelling
in which multi-stage regression analyses are con-
ducted has prevented these metrics from being com-
puted. Moving to a Bayesian approach makes these
features available once more and improves our under-
standing of the robustness of the derived models. Hav-
ing access to the parameter uncertainties also enables
prediction intervals to be computed that are useful for
defining model-specific epistemic uncertainties within
seismic hazard analysis (Arroyo and Ordaz 2011).

In the following section, the Bayesian updating
framework employed here is described along with
an example application. This description makes use
of information that is not currently available for
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many ground-motion models and so Section 3 is then
devoted to explaining how the required information
may be obtained. The implications for the framework
presented herein is then discussed in Section 4.

2 Bayesian updating of ground motion models

A general ground motion model can be represented as
in Eq. 1:

y = μ(X; β) + Zb + ε (1)

where y is an n×1 vector of observed ground motions
(usually the logarithm of some intensity measure),
μ(X; β) is an n × 1 vector of mean predictions for
a particular set of nv independent variables X that
relate to the rupture scenario and site conditions. The
matrix X is often regarded as an n × nv dimension
matrix, although for a nonlinear hierarchical model
one can also think of X as representing a list of inde-
pendent variables that are required for defining the
model. For instance, in the n × nv matrix form of
X, one column would typically represent magnitude,
M , while another might represent logarithmic aver-
age shear-wave velocity, lnVS,30. However, if we only
have ne earthquakes and ns recording stations in the
database, then there is no need to replicate values of
these variables simply to populate the n × nv matrix.

The p model parameters are defined in the p × 1
vector β, and these represent the ‘fixed effects’ or
the parameters that reflect the entire ‘population’ of
ground-motions for the region in question. The term
Zb corresponds to the q random effects of the model
and represents systematic deviations of certain obser-
vations within y away from the population mean. For
example, a particular event may have larger than aver-
age source motions and this will be reflected by a
positive element within b. The q × 1 vector b is the
actual vector of random effects, while the n×q matrix
Z will typically contain partial derivatives of μ with
respect to the random effects. See Stafford (2015a) for
an explicit example of this formulation in the context
of nonlinear site response.

The general framework for performing mixed
effects regression analysis is shown in Eq. 2 (Bates
et al. 2015). In this framework, two random variables
are considered, Y which represents an n-dimensional
random vector of observed (logarithmic) intensity
measure values, and B representing a q-dimensional

vector of random effects. The use of the capital cali-
graphic font indicates that the model regards these
terms as being random variables. The actual observed
ground-motions are denoted as y and the unobserved
random effects are b.

(Y|B = b) ∼ N
(
μ(X; β) + Zb, σ 2I

)
(2)

Equation 2 states that the conditional distribution
of Y given a vector of random effects b is normal
with a mean of μ(X; β) + Zb and a variance of σ 2I .
If we have non-constant within-event variance (het-
eroskedasticity), then the variance term changes from
σ 2I to σ 2�, where � is a matrix representing the
within-event covariance structure (Stafford 2015a).

For mixed effects models in general, we do not aim
to directly estimate the unobserved vector of random
effects, b. Rather, the focus is upon estimating the
population parameters in β along with the variance
components contained within the symmetric q × q

covariance matrix, �ϑ , of the random effects. In gen-
eral models, the distribution of B is defined as in
Eq. 3. This equation states that the random effects are
represented by a multivariate normal distribution with
zero-means and a covariance matrix of �ϑ .

B ∼ N (0, �ϑ ) (3)

The subscript ϑ is used to denote a vector of parame-
ters than can potentially be used to define the covari-
ance matrix. For example, in the case that a non-
constant (heteroskedastic) variance structure for the
random effects is considered, parameters defining this
structure are represented by ϑ .

In early adoptions of mixed effects approaches (e.g.
Abrahamson and Youngs 1992), this q × q ‘matrix’
was simply a scalar value that has usually been
referred to as the between-event variance and is com-
monly denoted by τ 2. In the simplest crossed formu-
lation in which we have independent random effects
for both event-to-event, τ 2, and station-to-station vari-
ation, φ2

S2S , (Stafford 2014), the covariance matrix for
the random effects becomes:

�ϑ =
[

τ 2 0
0 φ2

S2S

]
(4)

This is the random effects structure that is used in the
example application that follows.

In the context of the present study, the parameters
of the model consist of the fixed effects parameters
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β, the random effects parameters b, and the vari-
ance components associated with the random effects
(here, the between-event standard deviation, τ , and the
station-to-station standard deviation, φS2S) as well as
the residual standard deviation φ. Generically defining
this entire set of parameters as θ = {β, τ, φS2S, φ, b},
we can define the joint probability distribution of
the model parameters as P(θ; x), where x represents
some initial dataset (or information) that is used to
calibrate this distribution. When a new set of obser-
vations of ground-motions, y, becomes available, it
is possible to define a likelihood function, L(y|θ; x),
that describes how likely that set of observations is
given the current information in x and the current esti-
mates of the model parameters θ . Bayes’ theorem can
then be used to update the prior distribution of the
model parameters using Eq. 5 and to obtain a pos-
terior (updated) distribution of the model parameters,
P(θ |y; x), given both our initial information and the
new data.

P (θ |y; x) ∝ L (y|θ; x)P (θ; x) (5)

In Eq. 5, the expression is shown as a proportionality
only. The strict definition of Bayes’ rule also includes
a normalizing term as a denominator of this expres-
sion. However, in the present study, the updating from
prior to posterior estimates of the parameter distribu-
tion is performed using Markov-Chain Monte Carlo
(MCMC) simulation which avoids the need to com-
pute this normalizing term (Stan Development Team
2018).

