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Abstract

All superconductors in a magnetic field are characterized by three critical magnetic fields: lower critical H,,, upper critical
H,, and thermodynamic critical field H,.. Only two sets of inequalities H., > H. > H_,or H,; > H. > H , are possible in a
single-component superconductor. Here, we report our study of the critical fields in multicomponent superconductors with
two superconducting components in the framework of the Ginzburg-Landau functional. We derive the relationship between
the phases of the components of the superconducting complex order parameter from the charge conservation law in explicit
form and insert it into the Ginzburg-Landau functional. Using the modified Ginzburg-Landau equation, we acquire the
single vortex state including the analytical expression for asymptotics. Also, we obtain the analytical form for the state in
the upper critical field. We find that in some cases an unusual sequence of critical fields H,,, H., > H_ can be realized in

multicomponent superconductors.

Keywords Multiband superconductors - Magnetic critical field

1 Introduction

The lower critical magnetic field H,, together with the upper
critical field H , and the thermodynamic critical field H, are
the fundamental characteristics of superconductors, which
describe the thermodynamics of a superconductor in an
external magnetic field [1-4]. For one-component super-
conductors only two cases are possible: H,; > H. > H_, or
H., < H.< H_,. The superconductors, in which the first
inequality is satisfied, are called superconductors of the first
kind. Correspondingly, if the second inequality is satisfied,
superconductors are of the second kind. Recently, it was found
that many superconductors such as Fe-based superconductors
[5-8], MgB, [9-13], Sr,RuO, [14, 15], heavy fermion super-
conductors [16, 17], superconductivity at the interface between
LaAlO; and SrTiOj; [18] can not be described by a single-com-
ponent order parameter. In this connection, a natural question
arises, whether these two sequences of the inequalities exhaust
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all the possibilities in the case of multicomponent supercon-
ductors. This article aims to fill this gap.

Here, we show that a different sequence of critical mag-
netic fields can also be realized in a multicomponent super-
conductor. We use the conditional variation of the Ginzburg-
Landau functional, i.e., the variation under the constraint
proposed in [19]. In the presence of topological defects and
some other cases, e.g., calculation of H,,, the conditions
6F/6¢; = 0 cannot be used for the derivation of a closed
system of equations. Therefore the continuity equation
div j =0, which follows from the gradient in-variance of
the Ginzburg-Landau functional, is used as an independent
equation [20]. Resolving the continuity equation one gets
a relation between {d)i} [20]. As a result only N — 1 phase
differences { 44, = ¢, — ¢, } can be considered as independent
variables with one restriction mentioned above.

In this article, we imply the proposed scheme for a two-
component superconductor. It allows to set up a closed sys-
tem of equations for a state with a single vortex. For this
state, we find analytically the asymptomatic behavior of the
solutions at short and long distances from the vortex core
and numerically at intermediate distances. We also obtain
with the perturbation theory the equations for H,, for the
two-component superconductor and compare the critical
magnetic fields.
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2 The Functional
We start with a Ginzburg-Landau (GL) functional of a two-

component superconductor in the form, in which the kinetic
energy term is positively defined and diagonalized:

7= /d{ % ol )
—(U\il)ﬁ(Uli’)+(U,@2)*D1<U,liﬂ)} (1)
+$/d3r(r0tA—H0)2.

Here {D, D, } are diagonal matrices:

b= ln<%) 0 D, = (bl O) )

Lo\ I 0b

0 ln( = ) 2

and {U U, } are the Euler rotation matrices:
_ [ cosf —sind U = (o8 0, —sind, 3
T \sinf cos® )7 T!7 \sinf, cosé, @)

with free parameters in the GL functional {6, 6, } and wave
functions

R p N P2
() # ()

A multi-component superconductor may possess a phase
shift between the components of the order parameter, which
is different from {0, #} already in a zero external magnetic
field. In a such superconductor, the time-reversal symmetry is
broken. Superconductors of this kind will be referred to in the
text as superconductors with broken time-reversal symmetry
(BTRS) or BTRS superconductors (for classification of classes
of superconductors see [17, 21]). Both of the cases, with time-
reversal symmetry and with broken time-reversal symmetry
can be described in the framework of the Ginzburg-Landau
functional. For considering below a two-component super-
conductor it means that two modulus of the order parameters,
phase difference, and the vector potential A can be considered
as independent variables. Variation of the Ginzburg-Landau
functional in these variables leads to a set of four differential
equations. The solution of these equations gives the state of the
superconductor in an external magnetic field.
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Since the system with a single vortex is a rotational
invariant, it is convenient to use the cylindrical system of
coordinates (r = (pcos ¢, psin¢,z)). Then, we take the
components of the wave function ¥; = ¥,(p, ¢) in the form:

= |¥,le'%, =¢+¢, )

where ¢ is the polar angle and ¢~>l- = J)i(p) are functions
depending on p. From Eq. (5) one gets

oY, 9
ow =ed T g 99, _ 2,
Pl op op hc ?

