Skip to main content
Log in

Features of Magnetization and Vortex System of Magnesium Diboride

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The Monte Carlo method was used to numerically calculate the magnetization curves of a model sample of magnesium diboride containing various concentrations of point defects. The dynamics of penetration, propagation, and trapping of Abrikosov vortices have been investigated. The calculations showed a qualitative agreement with the experimental data obtained on a multifilamentary polycrystalline commercial magnesium diboride sample. Similar simulations were performed for a cuprate high-temperature superconductor YBCO to compare the magnetic characteristics of two materials with identical pinning distributions. Differences in the irreversibility fields and total penetration fields have been shown, as well as a twofold difference in the areas of magnetization loops for these materials, which is important for practical applications. It has been shown that the observed features can be associated with the differences in vortex-vortex interactions and different pinning efficiencies resulting from the differences in the characteristic lengths. A proposal has been made that the greater rigidity of the vortex lattice in magnesium diboride than in YBCO should lead to a greater increase in magnetization and critical current when artificial defects are added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 k in magnesium diboride. Nature 410(6824), 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Zhang, Z., MacManus-Driscoll, J., Suo, H., Wang, Q.: Review of synthesis of high volumetric density, low gravimetric density MgB2 bulk for potential magnetic field applications. Superconductivity, 100015 (2022)

  3. DaSilva, L., Andreotti, L., Rodrigues, D.: Nb sheathed MgB2 superconducting tape with addition of VB2. In: Journal of Physics: Conference Series, vol. 1559, p. 012058 (2020). IOP Publishing

  4. Sharma, R.G.: Superconductivity: Basics and Applications to Magnets, vol. 214. Springer (2021)

    Google Scholar 

  5. Ranot, M., Oh, S., Chung, K., Kang, W.: MgB2 coated conductors directly grown on flexible metallic hastelloy tapes by hybrid physical-chemical vapor deposition. Curr. Appl. Phys. 13(8), 1808–1812 (2013)

    Article  ADS  Google Scholar 

  6. Herbirowo, S., Utomo, E.P., Tinambunan, D.F., Sinuhaji, P., Sofyan, N., Yuwono, A.H., Imaduddin, A.: Properties of low-cost MgB2 superconducting wires fabricated by high reduction cold rolling. Mater. Today Proc. (2023)

  7. Ozaki, T., Kikukawa, S., Tanaka, R., Yamamoto, A., Tsuruta, A., Tsuchiya, Y.: MgB2 thin films fabricated by pulsed laser deposition using Nd: YAG laser in an in situ two-step process. Condens. Matter 7(3), 48 (2022)

    Article  Google Scholar 

  8. Kambe, H., Kawayama, I., Kitamura, N., Ichinose, A., Iwanaka, T., Kusunoki, T., Doi, T.: Increase in the infield critical current density of MgB2 thin films by high-temperature post-annealing. Appl. Phys. Express 14(2), 025504 (2021)

    Article  ADS  Google Scholar 

  9. Lebed, A.G.: Layered superconductor in a magnetic field: Breakdown of the effective mass model. JETP Lett. 110, 173–177 (2019)

    Article  ADS  Google Scholar 

  10. Malik, G.: On the role of Fermi energy in determining properties of superconductors: a detailed comparative study of two elemental superconductors (Sn and Pb), a non-cuprate (MgB2) and three cuprates (YBCO, Bi-2212 and Tl-2212). J. Supercond. Novel Magn. 29, 2755–2764 (2016)

    Article  ADS  Google Scholar 

  11. Malik, G., Varma, V.: On a new number equation incorporating both temperature and applied magnetic field and its application to MgB2. J. Supercond. Nov. Magn. 33(12), 3681–3685 (2020)

    Article  Google Scholar 

  12. Filar, K., Morawski, A., Zaleski, A., Tran, L.M., Czujko, T., Gajda, D.: Superconducting properties and microstructure changes after heat treatment of in situ MgB2 wires with ex situ MgB2 barriers. J. Supercond. Nov. Magn. 35(6), 1491–1497 (2022)

    Article  Google Scholar 

  13. Li, X., Wang, H., Li, Z., Zeng, Y., Zhong, M., Wang, Y.: Spherical superconducting MgB_2 thin film. J. Supercond. Nov. Magn. 35(12), 3537–3542 (2022)

  14. Liu, H., Yang, F., Han, F., Xie, Z., Jin, L., Wang, Q., Xiong, X., Feng, J., Li, C., Li, K., et al.: Improved superconducting properties for multifilament graphene-coated Nb addition MgB2 wires by an internal Mg diffusion process. J. Supercond. Nov. Magn. 1–6 (2022)

  15. Pallecchi, I., Tropeano, M., Lamura, G., Pani, M., Palombo, M., Palenzona, A., Putti, M.: Upper critical fields and critical current densities of Fe-based superconductors as compared to those of other technical superconductors. Physica C (Amsterdam, Neth.) 482, 68–73 (2012)

    Article  ADS  Google Scholar 

  16. Chabanenko, V., Kuchuk, E., Yurchenko, V., Mikheenko, P., Abal’Osheva, I., Cortés-Maldonado, R., Perez-Rodriguez, F., Karpinski, J., Zhigadlo, N., Katrych, S., et al.: Magnetic field penetration in MgB2 single crystals: Pinning and Meissner holes. Low Temp. Phys. 40(7), 621–625 (2014)