The basis of the method presented herein is that
it is assumed that some prior distribution, P(θ; x),
of the parameters associated with an existing model
is available. Commonly used software packages, such
as lme4 (Bates et al. 2015) in R (R Core Team
2017), that are used for ground-motion model develop
are able to provide this information. In other cases,
when this information is not already available, other
options exist to derive this in a retrospective manner—
as discussed in Section 3. The likelihood function
that appears within Eq. 5 is the traditional likelihood
function used for mixed effects models.

The logarithm of this likelihood function for a
dataset containing n records can therefore be written
as in Eq. 6:

lnL(y|θ; x) = −n

2
ln(2π) − 1

2
ln

∣∣Cx;θ
∣∣

−1

2
[y − μ(x; θ)]T Cx;θ −1 [y − μ(x; θ)] (6)

Here, C ≡ Cx;θ is the global covariance matrix for
the entire dataset, and the subscripts x; θ are used to
emphasise the dependence upon components of the
parameter vector and the initial information. In sim-
ple cases where only event-specific random effects
are considered (i.e. non-crossed cases), the covariance
matrix has a block diagonal structure and so efficient
methods for computing the determinant and inverse
are available (Abrahamson and Youngs 1992). How-
ever, when the random effects b have the more general
covariance matrix �ϑ , and the residual errors have a
covariance defined by σ 2�, then the covariance of the
logarithmic motions is defined using Eq. 7.

var (y|X, Z, β) = ZT �ϑZ + σ 2� = C (7)

In the present study the evaluation of Eq. 5 is per-
formed using MCMC with the Stan language via
the rstan package (Stan Development Team 2018).
Note that the result of this updating is a full distribu-
tion of the model parameters and that in some cases
empirical correlations will arise among parameters
that should, in theory, be independent. For example,
over the entire parameter vector θ , herein it is assumed
that the fixed effects are independent of the random
effects (apart from a perfect correlation that exists
for one particular term, to be discussed in the fol-
lowing section). The random effects are also assumed
to be independent consistent with the specification in
Eq. 4. Furthermore, while the full posterior distribu-
tion can be obtained from the results of MCMC, it
is not provided in any parametric form. For the pur-
poses of the present study, it is therefore assumed
that the fixed effects are jointly distributed according
to a multivariate normal distribution such that only a
second-moment representation of the full distribution
is used. It is assumed that the variance components
and random effects are normally distributed, and inde-
pendent of one another, and so the mean and standard
error for each parameter is extracted from the outputs
of the MCMC.

When a new event takes place and new recordings
become available, the prior distribution of all parame-
ters is defined as the posterior distribution from either
the initial analysis (or the previous update). Equation 5
is then evaluated using MCMC only for the records
from the new event. Therefore, while databases used
for recent models included thousands of records—
implying the construction and manipulation of a very
large covariance matrix in a traditional analysis—the
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proposed Bayesian updating approach works with far
fewer records at any given time. This updating pro-
cess has implications for the computation of random
effects, as discussed in the next section.

2.1 Treatment of random effects

Events and stations that appeared in the initial
database will have had random effects estimated for
them, and these estimates will have some degree of
uncertainty that will depend upon how many records
each event provided or how many times a recording
was made at a given station. Each time a new set
of recordings associated with a new event is used to
update the model, a new random effect for this event
must be computed, but the median prediction for the
population model will also change. In order for the
previously computed random effects for older events
to make sense, it is necessary to adjust these previ-
ous estimates to account for the change in the median
model predictions. For stations, the newly added event
may include recordings at stations for which random
effects have previously been computed. In this case,
the previous estimates of these station random effects
must be updated to account for the change in model
median predictions as well as the new data for each
station. Therefore, while the fixed and random effects
are assumed to be decoupled, there is an intrinsic
coupling between the model ‘intercept’ (essentially a
parameter that centres the model with respect to the
residuals) and the values of the random effects for both
event and station.

The implication of new data changing previous esti-
mates of random effects for events means that random
effects for events will change even though the new
data that is added is only associated with some new
different event. These changes take place due to the
adjustment to the intercept just discussed, but also
due to the fact that the total variance is partitioned
among between-event, station-to-station, and within-
event components. If the newly added data changes the
relative magnitudes of the variance components then
this can also have an impact upon the random effects.

However, a problem associated with the random
effects for events is that the variance component asso-
ciated with these effects represents both the variation
in the actual random effects as well as their error
estimates. As new data is now introduced for the pre-
vious events, the error estimates in the event random

effects do not tend to reduce but variations in the
model medians are still mapped into corrections to
the event random effects. For this reason, the esti-
mates of the between-event variance can be slightly
larger than what would be obtained from a traditional
analysis. That said, the main situation in which this
issue arises is when relatively poorly recorded events
are used for which little constraint upon the event
random effect is available. In the future as recording
networks become increasingly dense, and as databases
of ground-motions grow, it becomes possible to only
make use of events for which a sufficiently high
number of recordings have been made and this will
mitigate against this variance inflation. Note that this
issue does not arise to the same extent for station ran-
dom effects and their associated variance as newly
added events can contain recordings on stations for
which random effects have been computed and so their
error estimates can also evolve.

2.2 Example application

To demonstrate how the approach outlined above can
work, an example application is presented here using
both the traditional and Bayesian approaches. In order
to do so, we consider a hypothetical situation in which
we travel back in time and start applying the new
approach from the mid-1990s.