1 2e i ©
+ e¢l|lPl| { ; - %Aqﬁ}e’)(i’
where
2e 0P
A= epAp + e¢A¢’ %Ap = a_p7 (7)

= (cos ¢, sin ), ey, = (—sin ¢, cos ).

The current density in the single vortex state is

WP o - @
J—ehzl I[ @=®) ¢<1—3A¢>]. ®)

dp p hc
From the symmetry considerations, the radial part of the
current vanishes. Hence, from Eq. (8), we get

P, — ) Pm@—¢>
dp dp

1
—|¥, [ — |% =0. ©)
1

To resolve Eq. (9), we introduce a new function u(p):

u(p) = 1 — . (10)
with u(p) being a solution of
ou ( m, |II]1|2> J =~
— =1+ (&1 — D). 11
o m 1,12 ) 9p ! (1)

Here, we would like to note that the equations obtained
by variations of the functional over ¢; cannot be used as
independent equations to determine ¢, anymore due to the
above constraint. Resoling Eq. (11), we get

o, — @)  op

01 =) _ ou. =2r-n.

ap  op op
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These equations are the key point of the solution to the The gauge is determined by the Maxwell equation for
problem under consideration. Now, we can rewrite the func- the vector potential A o
tional Eq. (1) in the form:

s w2 [N o (0@ =@\ (1 2, )
7= /d {4m1 < ap ) % ap T\ TR
a|\1'2|>2 ) <a<¢2 >> <1 2e )2
¥ S84
( op Il op " p hc? (13)
WP\ 5 (o (PPN (1P Y e
+ <U1<|\P2|282iq§2 D\ U, |\_I;2|262iq§2 U |lP2|eid;2 D(U |\P2|eid§2

1
+ 3 / d’r(rot(e4A ) — Hy)?

h2
+ —_—
4m,

0A 2
If Egs. (9, 10 and 11) are satisfied, minimization of —1i<p—¢> + 8ze <L|‘I‘1|2 + L|‘I’2|2>A¢ + izA¢
functional F produces for functions {I‘I‘II, I‘I’zl,A¢,y} ¢ " " p

four equations. Minimizing the functional Eq. (13), we — 47reh< P, 12+ _|.{;2|2> l
find the equations for {|¥,|, |'¥,|}: ¢ p (18)
n | 1o( o |, |+ ( 2 ou 2+ 1 2eA ¥, |
2my | “pap\"ap )" ) p he? :
+ 2|9, 13(b, cos® 8, + b, sin® §,) — sin(20,)|P, | ¥, 2(b, — b,) cos(2u) (14)

T, T, T,
- 2|¥,| cos’ 6 In +sin’ O In + sin(20)|¥Y, | In cospu =0
T T TC2

and
Rl 1a/( 0 om\ (1 2, \
— === )P+ [T - =) +[--=A y
2’"2[ pap<pap>| 2 (( . <0p> ) " hee) )
+ 2|, 3 (b, sin® 0, + b, cos 0,) — sin(20,)|¥, [2|'¥, (b, — b,) cos(2u) (15)
2|, | 01 Lo +cos? 01 Lo 26)|¥,| In Lo 0,
) sin? 0 In T cos” f1n T + sin(20)|¥, | TcZ cos u =
where and the boundary conditions. At p — oo vector potential A
o <1 . my |, 2 >—1 6 tends to
m ¥l A, hel (19)
¢ 2e p

Further, variation of 7 with respect to y gives

n? 10 ou h? 10 0
—(———<p|w1|2r2—>>+— — = (pI¥, A - 1225
2m, pop dp 2m, pop dp a7

T,
+5in(20))|¥, |*|¥,|%(b, — b,) sin(2u) — sin(20)|¥, ||‘I‘2|1n<T >smy 0.
2
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As a result, we obtain the following quantization rule
for one flux:

/ der(p) = ”ThC = @, (20)

where @ is the flux quantum. The effective penetration
depth is

_ 8rer [ 1 1

=2 (—I‘P1|2+—I‘P2|2> : @1)
c ml m2 p—00

a _ h?

1 4m,

LAY of afn\® (1 2e
¥ < — -—-=A
< dp ¥l dp + p hc ¢

Using Eq. (20), we can obtain the next expression for the
first magnetic critical field H,.,.

H, H?
L, = d2r¥+/d2r<fl(l)— ). 22)

iy T

Here fl(o’l) are the density of the condensate energy in the
ground state and in the state with a single vortex:

and

(23)
n | [ o1¥1\’ ) 2(om\ | (1 ?
+ E l<0—p> + |\P2| <(1 - <$) + <; — —A¢>

1 . .
+ 500, |*(b, — sin 8,(b, — by)) + |¥,|*(b; — cos 8,(b, — b,)) — sin(20))|¥, |*|¥,|*(b, — b,) cos(2)]

T T T T
— |‘P1|2<00320]n<?61> + Sin291n<?62>> - I‘P2|z<sin291n<?d> +Coszeln<?“2>>

