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Abstract
We present a calculation of magnetothermal properties and magnetocaloric effect (MCE) for the ferromagnetic elements: 
Fe, Co, and Ni. In particular, we calculated the temperature and field dependences of magnetization, heat capacity, entropy, 
isothermal entropy change ΔS

m
 , adiabatic temperature change ΔTad, and the two figures-of-merit: the relative cooling pow-

ers RCP(S) and RCP(T). We have used the mean-field theory in calculating the magnetization, magnetic heat capacity, and 
magnetic entropy. The lattice and electronic contributions to the total heat capacity and entropy were calculated using standard 
relations to subsequently calculate ΔT

ad
 . Those contributions depend on the Debye temperature ϴD and the coefficient of the 

electronic heat capacity γe respectively. The Maxwell relation is used to calculate ΔS
m
 and ΔT

ad
 . As an example of our results, 

the maximum ΔS
m
 for the three elements, in 6 T, is between 0.17 to 0.36 J/mol K and the maximum ΔT

ad
 is between 0.46 to 

1.5 K/T for the same field change. The relative cooling power RCP(S) is in the 15–36 J/mol range for the three elements in a 
6 T field. Also, the relative cooling power, RCP (T), is in the 162–1044 K2 range for the same field. For Fe and Co the RCP 
(T) per Tesla values, i.e., 139 and 174 K2∕T  respectively are comparable to that of Gd and other Gd-based magnetocaloric 
materials. The behavior of the magnetization, magnetic heat capacity, and magnetic entropy shows that the phase transition 
in these three elements is of the second order. The universal curve and Arrott plots further support this conclusion.
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1  Introduction

The interest in the physical properties of the 3d elements is 
an old endeavor [1 and the references therein]. For example, 
studies on the magnetic, electronic, and elastic properties 
have been reported [2–10]. Works on the phase transition in 
Fe under pressure [2] and the dependence of the magneti-
zation on temperature for iron nanoparticles [3] have been 
done.

Classical models, e.g., a model based on the premises of 
classical statistical mechanics, have been used to investigate 
the anisotropic magnetic properties of the 3d elements and 
their compounds [4, 10] and the size-dependent magnetic 
properties of elements, e.g., Fe and Gd [5, 6]. Recently, the 

anisotropic magnetocaloric effect (AMCE) in Fe has been 
reported [6]. Both of the mean-field model and a Hubbard-
like model Hamiltonian, where electron–electron interac-
tion is taken into account within the mean-field theory, were 
reported [7, 8]. The effect of high magnetic field on the 
magnetocaloric effect was reported by Tishin [9].

In the present paper, we present a detailed calculation, for 
Fe, Ni, and Co, of the magnetic, magnetothermal, e.g., heat 
capacity and entropy, and the magnetocaloric properties: 
the isothermal change in entropy and the adiabatic change 
in temperature. The relative cooling powers are also calcu-
lated and compared with bench-mark Gd and other Gd-based 
compounds. The nature of the magnetic phase transition in 
these elements is also investigated, in the light of the tem-
perature and field dependences of the aforementioned prop-
erties, together with the Arrott plots and universal curves. 
At the end, we report on the temperature dependence of the 
magnetization and the isothermal change in entropy, for 
amorphous Fe, and compare these properties with its coun-
terparts in crystalline Fe.
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2 � Model and Analysis

In the mean-field theory (MFT) [11–17], the interaction 
between the magnetic moments is taken into consideration and 
is represented as a uniform internal (mean) field. The origin 
of the internal field, as described by Heisenberg, is the scalar 
product of spin operators. The internal field could be evalu-
ated, from the magnetization, through a self-consistent calcu-
lation, unlike systems of non-interacting moments, e.g., para-
magnetic systems where no internal field exists. The effective 
field is the sum of the external applied field and the internal 
field. There are some limitations, however, of the mean-field 
model at very low temperatures due to spin waves excitation 
and around the Curie temperature due to critical fluctuations. 
Albeit this limitation, the mean-field theory proved to be suit-
able in handling different crystalline and amorphous systems 
with up to three sublattices.

The effective magnetic field Heff of any of the elements: 
Fe, Ni, and Co can be expressed as follows:

where H is the external applied magnetic field and M(T) is the 
magnetic moment at temperature T. The factor d = NA��B∕A 
converts the atomic moment from �B to Gauss, where A is the 
atomic mass in g per mole, � is the density in g∕cm3 , NA is 
Avogadro’s number and the molecular field coefficient ntt is 
dimensionless, and the symbol t stands for either Fe, Co, or Ni.