2.2.1 Dataset used

The empirical database used is that of the NGA-West2
project (Ancheta et al. 2014), and various filters are
applied to obtain a selection of records for this exam-
ple. Records from Class 1 (C1) mainshocks (Wood-
dell and Abrahamson 2014), having distances within
200km are considered. These records should have a
PGA ≥ 1 × 10−4 g, and their significant dura-
tions should not be more than 2.75 standard deviations
above average levels—defined using the prediction
equation of Afshari and Stewart (2016). The appli-
cation of this filter results in 8548 records from 384
events recorded at 3097 stations. Therefore, the aver-
age number of records per event is far greater than the
average number of records per station.

In the first instance, the total database defined
above is restricted to only include records that were
obtained in 1995 or earlier. This arbitrary date was
selected in order to represent the level of data that was
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available at the time that models such as Abrahamson
and Silva (1997) were developed. The initial database
contained 924 records of 103 events at 629 differ-
ent recording stations. This database is far smaller
than what is commonly used now, but is sufficient to
constrain the initial regressions and to provide a start-
ing point for the Bayesian updating approach to be
demonstrated.

The initial and total datasets used herein are shown
in Fig. 2. Markers in the figure are colour coded
according to whether or not they were in the initial
dataset. Events that contribute at least 100 records are
also annotated by name. While there are clearly many
smaller events that are added to the initial dataset,
there are also a number of well-recorded events spread
over the full magnitude range considered.

Two sets of results are obtained and presented in
this section. The first set corresponds to the applica-
tion of a traditional regression approach in which the
entire database currently available is used to constrain
the model parameters. Therefore, an initial regres-
sion analysis is performed upon the dataset includ-
ing pre-1996 records and then for each of the 281
earthquakes that occurred since then a new dataset

is compiled by adding the new events to the previ-
ous dataset and the regression analysis is repeated.
The set of results for the traditional approach there-
fore consists of 282 nonlinear mixed effects regression
analyses obtained using the lme4 package (Bates
et al. 2015) in R (R Core Team 2017). A crossed
mixed effects formulation is adopted in which event-
specific and station-specific effects are considered
(Stafford 2014).

The second set of results corresponds to the appli-
cation of Bayesian updating. An initial regression
analysis is performed on the initial dataset using
Markov-Chain Monte Carlo via the rstan pack-
age (Stan Development Team 2018) in R (R Core
Team 2017). Note that this means that the starting
point for the traditional and Bayesian approaches is
slightly different due to the different regression tech-
niques employed—despite using the same database.
From this initial regression, the prior distribution
P(θ; x) was constructed. Thereafter, for each of the
281 new earthquakes, only the records associated with
each of these earthquakes is used within the frame-
work of Eq. 5 to update the prior and obtain the pos-
terior P(θ |y; x). This posterior then becomes the new

Fig. 2 Distribution of
dataset used in the example
application. Points are
coloured according to
whether or not they were
used in the initial regression
analysis, and are sized by
the number of records they
contribute. Annotated
events contribute at least
100 records. Grey
horizontal lines show
threshold magnitudes for the
functional form considered
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prior distribution for the next event and the process
is repeated. For the MCMC sampling, four parallel
chains were simulated in each case with a total of 4000
samples per chain (of which, only the last 2000 were
retained for the model updating).

Ordinarily, for the same dataset, the lme4 pack-
age far outperforms rstan from a computational
perspective, as the sampling in MCMC can be time
consuming. However, in the present application, the
overall computational time is actually shorter for the
MCMC approach because the dataset used for each
case is considerably smaller than the total dataset
being used by lme4.

Note that the Stan files used for both the initial
regression analysis as well as the Bayesian updat-
ing are available from https://github.com/pstafford/
BayesianStanRegression. The prior distributions used
for the initial Bayesian regression are included in these
files.

2.2.2 Functional form adopted

The functional form used for the present example
is chosen to be a simplification of the recent model
of Abrahamson et al. (2014). The reason for select-
ing this model as the basis of the present example
is that the core functional form of the model has
not changed significantly since the Abrahamson and
Silva (1997) model was published over 20 years ago.
The Abrahamson et al. (2014) model therefore pro-
vides a good example of a model that has periodically
received updates on the basis of discrete changes to
ground-motion databases. In evolving from the Abra-
hamson and Silva (1997) model (where nonlinear site
effects were first incorporated into a ground-motion
model) to the first NGA model of Abrahamson and
Silva (2008), a significant increase in the number of
available records took place. Importantly, a number
of supporting numerical studies were also performed
that enabled certain functional expressions, such as
the nonlinear site response (Walling et al. 2008), to
be constrained outside of a traditional regression anal-
ysis (some of these constraints are retained herein).
The latest model of Abrahamson et al. (2014) builds
upon the Abrahamson and Silva (2008) version, with
the major changes being related to improving the
performance for smaller magnitude and longer dis-
tance scenarios. Additional refinements to various
other components, such as hanging wall effects, have

also been made, but are not relevant for the present
analysis.

The objective herein is to demonstrate the method
and to that end, it was deemed sufficient to omit some
of the secondary functional terms related to hang-
ing wall effects, sediment depth and depth of rupture,
simply to reduce the number of free regression coef-
ficients. At the same time, it was desirable to not
simplify the model to the extent that it would be
unrealistic by modern standards. Therefore, the main
complexity associated with nonlinear site response is
retained in addition to the base magnitude and distance
scaling and style-of-faulting effects. Although sedi-
ment depth effects are not included, the representation
of site effects is actually made more complex through
the use of the crossed mixed effects formulation that
includes random effects for both events and recording
stations (Stafford 2014, 2015a).