T
+sin(260)| ¥, ||¥, | In (T“ ) cos p
2

1
—sinO) ¥ PP (b, — by) cos2(@)) — d )]

1 .
0 _ §[|‘P(10)|4(b1 —sin 0,(b; — by)) + [P |*(b, — cos® 8, (b, — by))

T T T, T 24)
0) 2 cl 22 c2 (0) 22 cl 2 c2
- [l‘I’1 |2<cos 01n<—T > + sin 91n<—T >> + |, |Z<sm GIH<T> + cos 01n<7>>]

1 |qj1,2 ()|

T.
+sin(20)[ ¥V [ ¥| In (T—‘> cos(p” — ¢,
c2
Fig.~ 1 Schemzjtic p-dependence A ~
of A,(p) and &(1,2)(p) Ay (p)
p
a) >
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where the functions ‘I‘(lo; are the values of the correspondent
functions in the ground state.
In the dimensionless variables, we obtain (see Appendix A):

The results of the numerical calculations of the first and

- 1 [ .
HCI = = / dtoton
2 Jo

4rety? oo dl‘i'll
+ | — dtt,
< m1C2 | |mf> / O 0 ato

2

case a separate point can exist {p = p,} (see Fig. 2). Below
this point in the single vortex solution, |'¥; ,| depend on p,
but ¢, — ¢, = {0, z}. As aresult Egs. (13, 14, 16 and 18)
shrink to three equations for {|'¥, [, |'¥,],A,} as in the case
with preserved time-reversal symmetry.

iy 2f 2 OH P PRV
+ ¥, °l T 7N + t_z(l — Aty)
0 0

W, |2 ;i 2
m1| 2linf a|lP2| = 2 2 ou 1 ~
pe(a-m () +1a-4s
+ — T |mf < T +| I ) a1, + t2( 0)
4”” N b ¥, |2 " Pt -1 o + 2 9,
(T 1l )y [ g (%1 =D cos” 0y + 52 sin 6 05

¥, |mf ) b,
+ (P,1* -1 sin? 0, + 2 cos? 0,
P15, b,

4re? y
—( pvalld |,nf><b %,12) <

by \ . e B 202
= 5= ) sin20p) digto {|W,1*|W,|? cos(2u) — cos(2u;,) }
1 0

8ze?y oo T, T,
— (Wl |mf>/ dt0t0{<cos 61n< T > + sin 91n< T >>(|‘I‘ 2-1)

k21

+ ’”f< 291n<T >+c0s 91n<T >>(|‘P 2-1
%17, T r))

W15,
— sin(26)—2

TC,> -
In (=L ) (¥, 19, cos(u) — cosuy, >)}
|Tl|irgf <Tc2 : ? /

second critical magnetic fields H,, H ,, and also the ther-
modynamic critical field I:IC are given in Table 1. Note, that
dependence of H, from 6 is weak. An increase of 6 leads to
the evolution of the superconductivity so that H., and H,
cross with the formation of a nontrivial transition region.
The ground state without vortices can be of two types.
The first type is with preserved time-reversal symmetry
sin(¢; — ¢,) = 0. The second type is the state with bro-
ken time-reversal symmetry, which has the solution with

sin(¢; — ¢,) # 0. The first case is trivial. In the second
Fig. 2 Two poss~ible p depend- A ~
encies of ¢; — ¢,. More details le - ¢2

see in the text

Solving the set of equations, one gets the asymptotics:

H(0) hel
A¢—Tpatp<</1 andA¢—2—e;atp>>/1 (26)

where H(0) is the value of the magnetic field at the center
of the vortex core. The functions {|¥ ,|} are proportional
to p at the distances smaller than the correlation length and
approaches with an exponential decay to a constant at large
p. Qualitative p-dependence of A¢,¢;1 — ¢, and [V, ,|are pre-
sented in Fig. la and b.

Yo

a)
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Fig.3 Normalized magnetic field H/H,, phase ¢, and wave functions |¥,|/|¥,|co. as function of p/p,. The parameters are y*> =

ﬂ=¢~’1—¢~72

Using Eq. (17) one can estimate the value of parameter
Po:

m, o 0
{ —= = (P11 1°T%) + = (p¥, "0 - T)?) } =0
m, op P p=(po)+
@7
The value of the slope (a—"> is a free parameter. Its
9/ p=(p),

value is fixed by the boundary conditions at infinity. As a
result, we get a weak singularity in the functions
{I¥,[, |¥,|} since the functions themselves and their first
derivatives continue at this point.

At large subspace of the intrinsic parameters, the value
of p, is located in the nonphysical region (p < 0). The
intrinsic parameters, used by us for numerical calcula-
tions belong to such subspace. The simplest situation for
calculations arises for & = 0. In such case the solution of
Eq. (17) is

T

u(p) = £ (28)

For parameters:
m, =2my, by =2b,, b, =15-107G2,

(29)
T.,/T=12, T,/T=1.1

and

2
57773 107 e,
4m,

0, =0.5,0 = {0,0.1,0.3}

the dependencies |‘i‘1,2 ,B(p) and (q';l - qu)p for & = 0 and
0 = 0.3 are given in Fig. 2a. For the numerical calculations,
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2

2m,’

we have used dimensionless equations. The details of the
numerical calculations are presented in Appendices A-G.