The magnetic moment M (T, H) of any of the three ele-
ments is given by the equation:

where BJ(x) is the Brillouin function:

J	� is the total angular momentum quantum 
number.

MJ = g�BJ	�  the magnetic moment per atom.

From the following Maxwell relation, the magnetic 
entropy change is calculated [11]: 

(1)Heff (T) = H + d
[

nttM(T)
]

(2)M(T ,H) = MJBJ(x)

(3)BJ(x) =
2J + 1

2J
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2J
x
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−
1
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KBT
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T

=

(

�M(T)

�T
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H

(5)ΔSm(T) = ∫
Hf

H
0

�M(T)

�T
dH

The above integral could be cast into a summation by 
using the well-known trapezoidal rule [18, 19]:

The total heat capacity Ctot includes three contributions: 
the magnetic heat capacity Cm , the lattice heat capacity Cl , 
and the electronic heat capacity Ce [20].

First, from the temperature derivative of the magnetic 
energy, we can calculate the magnetic contribution to heat 
capacity:

From the integration of the magnetic heat capacity, the 
magnetic entropy may be calculated as follows:

The theoretical maximum of the magnetic entropy is 
given by [11]

where R is the gas constant.
Second, the lattice contribution to heat capacity is cal-

culated from the Debye model [21, 22]:

where y = �D∕T and �D is Debye temperature.
Third, the electronic heat capacity is proportional to 

temperature and is given by [23]:

where �e is the electronic heat capacity coefficient and N
(

Ef

)

 
is the density-of-states at Fermi energy.

From Gibb’s free energy, the Landau–Ginsburg theory 
is expressed as follows [24, 25]:

(6)
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The magnetic entropy change is:

From the equilibrium condition at Tc , 
�F

�M
= 0 the magnetic 

equation of state is:

where A(T) and B(T) are Landau’s coefficients.
The adiabatic temperature change [20, 26] can be calculated 

from the following:

By using the Arrott–Belov–Kouvel (ABK) [27–29], the 
Arrott plots, i.e., the M2 vs H∕M plot, in the ferromagnetic 
region at different temperatures close to Tc , can be used to 
estimate the spontaneous magnetization and the Curie tem-
perature. The Arrott plots are also used to determine the 
order of the phase transition involved, i.e., a second-order 
(SOPT) or a first-order phase transition (FOPT), from the 
sign of the plots slopes. Namely, positive slopes indicate 
SOPT, whereas negative slopes or s-shaped slopes indicate 
FOPT [30, 31].

The relation between ΔSm∕ΔS
peak
m  and � is well known as 

the universal curve [32], one may choose the reference tem-
perature Tr such that:

where � is defined by:

The relative cooling power RCP(S) [17, 33] is defined as 
follows:

where �TFWHM is the full width at half maximum of the mag-
netic entropy change curve and ΔSmax(T) is the maximum 
magnetic entropy change.

Another figure-of-merit for the magnetocaloric materials is 
the RCP (T) defined as [33, 34]:

where δTFWHM is the full width at half maximum of the ΔTad 
vs. T plot.
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(16)H = A(T)M + B(T)M3 +…

(17)
H

M
= A(T) + B(T)M2 +…

(18)ΔTad=
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(19)ΔSm
(

Tr
)

= 0.7ΔSpeak
m

(20)� = (T − Tc)∕
(

Tr − Tc
)

(21)RCP(S) = ΔSmax(T) × �TFWHM

(22)RCP(T) = ΔTmax × �TFWHM

3 � Results and Discussion

3.1 � Magnetization

Figure 1a−c display the calculated magnetic moment as 
function of temperature for Fe, Ni, and Co respectively 
in fields of 0 and 5 T. The magnetic moment at very low 

Fig. 1   a Magnetic moment dependence on temperature, in 0 and 5 T, 
for Fe. b Magnetic moment dependence on temperature, in 0 and 5 T, 
for Ni. c Magnetic moment dependence on temperature in 0 and 5 T, 
for Co
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temperatures and the Curie temperatures of these three 
elements agree very well with experimental data, e.g., the 
magnetic moments are 2.2, 0.6, and 1.7 μB and Tc values are 
1040, 630, and 1400 K respectively. Although the data in 
Fig. 1 are well known, we have found it necessary to show 
in order to demonstrate the fair success of the MFT theory. 
It is well known that both ∆Sm and ∆Tad do depend on the 
temperature derivative of the magnetization at constant field 
and therefore on the MFT-calculated magnetization.