The overall functional form for spectral accelera-
tion (although only PGA is considered herein) is a
function of moment magnitude, M , rupture distance,
Rrup, binary style-of-faulting flags (FN for normal
and normal-oblique events, and FR for reverse and
reverse-oblique events), and the average shear-wave
velocity over the uppermost 30 m, VS,30, and can be
described by Eq. 8.
ln Sa = f1(M, Rrup) + FNf7(M)

+ FRf8(M) + f5(Ŝar , VS,30) (8)

The base magnitude and distance scaling repre-
sented by f1(M, Rrup) has coefficients and terms that
change depending upon the level of magnitude. For
the largest events, M > M1 where M1 = 6.75, the
function is defined as:
f

(M>M1)
1 = a1 + a5(M − M1) + a8(8.5 − M)2

+ [a2 + a3(M − M1)] ln(R) + a17Rrup (9)

Over the intermediate magnitude range, where M2 ≤
M ≤ M2 and M1 = 5.0, the function is defined as:
f

(M2≤M≤M1)
1 = a1 + a4(M − M1) + a8(8.5 − M)2

+ [a2 + a3(M − M1)] ln(R) + a17Rrup (10)

Finally, for small magnitudes, an additional linear
term is added as an extension of the scaling for
the intermediate range such that the functional form
becomes:
f

(M<M1)
1 = a1 + a4(M2 − M1) + a8(8.5 − M2)

2

+a6(M − M2)

+ [a2 + a3(M2 − M1)] ln(R) + a17Rrup (11)

https://github.com/pstafford/BayesianStanRegression
https://github.com/pstafford/BayesianStanRegression
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In each of the above cases, the distance metric R is
derived from the rupture distance Rrup to account for
magnitude-dependent near-source saturation effects.
The expression is defined as:

R =
√

R2
rup + c4M(M)2 (12)

with

c4M(M) =
⎧⎨
⎩

c4 for M > 5
c4 + (c4 − 1)(M − 5) for 4 < M ≤ 5
1 for M ≤ 4

(13)

The parameter c4 = 4.5 is regarded as a constant
herein.

The style-of-faulting terms f7(M) and f8(M) have
similar functional forms and can be expressed as in
Eqs. 14 and 15, respectively.

f7(M) =
⎧⎨
⎩

a11 for M > 5
a11(M − 4) for 4 < M ≤ 5
0 for M ≤ 4

(14)

f8(M) =
⎧⎨
⎩

a12 for M > 5
a12(M − 4) for 4 < M ≤ 5
0 for M ≤ 4

(15)

The site response term, f5(Ŝar , VS,30), is a nonlin-
ear function of the reference expected spectral accel-
eration Ŝar which is defined for a reference velocity
value of VS,30 = 1180 m/s. In the present study, this
expected acceleration level is taken as the event- and
station-corrected reference acceleration such that the
random effect for each event and the random effect for
each station (that reflects systematic linear site effects)
is propagated through the site response term. Linear
site response is assumed for sites having VS,30 > Vlin

where Vlin = 660 m/s, and values of the shear-wave
velocity are capped such that V ∗

S,30 = VS,30 if VS,30 <

V1 and V ∗
S,30 = V1 otherwise. The value of V1 is taken

as 1500 m/s. These values of V1 and Vlin are taken
from Abrahamson et al. (2014), as are two other terms
within their site response model, c = 2.4 and n = 1.5,
as these parameters arise from external numerical con-
straints. The site response model varies with the level
of VS,30. For values of VS,30 ≥ Vlin the response is
linear and is defined by:

f
VS,30≥Vlin

5 = (a10 + bn) ln

(
V ∗

S,30

Vlin

)
(16)

while for softer sites the response is nonlinear and is
defined by:

f
VS,30<Vlin

5 = a10 ln

(
V ∗

S,30

Vlin

)
− b ln

(
Ŝar + c

)

+b ln

[
Ŝar + c

(
V ∗

S,30

Vlin

)n
]

(17)

Note that in the model development process fol-
lowed by Abrahamson et al. (2014), the calibration of
parameters was made in a number of steps. Part of
the reason for this was to ensure reliable performance
across multiple response periods (while only PGA is
considered as an example here), but another reason is
that their model included additional functional terms.
Such a multi-stage approach is not adopted here and
12 fixed effects regression coefficients are solved for
simultaneously. The free coefficients are a = {ai, b}
where i ∈ {1, . . . , 6, 8, 10, . . . , 12, 17}.

2.2.3 Regression results

Following the process outlined above, a large set of
regression results are obtained using both approaches.
Figure 3 shows the variation of the fixed effects esti-
mates, and their associated errors, as a function of the
index of the event that is added. As events are added
in chronological order, the horizontal axis can also be
interpreted as time (although spacing between events
is non-constant). Clearly, the results obtained from the
two approaches are not identical, and nor should we
expect them to be. The leftmost point in all panels
of Fig. 3 shows the results from the initial regres-
sion using the same dataset for both approaches. The
only difference in this particular case is type of model
fitting that is performed in the lme4 and rstan
packages. These differences should be kept in mind
when interpreting the results for other points in the
figure.