From Egs. (13-15), we obtain the next values of
{I1¥, 1, |'Y5l, qSl - (132} at p — ooin the state with broken time-
reversal symmetry:

sin(20) In(T,., /T .,)

cos@1 = P2l = 31 1, [sin20, by — by

(30)

and

|¥, |2(b; cos® 8, + b, sin” 0;) + % sin(260,)| ¥, |2(b; — by)

T. T.
=(cos?0In | -<L ) +sin2@1n | =<2
T T

€29

|¥,|?(by cos? 0, + by sin 0;) + % sin(20))|¥, |>(b, — by)

T, T
=(cos?0In( =2 ) +sin?0In( =
T T

(32)

The considered state corresponds to the minima of the
free energy functional provided the following inequality is
satisfied:

sin®(20) In*(T,, /T,,)
45in*(20,)(b; — by)?

< |\P1|2|‘P2|2‘

Obviously, for this case, Egs. (30)-(32) give a single solu-
tion and, therefore, they describe the global minimum.

In this case, the vector potential (A o~ (hc)/(2ep)) decays
exponentially at infinity as « exp(—p/4)/ \/_ , Where the
parameter A is given by the Eq. (21). The three quantity
{ou, 8|, |, 6|¥,|} of the difference of the correspondent
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values from that at p — oo decay exponentially at large dis-
tances as well:

ou 1 1
81, | = ¢, exp(=«" p)—f| + C, exp(—x'” p)—f,
p

5%, Ve Ve

1
+ Cyexp(—x\” p)—f;,
(33)

N
@)

where the C; withi = 1,2, 3 are some coefficients, while K,
and f; are eigenvalues and eigenvectors of the next system:

| om
D| 5|¥,] | =0. (34)
5|, |

Here D is a Hermitian operator with the following
elements:

2
det ol (cos 91n< >+sm 01n<T)>

- ln ( ) sin(20)

lin (%) $in(20)
h2 2
o/ (sm 01n (

3 Critical FieldH,

At the critical point H_, the order parameters can be found
with the following Ansatz:

1\ _ G
<|‘P2|> _lP(Cz) (36)

where W is the solution of the equation [1]:

—0*¥ = ¥, A = (0, Hx,0), H = (0,0, H) 37)

and C, and G, are constants. The solution of Eq. (37) is

2ieH

Y =exp {—%(x —x0)2 +

with n = 2eH /hc and x,, being a free parameter.
For 5, we obtain the following quadratic equation

=0. (39)

L) +costomn (%))

hey = 201 L 4 gin?omn 22 ) 4 29 Lot
—Ho=m cos? n—— sin’ n—- m,  sin’ n—

Solving these equations, we get H

+ GIT
cos? nT

) 2 (40)
+ || m cos291n£+sin291n& — m,| sin® HlnT + cos? HlnT— +m,m, In® Lo sin?(26)
! T T 2 T T 2 T,
. L PPIVHTE RS- T)? T,
Dyy =~k 2, + s —sin(20)|¥ ||'¥;| In <Tc2 ) cos y + 251n(201)|‘1’1| |‘P2| (by — by) cos(2p)
= 5 h? 5 T, T, Ty
Dy =— 2— +6]%,|2(b; cos 0, + by sin® 0;) — sin(20,)(b; — by)|¥,|* cos(2u) — 2(cos? 6 1n T +5sin? @ 1n 7))
Dy = —K2h—2 + 6], |2 (b, cos? 6, + b sin® 8,) — sin(20,)(b; — by)|¥, |* cos(2u) — 2(sin? 6 1n Ta) §cos2om (12
33 1 2m 2 2 1 1 1 1= %2 1 T T ’ (35)
Dyp = Dy, = —sin(20)|%, | sin uIn < Lo ) +25in(20,)(b; — by)|¥,||¥,|? sin(2u)
L2
Dy3 = Dy, = —sin(20)[ ¥, | sin g In G ) +25in(20,)(b; — by)|P, 2 |P, | sin(2p)
c2
Dy = D3y = —25in(20,)|¥, ||, |(b; — by) cos(2u) + sin(20) In <;1 > cos p
c2
By the correct boundary conditions, the solution at large dis- The numerical results are
tances tends to the that given by Eq. (33). The correspondent n
free parameters for Eqs. (14, 15 and 18) are the slopesatp =0  H,, = 2—C2H62 41
ey

of |¥,|,|¥,|and A o For fiat p = 0 the initial condition is x(0)
if p, does not exists, and Eq. (27) otherwise. At this point, we
note that at large distance |\, |, |'¥, | and u decay with the same
exponent due to the coupling between the components.

and
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0=0:H,=2In1.2=036464 42)
0 =03 : H,=03542472. (43)

In both cases, we obtain that the critical fields H,, and
H,, are larger than the thermodynamic H,. Hence, the tran-
sition to the vortex state takes place at the external field
equal H_,. However, the transition to the homogeneous case
happens at H = H_ as a transition of the first order accompa-
nied by a jump in the magnetic moment value. In the region
H., > H > H, a cascade of transitions with change of the

structure of the vortex state is possible [22].