3.2 � Magnetic Heat Capacity and Entropy

The magnetic contribution to heat capacity has been calcu-
lated from the magnetic energy (Eqs. 8 and 9). The magnetic 
specific heat of Ni is shown in Fig. 2 in a temperature range 
up to 700 K. The field dependence, at Tc, is clearly that of 
materials with SOPT [35]. The magnetic specific heat of Fe 
and Co show similar behavior.

The temperature dependence of the magnetic entropy of 
the three elements, in zero field, is shown in Fig. 3. The 

maximum values of the magnetic entropy, at and above Tc, 
as calculated from the mean-field theory are shown together 
with those calculated from the Eq. 11 e.g. [36]. The agree-
ment is excellent as shown in Table 1.

3.3 � The Isothermal Change in Entropy

The temperature dependence of the isothermal change in 
entropy for field changes 2, 4, 6, and 8 T, calculated from 
Maxwell relation via the trapezoidal method (Eqs. 5 and 6), 
is shown in Fig. 4a−c.

Table 2 lists both ∆S and RCP values in a 6 T field 
change. Moreover, the features of the temperature and field 
dependences of ∆S are those of SOPT materials [35].

We listed in Table 2 the isothermal change in entropy [18] 
and the corresponding (Eq. 21) RCP values in J/mol, for the 
three elements, in a 6 T field.

de Oliveira [37] used an itinerant electron model to study 
MCE in Fe, Co, Ni, and YFe3. For the three elements, he 
reported ΔSmax of nearly: 8, 4, and 4 J/kg K in a 2.16 T field. 
These are 0.447, 0.235, and 0.236 J/mol K respectively. These 
values are about 2–3 times larger than our mean-field values.

3.4 � The Adiabatic Change in Temperature

The adiabatic change in temperature for the three elements 
is shown in Fig. 5a−c in different magnetic fields.

The values of ΔTmax (K) for the three elements, as 
reported by De Oliveira [37], are in the range 2.5–5 K for 
fields in the range 2.16–3 T. Our values are in the range 
1–7 K for fields in the range 2–4 T.

The RCP/ΔH values shown in Table 3 are to be com-
pared with those of known materials, in the same units of 
course, e.g., 161.2 for Gd in 6 T, 96.0 for Gd5 Si 2.06 Ge1.94 
in 5 T, 109.2 for Gd5Si4 in 5 T, and 145.1 for Gd4Bi3 in 
10 T [33, 38].

3.5 � High Field Effects

Figure 6a shows ∆Sm for Fe in fields up to 300 T. Two features 
of this figure are firstly, the peak temperature Tpeak coincides 
with Tc even for these high fields using the present mean-field 

Fig. 2   Magnetic specific heat of Ni vs. temperature, in different fields

Fig. 3   Magnetic entropy of Fe, Ni, and Co, in zero field

Table 1   Maximum Sm, in zero field, using Maxwell relation and the 
shown equation

Element Sm (J/mol K) Maxwell 
method

Sm (J/mol K) = R 
Ln(2 J + 1)

Fe 9.044 9.118
Ni 5.738 5.753
Co 9.079 9.118



1459Journal of Superconductivity and Novel Magnetism (2023) 36:1455–1463	

1 3

calculation. This has been reported by [39], using numerical cal-
culation, but for much lower fields (≤ 1.5 T). However, Franco 

et al. showed, by using the Heisenberg model, that Tpeak > Tc. 
Secondly, the curves become more flat, i.e. the FWHM of any 
given curve, in case of using high fields, becomes larger.