It can be appreciated that the coefficients primar-
ily associated with distance scaling (a2, a3, and a17)
tend to show the best agreement. Coefficients a10 and
b that relate to the site response effects are also actu-
ally fairly consistent when one appreciates that there
should be a negative correlation between these coeffi-
cients if the considered dataset contains records with
nonlinear site effects. The coefficients a11 and a12
that relate to style-of-faulting effects indicate fairly
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Fig. 3 Fixed effects estimates for all model parameters using the traditional and Bayesian updating approaches. Vertical lines represent
the standard errors in the coefficient estimates
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consistent trends. The coefficients that show the great-
est deviations are a4, a5, and a8 that relate to the
magnitude scaling for moderate to large magnitudes.
Part of these differences arise from relatively large
differences in the starting estimates from the initial
regression analysis and most likely reflects issues
associated with over-parameterisation for the initial
dataset. The other reason why these parameters show
greater volatility is that they have less constraint as a
result of lower effective sample sizes. The constraint
on the magnitude scaling coefficients comes from the
numbers of earthquake events while the constraint
upon ‘within-event’ effects, like distance scaling and
site response, comes from the numbers of records.
The large difference in numbers of events versus num-
bers of records explains why the size of the errors for
the magnitude scaling terms are relatively large (note
the different ordinate scales used in Fig. 3). How-
ever, it is noteworthy that despite these reasons, the
differences in the parameter estimates from the two
approaches are actually very small as one moves to
the right-hand-side of the panels. Therefore, as more
data is considered in both the traditional and Bayesian
approaches, the results tend to converge.

Figure 4 shows the individual variance components
obtained as well as the total standard deviation. Note
that while the panels shown represent τ (the between-
event variability), φS2S (the station-to-station variabil-
ity), and φ (the event- and site-corrected within-event
variability), the φS2S values are not directly compa-
rable with other values sometimes reported in the
literature (Rodriguez-Marek et al. 2013). As shown in
Eqs. 1 and 3, the random effects are operated upon
by Z. Studies such as Rodriguez-Marek et al. (2013)
work directly upon the Zb terms and so can include
the effects of Z. Furthermore, the inclusion of non-
linear site effects in the functional form means that
Z will contain elements that decrease with increas-
ing Ŝar (Stafford 2015a), and the values in Fig. 4 do
not account for these effects. The total standard devi-
ation computed in this case is therefore not actually
the standard deviation that might be encountered for
many realistic scenarios, but rather reflects the maxi-
mum values that can arise under linear site conditions.
That said, the estimates in both cases are obtained in a
consistent manner and so can be directly compared.

In Fig. 4, the numbers of records that are added
to the dataset with each added event are shown as
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Fig. 4 Variance components, and standard errors, estimated using the traditional and Bayesian approaches. Dark grey bars on the
secondary axis show the numbers of records added for each new event
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vertical bars with their amplitudes defined by the sec-
ondary axis. What is very clear in the panel related to
τ is that the introduction of particular well-recorded
events can have a significant impact upon the τ esti-
mate. For this dataset, the first major change occurs
under the traditional regression approach when the
Chi-Chi earthquake records are added. Their intro-
duction causes a significant imbalance in the dataset,
with the vast majority of prior events having far fewer
records (see Fig. 2). This imbalance, and the partic-
ular characteristics of the Chi-Chi records, changes
the partitioning of total variance among the various
components with a particular increase in the φS2S

values. Note that for these variance components, the
error estimates are obtained using the two-way crossed
classification (without interaction) of Searle (1971)

(section 11.6) and are only approximate for this par-
ticular nonlinear model. The data imbalance and non-
linearity within the Chi-Chi data causes numerical
issues with these approximate error estimates in Fig. 4.
This only applies to the traditional regression results,
not the Bayesian analyses that directly provide more
appropriate estimates.

As discussed in Section 2.1, the values of the
random effects for event and station evolve in time
as more data is integrated into the model. Figure 5
provides examples of this evolution for the three sta-
tions within the database with the greatest number of
recordings. In Fig. 5, it can be appreciated that there
is a significant degree of consistency between the ran-
dom effects estimated using both approaches, and that
the addition of new data (as shown by the vertical

Fig. 5 Evolution of station
random effects for the three
stations with the most
recordings. Vertical grey
lines are shown when the
added event includes a
recording at the
corresponding station. Error
bars show the standard
errors in the random effects
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Fig. 6 Standard errors in
the estimates of event
random effects as a function
of the numbers of records
per event using both the
traditional and Bayesian
approaches. The marker
size scales with the order in
which the event was added
to the analysis database.
Note that markers have
been offset slightly in the
horizontal direction to avoid
overlap
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dark grey lines) has a similar impact regardless of
the method. It is therefore apparent that site-specific
adjustments can be obtained for individual locations
within the dataset by using the Bayesian approach.

However, the three example sites shown in Fig. 5
are also cases for which relatively strong empirical
constraint exists. In general, with current databases the
numbers of available records for each event, or for
each station, are far lower. Figures 6 and 7 show how
the error estimates for the random effects vary as a

function of the numbers of records per event and sta-
tion, respectively. Figure 6 also shows plots each point
according to its event identifier (which also defines the
temporal order with which events were recorded). This
plot shows that the events within the initial dataset, hav-
ing event identifiers of 103 or less, typically have
the largest errors in the random effects, but as more
and more events are added the error estimates reduce
and tend towards those associated with the traditional
approach.

Fig. 7 Standard errors in
the estimates of station
random effects as a function
of the numbers of records
per event using both the
traditional and Bayesian
approaches. Note that
markers have been offset
slightly in the horizontal
direction to avoid overlap
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In Fig. 7, it can be seen that stations with very few
recordings have very little constraint upon their ran-
dom effects and that the error estimates in the
Bayesian case are far greater than those from the
traditional regression analysis.

3 Retrospective estimation of parameter
covariance

In the analyses presented thus far it has been assumed
that some initial prior P(θ; x) exists. However, many
ground-motion models already exist and so it is use-
ful to outline how this prior might be constructed
given some existing model. Empirical ground-motion
models have traditionally been derived through a
regression analysis using large numbers of recordings
from many earthquakes. The process that is com-
monly adopted is to postulate a functional form for
the ground-motion model and to then undertake a
regression analysis to infer the values of the model
parameters. Finding the final form of the model is
often a process involving a balance between including
enough functional terms (and model parameters) to
capture the main trends in the empirical data, and not
over-fitting the model. The traditional way to assess
whether a model is being over-fit is to test for the
statistical significance of the model parameters that
are found from the regression analysis. These tests
essentially compare the size of the standard errors
in the estimates of the coefficients (factored by a
student-t statistic that reflects the database size and
the degree of confidence that one wishes to use—
normally 95% confidence) with the magnitude of the
fitted coefficients.