4 Conclusions

We considered a single vortex state and the first critical
magnetic field H,, in a multicomponent superconductor
with N components in the framework of the Ginzburg-
Landau functional. It has been shown that the problem
can be reduced to solving a system of 2N — 1 ordinary
differential equations if in the ground state, the phase
shift between the component of the complex order
parameter is 0 or z at zero external magnetic field. Oth-
erwise, it consists of 2N equations. At p — oo the phase
difference between the components of the order param-
eter y, = ¢, — ¢, does not tend to 0, 7. And the y can
reach the values 0, z only at finite p = p,; and for p < p,
the solution y = 0, z is realized (see Fig. 2).

In a single-component superconductor in a magnetic
field, the state is determined by the Ginzburg-Landau
parameter x> = H,/H,, . (The introduced by Ginzburg
and Landau in the original work is k;; = K/\/E). In the
approximation of the Ginzburg-Landau functional, k is
temperature independent. For ¥ = 1 all three critical fields
H., H, and H,, coincide. Multi-component supercon-
ductors may show much more broad spectrum of states in
an external magnetic field. Magnetic fields H,, and H ,
are quite easy to calculate. However, in order to identify
the state in an external magnetic field, we need to find
also H,,. As aresult, in addition to the unusual sequence
of the critical fields, the possibility of overscreening
can be realized. In this case, it becomes possible for the
jump-like transition between different solutions of the
Abrikosov lattices. The calculation of the critical field H_,
is again given by the solution of the set of Eqgs. (69-74)
which explicitly take into account the relation between
the phases ¢, and ¢,, which is imposed by the equation

@ Springer

divj = 0. Instead of one singular point ¥ = 1 existing in
single-component superconductors, in a multicomponent
superconductor in any case four parameters (0, 0,,(b, — b,)
n(T,,/T,,)) form basis for criterion set of singular “sur-
faces.” Investigation of physical states with parameters
close to this set present special large interest and can be
made inside presented method.

Appendix A: Dimensionless Form
of the Equations

For numerical calculations it is convenient to bring the equa-
tions to a dimensionless form. For these purposes, we use
the following substitutions:

. K2 -
=yt, withy? = —, |¥,| = [P, ||¥ ...,
pP=7l 14 2m, [y | = [¥,]l llmf

he ~
Ay =—A.

|T2| = |li"2||‘P2| )
ey

inf>

Here |Vl and |¥,],,, are values of |¥,| and [¥,]| at
p — 0. They can be obtained from Egs. (30-32):

S

1 . 2 2 T .2 To
w2 = by sin® 8, + b, cos® 6,)[cos? @1n [ === ) +sin®f1n | ==
| llmf b {( | 8in” 0, + b, cos” 6,) [cos” O In sin“ 6 In

. .2 Tcl 2 Tr2
sin(20,)(b; — b,) [sin” 6 In T +cos” 61n T N

=

(44

¥, 15, = # {(b1 cos® 0, + b, sin® 6,) [sm2 01n (%) +cos” 0 1n (%’)]

192
- %sin(291)(b, - bz)[cosz 61n <%> +sin® 6 1n (%)] }

45

and

sin(26)In (7T, /T,
coS(pipf) = ( < 2) . (46)
k 21 i |Wo iy sin(20,)(D) — by)
Then, Egs. (14, 15) take the following form:
LIRS ST W SR A S DS SRch T
ty 0k ()té oty lé 0 1
+ 21, [7 (b cos” 0y + by sin” )P, P — ¥, (], |
sin(20))|'¥3 |7, (b1 = by) cos(2p) 47

5 T T
—2|‘P1|<c0s201n (—‘) +sin201n <—2>)
T T

o linf T.
20 |\P2|1n<TA>cosM=o

+ sin(26)
¥ iy )

and
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1%, 0¥ ’ A i
_my 1 | 2| n I 2| (F—1)2< > +l(1—AtO)2 |\P2|
fy Oty o1 m2 9o 15

+ 2|‘P2|mf(bl sin® 0, + b, cos” 0)|W,* — %, |¥, |” sin(20)) W, 2, (b, — b,) cos(2p) (48)
2|‘P|< o1 <T >+ 291 (T >>+ (29)| 1|"”f|lil|1 <T"‘> 0
- sin® 0 In cos” 61n sin n{— Jcosu=0.
? T T |T2|mf : TcZ
Here I' is:
29,2\ The coefficients {a;, f;,a,,c,} can be found from
r=(1+=22 ny inf (49) the boundary conditions at #, - oo see Eqs. (44-46).
my |‘P2|2|T2|mf Inserting the expansions Eqs. (52 and 53) into Egs. (47-