The adiabatic change in temperature, in high fields, has 
been studied by Tishin [9]. Figure 6b shows our results for 
Fe in fields of 20, 40, 60, and 100 T. It is clear from that the 

Fig. 4   a Isothermal change in entropy for Fe in different fields. b Iso-
thermal change in entropy for Ni in different fields. c  Isothermal 
change in entropy for cobalt in different fields

Table 2   Maximum isothermal entropy change and RCP(S), in 6 T, for 
the three elements

Element δFWHM (K) ΔSmax [J/mol.K] RCP (J/mol)

Fe 101.2 0.3572 36.15
Ni 89.9 0.1738 15.62
Co 113 0.2309 26.09

Fig. 5   a  Adiabatic change in temperature vs. temperature for Fe in 
different fields. b Adiabatic change in temperature vs. temperature for 
Ni in different fields. c Adiabatic change in temperature vs. tempera-
ture for cobalt in different fields
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maximum of ΔTad shifts as the field increases. The same 
trend is found for Co.

3.6 � Arrott Plots and the Universal Curves

The Arrott plots are used to study the nature of the phase 
transition [28, 29] and the itinerant nature [9] of the elec-
trons in Fe, Co, and Ni. Weak itinerant nature was found 
for Fe. The straight lines of the same slopes and the values 
of M2 in zero field (Fig. 7) are indicative of weak itinerant 
nature according to Eq. 23 [40]. We have found that the 
percentage error between M2 values in zero field is in the 

3.4–19% as calculated from the mean-field theory and from 
the following equation:

Figure 8a, b display the universal curves for Fe and Ni 
respectively. The features are clearly those of SOPT. In 

(23)M(H, T)2 = M(0.0)2
[(

1 −
T2

T2

c

)

+
2x

0
H

M(H, T)

]

Table 3   Adiabatic change in temperature, RCP (T) in 6  T field and 
RCP (T) per tesla

Element δFWHM (K) ΔTmax (K) RCP (K2) RCP/ΔH (K2/T)

Fe 92 9.09 836.28 139.38
Ni 57.1 2.844 162.39 27.065
Co 121 8.63 1044.23 174.038

Fig. 6   a  Isothermal entropy change vs. temperature, for Fe, in fields 
of: 20, 100, and 300 T. b Adiabatic change in temperature vs. tem-
perature, for Fe, in fields of: 20, 40, 60, and 100 T

Fig. 7   Arrott plots for Fe in field up to 1 T

Fig. 8   a The universal curve for Fe. b The universal curve for Ni
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materials with FOPT, the low temperature (ϴ < 0) curves 
do not collapse but clearly diverge as the field changes [41].

3.7 � Amorphous Fe

The amorphous alloys are known to have advantages in 
the field of magnetic refrigeration due to several factors 
[42]. Because of these advantages, we have calculated  
the temperature dependence of the magnetic moment in 
amorphous Fe using the mean-field model as well. Figure 9  
displays our calculation. The exchange coefficient between 
Fe atoms in the amorphous case is much less (~ 30%) than 
its crystalline counterpart as reported by Grinstaff [43]. 
Both of the magnetic moment, at very low temperatures, 
and the Curie temperature are significantly reduced rela-
tive to crystalline Fe. In particular, Tc is about 580 K and 
the magnetic moment is about 1.6 μB.

We have calculated the isothermal entropy change for 
a-Fe. The results are shown in Fig. 10. The curves also 
have their maximum at Tc, but their maxima ΔS are close 
to those of crystalline Fe, in the same field.

The absence of data on the total heat capacity of a-Fe, 
up to our knowledge, does not enable us to calculate the 
adiabatic change in temperature and compare it with that 
of crystalline Fe.

4 � Conclusions

We have calculated the thermomagnetic and the magneto-
caloric properties for Fe, Co and Ni using the mean-field 
theory. The isothermal entropy change ΔSm has been cal-
culated using Maxwell’s relation. The highest ordinary 
ΔSm for Fe, Co, and Ni, respectively, is 0.3, 0.23, and 0.17 
J∕molK for a magnetic field change of 6 T. The adiabatic 
temperature change ΔTad for Fe, Co, and Ni respectively, 
is 9, 8.6, and 2.8 K for a magnetic field change of 6 T. The 
relative cooling power RCP (T) is fairly comparable to 
those of Gd and some Gd-based MCE materials. Amor-
phous Fe has much less Curie temperature and a smaller 
spontaneous magnetic moment than its crystalline counter-
part; however, its isothermal entropy change is comparable 
to crystalline Fe. The temperature and field dependences 
of the magnetization, magnetic entropy, magnetic specific 
heat, Arrott plots, and universal curves showed that the 
phase transition in these three elements is of the second 
order. The mean-field theory proved to be appropriate for 
calculating the abovementioned properties.
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