Once one defines the final model then the out-
puts of the regression analysis include the final fitted
model parameters (often called the ‘regression coeffi-
cients’), the variance components of the model (such
as the between-event and within-event variability), but
also the covariance matrix of the model parameters.
This covariance matrix includes (on its diagonal) the
squared standard errors of the model coefficients, and
the covariances (correlations) among coefficients on
the off-diagonals. For a well-fitted and robust model,
one aims to have small standard errors, and small
correlations among the coefficients. The former point
means that the individual parameters are well-defined,
while the second points about the low correlations

means that the model parameters will be less sensitive
to a change in the dataset and that the functional terms
tend to reflect distinct scaling effects. Furthermore,
when one wishes to make a future prediction this
covariance matrix of the model parameters can be used
to define a prediction interval and this prediction inter-
val is a way of estimating the model-specific epistemic
uncertainty, and can be used within an approach to
infer logic-tree weights, among other things (Arroyo
and Ordaz 2011). This covariance matrix of the fixed
effects can also be used as the basis of the P(θ; x).

However, in recent years, it has become increas-
ingly common to develop semi-empirical models, in
which some components of the model are constrained
through numerical simulation, or theoretical consid-
erations. This is especially the case for nonlinear site
response effects, as discussed earlier. In addition, the
functional forms are much more complex and in order
to ensure a ‘smooth’ behaviour in terms of spectral
shapes, among other things, it has become common
to determine the model parameters through a series
of regression steps (Abrahamson et al. 2014). In this
approach, one first focusses upon the scaling with
respect to a particular parameter, say magnitude, and
then fixes the scaling with respect to this parame-
ter before then inferring the remaining parameters
in future steps. In these subsequent steps, the previ-
ously defined model parameters are assumed to be
known constants, as are the theoretically defined, or
numerically defined constraints.

A problem with these developments, however, is
that it is no longer possible to compute standard
regression metrics such as the covariance matrix, or
standard errors, for the model coefficients. This also
means that one cannot define model-specific epis-
temic uncertainty through the use of prediction inter-
vals. It therefore becomes hard to understand whether
these complex functional forms are really supported
by the empirical data they were derived from, and
which components of the model are better constrained
than others. However, for the present article, the key
issue is that it becomes harder to identify an appropri-
ate P(θ; x) as the starting point of future updates.

To overcome the limitations of not being able to
compute these metrics during the regression or model-
development stage, the present section highlights an
option for estimating the parameter covariances (or at
least variances) in a retrospective manner. That is, fol-
lowing the development of the model one can then
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look back and assess how stable the various compo-
nents of the model are and use this information to
construct the prior P(θ; x). In addition, this approach
need not necessarily be applied to the dataset used for
the model development. It could be the case that one
is interested in assessing how stable a particular model
is for use in another region for which there is some
empirical data available. For such cases, the following
approach can also hold.

3.1 Fisher Information matrix

The Fisher Information matrix is defined in terms
of the log-likelihood function of a particular dataset
given some model parameters (or regression coeffi-
cients).

Consider that an existing ground-motion model is
defined by its (logarithmic) mean, and standard devi-
ation, both of which may be functions of a set of
np model parameters θ (as previously, this vector can
contain the fixed effects and variance components).
For a given dataset, we can consider the logarithmic
spectral ordinates to be defined as y ≡ lnSa(T ).
We then define the log-likelihood function for this
data, given the parameters θ as lnL(y|θ; x) as in
Eq. 6. In principle, if the dataset used for the model
development is also used for the evaluation of this
log-likelihood, then we should expect the computed
likelihood to be a global maximum.

The Fisher Information matrix is then a np × np

matrix that is defined in terms of this log-likelihood
function as:

I ij (θ) = −E

[
∂2 lnL(y|θ; x)

∂θi∂θj

]
(18)

Note that the expectation operator in practice really
just means that these mixed partial derivatives are
evaluated at the expected values of the model param-
eters. That is, we use the fitted model parameters
to determine the derivatives that feed into the Fisher
Information matrix. Therefore, this Fisher Informa-
tion matrix is equivalent to the Hessian matrix of
the log-likelihood function with respect to the np

model parameters. For some elaborate ground-motion
models, the analytical evaluation of these second
derivatives can be a cumbersome process. How-
ever, the derivatives can be relatively easily obtained
through the use of algorithmic or automatic differenti-
ation (Molkenthin et al. 2014, 2015).

3.2 Cramér-Rao bounds

With the Fisher Information matrix defined, one can
then apply a well-known approach to infer bounds
upon the covariances of the model parameters. The
Cramér-Rao bounds place constraints upon the vari-
ance (and covariance) of the model parameters using
the following relation.

cov(θ) ≥ I (θ)−1 (19)

That is, we can state that the covariances of the
model parameters must be equal to or greater than the
values implied by the inverse of the Fisher Informa-
tion matrix. This result makes intuitive sense when
we appreciate that the Fisher Information matrix is
describing the curvature of the log-likelihood surface
around the global maximum. The greater the curvature
for variations of a given parameter, the stronger the
constraint upon the optimal value of that parameter.