51) we obtain the next expression for the coefficients
The Ma.xwell equation in the dimensionless variable has {3, as, By, Bs, a3, as, €5, ¢4, T}, T =Ty + T %3
the following form:

2 A 8 | |m )2
104 +¥ L 8zt ne? y v, |mf P, + 2linf REELULT Y <A—l> le 0 (50)
1, 01, or mc ny (|‘P ling)? ) 1
The equation for u is

2
19 m Yolie 10 (- ou
- L0 (), preds - ——— =B, P(1 - T -

619
2|inf

i ¥
+sinQODI P PP by = by) sin2p) = sin(20)

T,
|‘P ||‘I’2|ln< )smy 0,
| 1linf TL‘2

The magnetic field H is equal to

he jp_0A A at Wil
H=—HH=—+>= o={1+—
2ey? oty 1y 0 < m, ﬁ2 |‘Pz|,,,f>
, o L ma Ml g
Appendix B: Approximation in the Range 1= '"_P—I‘P 2 a_ BVNAC
t, <1 TRy AT T

Correspondingly, we get the following set of equations

In the range #, < 1 the functions |‘i’1 |, |‘i‘2| are odd functions for the expansion coefficients from Eq. (47):

of t,,, while the function y is an even function of ¢,. They can

be expanded in this range as: 8ay — 2a,a; — 2, <cos 01n <T ) +sin261n <Tc2 >>
1P| = ayty — a3ty + asty + .|V, | = Bty — Baty + Bsty + ... | 2|mf T, ! !
(52) + B s1r1(20)| il In (T_;> coscy =0
A=aty—asty +asty + ..t = ¢y — Cofs + ¢y + ... (53) (54)
and
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= 24as + 44,315 + 230y + aya3) + agay + 2|9, |5 (b cos” 0 + by sin 0o

_ T, T,
+5in(20))a; 71 |5, (b = by)(1 = 2 cos?(co)) + 2ay <cos 61n < - > +sin*@1n ( T2 )) (55
| 2|mf Tcl .
+ sin(26) In { = )(=p5 cos(cy) + B¢, sin(cy)) =0,
|lII |mf Tc2

and from Eq. (48):

—-24 [0’1 a3F262 - otfl"ol"lc2 + afl"éc4]

m, 1ol
T, T, Ve il ——2(8,8;(1 =T)’c, + (1 =TI, +c,f71-T)H)
1 (3ﬁ3 —2p,a)) — 2B, <cos 91n< T > + sin 01n< T >> m ¥, |mf P15 0)C2 OL1Bcy + b 0
¥ | T +5in(20,)|¥, |2 > f2(b, — by) sin(2c, )+sin(29)|‘P2|mf In (T"‘)
+ a, sin(26) I‘Pllmf In <T”‘ ) cos(cy) = 0 2linfMIPHO1 T 02 o) 0 \T,
2linf 2 X (a3, + a; f3) sin(cy) + ¢, cos(cy)a; f;) =0
(56) 1)
and
_[ =245 +4p,c5(1 = L) + 2(Bya3 + f3a) + pra;] + 2|, [} (b, sin® 6, + b, cos” 0,)p;
T, T,
+ sm(291)ﬂ1a [P, |mf(b1 by)(1 - 2 cos? co) + 205 <cos 6’1n< T ) + sin 91n( T )) (57)

| 1 |mf T, 1
+ sin(26) In <—C
|\P2|mf TC2

>(a1c2 sin(cy) — a3 cos(cy)) =0

Further, the Maxwell equation gives the following set
of equations:

8ze? y
8a3 m, |1P1 |mf<

2

mll 2|mf )

+— By |=0 (58)
my |3

inf
and
8re
—24a5 + —— |‘P1 |mf
a a2+m1| 2|Wﬁ2 + 2| oy +m1| 2|m[ﬂﬂ =0 (59)
1 — 193+ — 1P3 =0
bomy 2 my ¥ 7,

And the equation for u yields:

8 a2[2c, + 8L i l’”fﬁ 2(1 =T,
1 2 1 0/ 2
2| Uinf (60)
—sn(20)| Faluy n<&>a B, sin(c,) = 0
|‘P |mf Tc2 o 0
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Appendix C. Numerical Solution at p = .