    Article  ADS  Google Scholar 

  17. Lee, H., Kim, G., Jeen, H., Kim, Y.: Flux-pinning effects and mechanism of water-quenched 5 wt.%(fe, ti) particle-doped mgb 2 superconductor. J. Supercond. Nov. Magn. 33, 3673–3679 (2020)

  18. Strickland, N.M., Soman, A.A., Rupich, M.W., Wimbush, S.C.: Onset temperature of intrinsic pinning in a REBCO coated conductor from critical current anisotropy. Superconductivity 4, 100025 (2022)

    Article  Google Scholar 

  19. Abin, D., Mineev, N., Osipov, M., Pokrovskiy, S., Rudnev, I.: Magnetic and transport properties of hts mgb2 wires. In: Journal of Physics: Conference Series, vol. 747, p. 012023 (2016). IOP Publishing

  20. Zola, D., Polichetti, M., Adesso, M., Kovác, P., Martini, L., Pace, S.: Thermomagnetic instability and critical current density in MgB2 monofilamentary tapes. Physica C (Amsterdam, Neth.) 468(7–10), 761–764 (2008)

    Article  ADS  Google Scholar 

  21. Rudnev, I., Antonenko, S., Shantsev, D., Johansen, T., Primenko, A.: Dendritic flux avalanches in superconducting Nb3Sn films. Cryogenics 43(12), 663–666 (2003)

    Article  ADS  Google Scholar 

  22. Lee, S., Zimmermann, P., Keller, H., Warden, M., Savić, I., Schauwecker, R., Zech, D., Cubitt, R., Forgan, E., Kes, P., et al.: Evidence for flux-lattice melting and a dimensional crossover in single-crystal Bi2.15Sr1.85CaCu2O8+δ from muon spin rotation studies. Phys. Rev. Lett. 71(23), 3862 (1993)

  23. Kiefl, R., Riseman, T., Aeppli, G., Ansaldo, E., Carolan, J., Cava, R., Hardy, W., Harshman, D., Kaplan, N., Kempton, J., et al.: Temperature dependence of the magnetic penetration depth in YBa2Cu3O7 measured by muon spin rotation. Physica C 153, 757–758 (1988)

    Article  ADS  Google Scholar 

  24. Askerzade, I.: Temperature dependence of some superconducting state parameters of a bulk MgB2 in two-band Ginzburg-Landau theory. Physica C 390(4), 281–285 (2003)

    Article  ADS  Google Scholar 

  25. Ryu, S., Doniach, S., Deutscher, G., Kapitulnik, A.: Monte Carlo simulation of flux lattice melting in a model high-Tc superconductor. Phys. Rev. Lett. 68(5), 710 (1992)

    Article  ADS  Google Scholar 

  26. Moroz, A., Kashurnikov, V., Rudnev, I., Maksimova, A.: Modeling of vortex dynamics in HTSs with defects under the impact of pulsed magnetic field. J. Phys.: Condens. Matter 33(14), 145902 (2021)

    ADS  Google Scholar 

  27. Maksimova, A.N., Kashurnikov, V.A., Moroz, A.N., Rudnev, I.: Mechanism of the generation of the critical current in high-temperature superconductors with through microdefects. Phys. Solid State 63, 64–67 (2021)

    Article  ADS  Google Scholar 

  28. Kashurnikov, V.A., Maksimova, A.N., Moroz, A.N., Rudnev, I.A.: A high-temperature superconductor under applied strain: vortex dynamics and critical current density. Supercond. Sci. Technol. 31(11), 115003 (2018)

    Article  Google Scholar 

  29. Tan, T., Wolak, M., Acharya, N., Krick, A., Lang, A.C., Sloppy, J., Taheri, M.L., Civale, L., Chen, K., Xi, X.: Enhancement of lower critical field by reducing the thickness of epitaxial and polycrystalline MgB2 thin films. APL Mater. 3(4), 041101 (2015)

    Article  ADS  Google Scholar 

  30. Zehetmayer, M., Eisterer, M., Jun, J., Kazakov, S., Karpinski, J., Wisniewski, A., Weber, H.: Mixed-state properties of superconducting MgB2 single crystals. Phys. Rev. B 66(5), 052505 (2002)

    Article  ADS  Google Scholar 

  31. Pęczkowski, P., Zachariasz, P., Kowalik, M., Tokarz, W., Naik, S.P.K., Żukrowski, J., Jastrzębski, C., Dadiel, L.J., Tabiś, W., Gondek, Ł.: Iron diffusivity into superconducting YBa2Cu3O7+δ at oxygen-assisted sintering: Structural, magnetic, and transport properties. J. Eur. Ceram. Soc. 41(14), 7085–7097 (2021)

  32. Inanir, F., Yildiz, Ş., Ozturk, K., Çelebi, S.: Magnetization of Gd diffused YBa2Cu3O7-x superconductor: Experiment and theory. Chin. Phys. B 22(7), 077402 (2013)

  33. Miura, M., Maiorov, B., Balakirev, F.F., Kato, T., Sato, M., Takagi, Y., Izumi, T., Civale, L.: Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition. Sci. Rep. 6(1), 1–9 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from the Russian Science Foundation No. 22-72-10088, https://rscf.ru/project/22-72-10088/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Moroz.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, A., Rudnev, I., Kashurnikov, V. et al. Features of Magnetization and Vortex System of Magnesium Diboride. J Supercond Nov Magn 36, 1335–1342 (2023). https://doi.org/10.1007/s10948-023-06588-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06588-3

Keywords

Navigation