Importantly, we can also make use of the lower
bound of this covariance matrix as a reasonable prior.
That is, we can define the prior distribution of an
existing model according to Eq. 20, as a multi-variate
(of dimension np) normal distribution with the pub-

lished parameter values, θ̂ , as the mean and with the
covariance matrix coming from the Fisher Informa-
tion matrix (evaluated at these published parameter
values).

P(θ; x) ≈ Nnp

(
θ̂ , I (θ̂)−1

)
(20)

Note that this equation strictly applies when the mean
vector used to compute the information matrix is cast
as μ(θ) ≡ μ(x; θ)+Zb. That is, the curvature should
be evaluated around the conditional estimates of the
mean after correcting for the random effects. How-
ever, in most cases, while published articles present
figures showing the random effects, the actual numer-
ical values are not made available. In these cases, an
approach that can be adopted is to compute the total
residuals for the model and to then run a random
effects regression analysis on these residuals in order
to obtain the estimates of the random effects.

It is also important to note that this approach can be
used on all of the model parameters (even those that
have been constrained during the model development).
In cases where there is little or no empirical con-
straint upon the parameters then this will be reflected
by very small curvatures that are then translated into
large variances (and hence uninformative priors). The
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use of such weak priors for the subsequent regression
may cause numerical instabilities however and so care
should be taken when relaxing previously constrained
parameters. A more robust way to handle such cases is
to place an informative prior centred at the constrained
value of the parameter, but to allow for sampling away
from this value. The Cauchy distribution is useful in
such cases as the vast majority of samples will still be
draw near the previously constrained value, whilst still
allowing for the consideration of values some distance
from this past estimate.

3.3 Multivariate normal distribution

For the special case in which the observations may be
assumed jointly normally distributed (which is gen-
erally assumed within engineering seismology) the
expressions for the Fisher Information matrix can be
cast in terms of first-order partial derivatives rather
than through the use of the Hessian matrix.

Regard the n observations of logarithmic spec-
tral ordinates as being distributed according to an n

dimensional multivariate normal distribution:

y ∼ Nn [μ(θ),C(θ)] (21)

where μ(θ) ≡ μ(x; θ) is the vector of mean logarith-
mic predictions and C(θ) ≡ Cx;θ is the covariance
matrix for the data.

In this particular case, the Fisher Information
matrix has elements that are defined by:

I ij (θ) = ∂μ(θ)T

∂θi

C−1(θ)
∂μ(θ)

∂θj

+1

2
tr

[
C−1(θ)

∂C(θ)

∂θi

C−1(θ)
∂C(θ)

∂θj

]
(22)

where here the tr signifies the trace operator. So, under
this special case, one only requires the computation
of the Jacobian. In many cases, the analytical forms
of most of these partial derivatives will have already
been computed as they are often needed within nonlin-
ear regression analyses. For example, in the example
application of Section 2.2, the relevant partial deriva-
tives with respect to the mean, ∂μ(θ)/∂θi , are already
required by the lme4 package. The derivatives of the
covariance matrix can be more challenging to com-
pute, but this depends upon the model formulation.
Either way, if automatic differentiation is adopted then
these terms are readily obtainable.

4 Discussion

The Bayesian updating approach advocated in the
previous sections has been shown to provide results
that are broadly consistent with those from more
traditional regression analyses, whilst also providing
additional information such as error estimates in the
variance components. The method is predicated upon
the assumption that we now possess a sufficient under-
standing of how ground-motions scale to enable a
robust functional form to be proposed. Given this
functional form, the model parameters can then be
continuously updated as new events provide record-
ings.

The example application presented in Section 2.2,
while making use of real data was hypothetical and
started with an initial regression based upon a dataset
representative of the state-of-the-art from more than
two decades ago. Many of the differences between the
Bayesian updating and traditional results presented in
that example can be explained by the lack of con-
straint provided by the relatively small initial data set.
The results should improve significantly when start-
ing with existing models that already have far stronger
empirical constraint.

The example application presented in Section 2.2
provides a proof of concept demonstration of how
Bayesian updating can be used to constrain parameters
of ground-motion models as well as to obtain site-
specific predictions for multiple sites simultaneously.
This is currently also possible using traditional regres-
sion techniques, but these require the entire database
to be reanalysed for each new event that is inte-
grated into the database. This feature of the Bayesian
updating approach has implications for partially non-
ergodic hazard analysis, as discussed in the following
section.

4.1 Implications for partially non-ergodic hazard
analysis

Figure 7 shows that as the numbers of recordings at
particular stations increase, the Bayesian approach is
able to appropriately refine the estimates of the ran-
dom effects. This means that the Bayesian updating
approach can be used to help determine site-specific
adjustments that should be made to ground-motion
models. Wang and Takada (2009) demonstrated how
multiple model coefficients could be adjusted to target
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a specific site within a Bayesian updating frame-
work, and their method could be considered as being
equivalent to that presented here. However, while the
approach of Wang and Takada (2009) focusses upon
making adjustments to ground-motion models in order
to target a single specific site, their approach focussed
upon updating the fixed effects coefficients of the
model and therefore creates an entirely new model
that is appropriate for a given location. In contrast,
the approach advocated here focusses upon station-
specific random effects and this means that when the
new site-specific data is added to the model, both
the fixed effects and random effects benefit from this
data. In the example application provided here, the
random effect for each station was essentially applied
to the linear site amplification term only. However,
as demonstrated by Stafford (2014), site-specific ran-
dom effects could be included into other parameters
of the model as well. For example, Fig. 3 suggests that
the parameters a10 and b had a negative correlation.
If the extent of this correlation is not the same for all
sites (and we should not expect that it would be), then
this sort of relationship may be represented by includ-
ing coupled station-specific random effects on both
a10 and b. This naturally adds a significant amount of
complexity to the variance structure for the model, but
the Bayesian approach, particularly as implemented
using the Stan language (Stan Development Team
2018), is readily able to model such complexity.