For parameter values, given by Eq (28), we obtain the next
values for quantities { |'¥, Imf, [P, |? it COS(Hjpp) -

-
1.209457 - 10*; 6 =0
'Y, |mf 1.205556 - 10*; 9 = 0.1 (62)
1.175276 - 10*; 6 = 0.3
L Gauss?
p
6.464209 - 10%; 6 =0
|‘P2 inf = { 6.487598 - 10%; 0 = 0.1 (63)
6.669154 - 10°; 6 = 0.3
L Gauss?
0; 6=0
cos(pyp) =4 —0.0774303; 6 = 0.1 (64)

—0.2198284; 6 = 0.3
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Table 1 Resulting values of the =~ ~ = H
expansion at t, < 1 for ay, ), a, %1 h i ‘o H(0) He H. <2
gn?dc();nd gle C“(ti‘j;l magnetic 6=0 0.502624 0.381376 0.178348 +r/2 0.356697 0.381862 0.31753  0.36464
108 Het T ANC T 0 =0.3 0.500653 0.390095 0.179133 z/2+0.321145 0.358285 0.383238 0.318328 0.354247
0=0.6 0.491193 0.406449 0.179380 x/2+0.528922 0.359888 0.385749 0.317728 0.325411
0=0.9 0.468440 0.416228 0.178354 x/2+0.560478 0.356357 0.386459 0.311181 0.284332
Further, for the numerical calculations, we will use ay = 0.25a,a, + 0.04558a, (69)
8re?y?
=3.573832-107° -2
" (Gauss) (65 g, =0.258,a, +0.0119138, (70)
az = 0.05403(a} + 1.06894457) (71

Appendix D. Numerical Solution for@ = 0

In the range of parameter ¢, > 1, we have the following
asymptotic behavior of A and H:

- 2
Al Rl 34 157
o\l 8, 1287

(66)
and
H~— R ]_i+i e—to/j
RV 81y 128%

with

. 8me?y? m

-2 _ 2 2 M
A= c2m, il + 1% infm, )

For 6 = 0, we get 1=2 = 0.894279. The asymptotics for
|‘I~’1 | and |‘I72| have the form:

- S
P, =1- %exp(—zcﬂ&(l I >

1 8K11o

67
—&exp(—rct)<l—#> 0
\/% 20 8Kyt
F Sa1 1
Y,|=1-— —kt)| 1 —
TR
68
=52 i (11— o
\/% pl=Kalg 8Kty

with S,, /S, = 3.62365, S,,/S,, = —0.258166. Here quanti-
ties {R, S, S}, } are some constants, which can be found by
solving the full set of the differential equations. In the range
ty < 1, we obtain from Eqgs. (58-61).

as = 0.01801{a, (a7 + 1.0689457) + 2(a, a5 + 1.068944, B3)}
(72)
1
24
{2(aya3 + @jas) + aya? + 044623507 — 0.0815917a; f7 + 0.364643a3 }
(73)

a5 =

1
ﬂS—ﬂ

{2(B1a3 + p3a)) + pral +0.17163987 — 0.07632928 a7 + 0.095314; }.
(74)

For small 6 the function u can be presented in the form
u=n/2+6withé x 6 <« 1. So, for & = 0.1 Eq. (A.8) in the
first order of perturbation theory over 0 can be presented in

the form:
L9 (12222 ) — 1076281 2 (418,120 12 22
10 01, o1, 10 01 o1,

+0.163774|%,12|P, |26 = 1.268103 - 1072, ||, |
(75
Corrections to quantities {|‘i’1 |, |‘i’2|} are of the second
order by 6. Hence, in the leading approximation, we can use
the values of function { |‘i’l B |‘i’2| } at the point § = 0.

Appendix E. Numerical Solution of the Eqs.
6=0

It is follows from Eq. (46) the point 8 = 0 is singular. It this
point 4 = +x /2. As the result the equation system from four
equations Egs. (47-50) reduces to the system of three equa-
tions. The solution of its has a special interest, since the solu-
tion is more simple in such case and can be easy spread on
a large region over . Solving Eqgs. (44-46) on estimates the
four parameters {al B, ay, Co}- Their values are presented in
the table.
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At 0 = 0, we have the next equation for { I‘i’I B |‘?2|,A}

P, ¥ L
(Lo 1|+ hal +1(1—Azo)2|lpl|+0.446235|l111|3
Iy ato 01‘5 1(2)

—0.0815917|%,||¥,|*> — 0.364643|¥,| =0
(76)

¥ als L
oL ' 2|+ I +3(1—Azo)2|\1/2|+0.343279|\Pz|3
ty 01‘0 até t(z)

—0.152658|%, ||, |* — 0.1906204|%,| = 0

7
~ ot B _
(194 L AN | 04320401, 2 + 1.068944]F, )
(3-1) 4 Lamo
tO [0
(78)

From the numerical solution, we find the coefficients R, S
and S,, in asymptotics presented by Eqs. (66-68):

R = —4.89675,5,, = 3.32825,S,, = 2.33331. 79)

Appendix F. Small 8 Values, Correction
to the Phase Difference

We obtain the next equation for the function 6(¢,) in the region
ty<< 1.