The key difference between the present approach
and that of Wang and Takada (2009) is therefore that
the approach herein simultaneously refines estimates
of station effects for all stations for which recordings
have been made. Importantly, the approach is also able
to provide estimates of the uncertainties associated
with these station effects which is important for con-
straining epistemic uncertainty within hazard appli-
cations. In cases where a future station of interest is
located away from recording stations, an estimate of the
random effect and associated uncertainty can be
obtained via kriging, or similar spatial techniques such as
Gaussian process regression (Landwehr et al. 2016).

Station effects have been the focus of the present
discussion as the example application targeted these
effects. The Bayesian approach currently provides
estimates of the station random effects and their errors
at locations for which recordings have been made.
In practical cases where a partially non-ergodic haz-
ard analysis is conducted (e.g. Rodriguez-Marek et al.

2014), a full site response analysis will be performed
rather than simply using a site correction factor. How-
ever, there are still applications where the station
random effects (and their associated uncertainties) can
be useful. For spatial applications, such as the gen-
eration of seismic hazard maps, or simulations of
ground-motion fields for portfolio loss estimation, it
is not usually practically realistic to conduct detailed
site response analyses across the entire spatial region -
although at least one example of this exists (Bommer
et al. 2017). In these cases, an important improve-
ment to the ground-motion modelling approach, that
relaxes the ergodic assumption to some extent, is to
obtain a spatial map of station random effects and
their uncertainties (using methods like kriging, as
previously mentioned). The hazard maps, or ground-
motion fields, can then take these spatial variations
into account without having to include the full station-
to-station variability within the aleatory variability of
the ground-motion model.

The error estimates for the station random effects
can also be used to constrain the level of epistemic
uncertainty that is modelled when more detailed site-
specific site response analyses are performed. This is
particularly useful as defining the appropriate levels of
epistemic uncertainty for these site response calcula-
tions is a non-trivial exercise (Rodriguez-Marek et al.
2014).

In addition to event and station effects that have
been considered in the present article, the Bayesian
updating approach can also be used to progressively
make path-specific adjustments to models. This could
be done using a regional classification of travel paths,
such as considered by Stafford (2014), but is more ele-
gantly handled through a spatially-continuous repre-
sentation of model parameters as shown by Landwehr
et al. (2016).

4.2 Expansion for Big Data and continuous updating

It is inevitable that ground-motion databases will
increase in size significantly over the coming years
and decades. This increase in numbers of records, cou-
pled with increasingly complex approaches to mod-
elling variance structures (e.g. Stafford 2014, 2015a)
dictate that the computational demands associated
with model development will become non-trivial. The
Bayesian updating approach outlined herein elimi-
nates a lot of this demand and scales very well with
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both increases in numbers of records and complexity
of variance structures.

The method also affords one the opportunity to
have new ground-motion data integrated into models
as soon as the meta-data for the event is available.
Note that this data could also be integrated in near real
time if one also accounts for the uncertainties associ-
ated with initial magnitude and finite-fault attributes,
as the Bayesian regression framework is well-suited
to accommodate uncertainties in the predictor vari-
ables (Moss and Der Kiureghian 2006; Moss 2011;
Stafford 2014; Kuehn and Abrahamson 2017).

4.3 Relaxation of constrained parameters

In Section 2.2, a simplification of the Abrahamson
et al. (2014) ground-motion model was employed, and
it was noted that various parameters of this model have
been externally constrained by numerical simulations.
The framework presented thus far can also be adapted
to allow these constant parameters to gradually be cal-
ibrated by the empirical data. This can be done either
by adding a new parameter to the vector θ , and adding
corresponding entries into P(θ; x), or by initially
representing these ‘constants’ as random variables,
but imposing very strong prior distributions on these.
The framework presented here therefore provides a
mechanism for smoothly transferring constraint from
theoretical or numerical bases to empirical bases as
appropriate.

5 Conclusions

This article presents a new approach to the devel-
opment of ground-motion models that can scale to
meet the ‘Big Data’ needs of the future. Rather than
re-calibrating an entire ground-motion model as new
data becomes available, the existing models are rep-
resented in their traditional forms in addition to the
covariance matrix of the model parameters, and error
distributions of any random effects parameters. As
new data becomes available this can be continuously
integrated by using Bayesian updating such that only
the new records from the most recent earthquake
are considered at a given time. The complete his-
tory of all previous events is reflected through the

joint probability distribution of all model parameters,
variance components, and random effects. For the
example considered in this study, this approach has
proven to have significant computational advantages
even with the size of existing datasets.

While Bayesian updating is a well-established
method in other fields, it has been difficult to advo-
cate its usage for empirical ground-motion modelling
until now because the ground-motion databases have
not been sufficiently rich and functional forms used
for these models were still evolving. There is likely
to be more such evolution in the future, but it is also
clear that functional forms are stabilising and that the
key attributes of these functional expressions enable
successful predictions of motions for a very broad
range of scenarios. The challenges that will arise with
time related to the treatment of large amounts of data
can be well met through the adoption of Bayesian
approaches.

As functional forms have become more complex,
the challenges in calibrating the parameters of these
models have also increased. This has occurred to the
extent that multi-stage regression procedures must be
adopted and this has meant that information about
the parametric uncertainty has been lost. The adop-
tion of Bayesian approaches enables the full distribu-
tion of the model parameters to be represented and
ensures that analysts can continue to evaluate the over-
all robustness of their models, as well as the relative
robustness of individual functional terms.
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