8 =38y — 8698 +5%r (80)
where

a; =5.15-1072, f; = 2.60634 - 1072,
I, = 0.392089,T"; = 1.58942 - 1072,

a3 = 4.992322 - 107%(a + 1.19355447)

5% =1.585135- 1073
a

=3.120603-10 8D
T2 + 1.07628887(1 — T2

8@ = —7.180505 - 107 +2.982978 - 1075,

Numerical calculations for 6 = 0.1 give

8,y = 0.077430178, 6, = 0.111235. (82)

For f,>1, we have the following asymptotic

8 R Gy + %6—0.5620824%. The phase difference in full range
0

of t, for & = 0.11is presented at Fig. 3.
Appendix G. Case@ = 0.3

Consider now the case of § = 0.3. Parameters{«;, fi;, a;, ¢, } are
free parameters and for quantities {a3, B3, a5, a5, fs5, a5, 5, ¢4 }
we obtain from Eqgs. (52-57) in the region #, < 1 the following
values:

a; = 0.25a,a, + 4.3680665 - 1072, — 4.744229 - 1072 §, cos(c,)
By = 0.258,a, + 1.286363 - 10724, — 3.974876 - 10 a, cos(cy)

167566807 < a  p )

T, = (1+0.837834 - a2/p>)\.T, = 5 o\ =~ =
1

a B

4.744229 - 1073a, B, sin(cy)
CHh =
27 a2+ 1.19355462(1 — T)?

as = ﬁ {4203 + 2(a a3 + 3a)) + @y} + 0.412317a — 8.417844 - 1072 BE(1 — 2 cos*(c)) + 0.349445a

+ 3.79538 - 1072(= 5 cos(co) + B ¢; sin(co))

Bs = ﬁ {400 =T )3 + 2(Bras + fyay) + frat + 017708147 — 7.052755 - 10723 f; (1 — 2 cos(cy))

+ 0.10290903; + 3.1799 - (a3 cos(cy) + @ ¢, sin(co)) }

1.664107 - 1072 {a; (a? + 1.193554p7) + 2(a; a3 + 1.1935545, §3)}
B 1
o2 2

@?T2 + 1.193554%(1 — I)?

as

Cq

{(a?ToI'} — aya3l3)e, — 1.193554(8, f3(1 — Tp)?

+(1 =TT, e, — 3.507435 - 1072 a? 2 sin(2c) + 1.58141 - 10 (a3 6, sin ¢ + a; s sin ¢

+ cpa;fy coscy)}
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At ty — oo the variable tends to y;,, — 7 /2 +0.2216385
and T, — 0.531596.

For & = 0.3, we obtain the following system of differential

equations for quantities { |‘i’] [, I‘i’z A, u}:

¥,| 0¥ 2 y
C( L O (e ok + (1 - Agy?
ty Oty ot 0ty i
1P|+ B3P, 1P + B, [P |
+Cp3 P, 1P, 2(1 = 2 cos? p)

(83)

_ la|\i'2|+32|li’1|
ty Ot ot

+ Cos |2, ||P, 12(1 = 2 cos? ) + Cyy [P, | cos u = 0

10 ( 0A - N 1 -

———\to=— )+ (FIIY P+ F|P1°)(A-= )|+ 5A=0

toato<°ato> (Fil¥, "+ Pl 2|)< ’o) @
(85)

L9 (i pre s
1 0 =2 zaﬂ
- Gy——| 1 |¥ 1-IN"—
0% 3, < ol ¥217( ) o (86)
_C13|@1|2|@2|2 sin(2u)
= Cyy - | ||¥,]sinp =0,

where
= (1+0881129|%,/|¥,>)! (87)
and

B,, = —0.349445, B|; = 0.433624, C,; =
—8.417844 - 1072, C,, = 3.700964 - 1072,

= —7.4172086 - 1072, C,, = 3.261003 - 1072,

F, =0.420024, F, = 0.476689, G, = 1.134908.

At 6 = 0.3 at large distances ¢, > 1, we get the following
asymptotic expression for the magnetic field:

H(ty) = -

2.82979 (1 _0.1320029

Vio
(88)

In both numerical investigated cases, the superconductor
turns out unusual state. The value of H_, and H_, are larger
that H...

; > exp (—0.94694911,)
0

The three correlation length can be estimated from the
system of equations Egs. (84-86):

0.875383 — k2 —0.1602211 3.61043 x 1072 \( £,
—0.141176  0.361331 — 2 3.18117x 102 j| /, | =0

6.791168 x 1072 6.79117 x 1072 0.301396 — k2 [\ f;
(89)

The solution of the Eqs. (89) is
k; = 0.50125,f; = (0.196846,0.541458, —1)

K, = 0.60715, f, = (0.183665,0.806245, 1) (90)
Ky = 0.95824, f, = (1,—0.248778,8.27139 x 10~2)

2
ou 1 ~ - o -
+ A =-D?* =) +=01-45)* ||¥,| + B:|¥,|> + B, |¥
) (( )(a[0> t(Z)( 0) >| 2| 23| 2| 21| 2| (84)

The numerical calculations of Egs. (83-85) yields the fol-
lowing asymptotic expression for { I‘i‘l B |‘i’1 [, u}:

[P 1

o 187027 (| _ 024938 _

1%, | = 1 e (1 - )fl exp(=0.5012541,)
u £ 102216385

— L8088y (1 — 02058 )fz exp(=0.60714491,) — 6313 (1 SRAECH >f3 exp(—0.9582381,)
i Vi f

Vo [
oD
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