Skip to main content
Log in

Magnetic, Electronic, Thermodynamic, and Thermoelectric Properties of Fe16N2 Alloys: Ab Initio Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We investigate the electronic properties and the magnetism of iron nitrides Fe16N2 by the use of full-potential linear augmented plane-wave (FP-LAPW) method based on the density-functional theory as implemented in the WIEN2k code. The thermal properties comprising the heat capacity, the volume thermal expansion coefficient, and entropy parameter were evaluated at various temperatures and pressures. We also studied the change of the thermoelectric and transport properties as a function of temperature at various pressures, based on electrical and thermal conductivity, carrier concentration per unit cell, and Pauli magnetic susceptibility. The pressure effects on the magnetic, thermodynamic and the transport properties of Fe16N2 compound we discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Saadi, A., Lekdadri, A., Moubah, R., Lassri, M., Charkaoui, A., Boughaleb, Y., Bimaghra, I., Abid, M., Hlil, E.K.: H Lassri J. Supercond. Novel Magn. 33, 3241–3247 (2020)

    Article  Google Scholar 

  2. Moubah, R., Colis, S., Ulhaq-Bouillet, C., Drillon, M., Dinia, A.: J. Mater. Chem. 18, 5543–5546 (2008)

    Article  Google Scholar 

  3. Moubah, R., Bouaine, A., Ulhaq-Bouillet, C., Schmerber, G., Versini, G., Barre, S., Colis, S.: A. Dinia. Appl. Phys. Lett. 91, 172517 (2007)

    Article  ADS  Google Scholar 

  4. Komuro, M., Kozono, Y., Hanazono, M., Sugita, Y.: J. Appl.Phys. 67, 5126 (1990). Sugita

  5. Sugita, Y., et al.: J. Appl. Phys. 70, 5977 (1991)

    Article  ADS  Google Scholar 

  6. Stoeckl, P., Swatek, P., Wang, J.P.: AIP Adv. 11(1), 015039 (2021)

    Article  ADS  Google Scholar 

  7. Ochirkhuyag, T., Hong, S.C., Odkhuu, D.: AIP Adv. 11(1), 015227 (2021)

    Article  ADS  Google Scholar 

  8. Coey, J.M.D.: Magnetism and magnetic materials (Cambridge University Press, 2010)

  9. Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D.: J. Luitz, wien2k (2001)

  10. Natik, A., Abid, Y., Moubah, R., Abid, M.: H Lassri Solid State Communications 319, 114006 (2020)

    Article  Google Scholar 

  11. Otero-de-la-Roza, A., Abbasi-Pérez, D., Luaña, V.: Comput. Phys. Commun. 182(10), 2232 (2011)

    Article  ADS  Google Scholar 

  12. Bouadjemi, B., Lantri, T., Matougui, M., Houari, M., Bentata, R., Aziz,  Z., Bentata, S.: Spin. 10, 2050010 (2020)

  13. Blanco, M.A., Francisco, E., Luana, V.: GIBBS: Comput. Phys. Commun 158, 57 (2004)

    Article  ADS  Google Scholar 

  14. Songke, F., Shuangming, L., Hengzhi, F.: Comput. Mater. Sci. 82, 45 (2014)

    Article  Google Scholar 

  15. Madsen, G.K.H., Singh, D.J.: Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  16. Madsen, G.K.H.: J. Am. Chem. Soc. 128, 12140 (2006)

    Article  Google Scholar 

  17. Birch, F.: J. Geophys. Res. B 83, 1257 (1978)

    Article  ADS  Google Scholar 

  18. Jalilian, J., Naseri, M.: Optik 136, 411 (2017)

    Article  ADS  Google Scholar 

  19. Tanaka, H., Harima, H., Yamamoto, T., Katayama-Yoshida, H., Nakata, Y., Hirotsu, Y.: Phys. Rev. B 62, 15042 (2000)

    Article  ADS  Google Scholar 

  20. Shida, S., Kitawatase, K., Fujii, S., Asano, S.: J. Phys. Condens. Matter. 4, 765 (1992)

  21. Nakajima, H., Ohashi, Y., Shiiki, K.: J. Magn. Magn. Mater. 167, 259 (1997)

    Article  ADS  Google Scholar 

  22. Lai, W.Y., Zheng, Q.Q., Hu, W.Y.: J. Phys. Condens. Matter. 6, L259 (1994)

    Article  ADS  Google Scholar 

  23. Stern, E.A.: Phys Rev 111, 786 (1958)

    Article  ADS  Google Scholar 

  24. Schnelle, W., Leithe-Jasper, A., Rosner, H., Schappacher, F.M., Pöttgen, R., Pielnhofer, F., Weihrich, R.: Phys. Rev. B 88, 144404 (2013)

    Article  ADS  Google Scholar 

  25. Kandaskalov, D., Maugis, P.: Comput. Mater. Sci. 128, 278 (2017)

    Article  Google Scholar 

  26. Bhat, T.M., Gupta, D.C.: J. Magn. Magn. Mater 449, 493–499 (2018)

    Article  ADS  Google Scholar 

  27. Yousuf, S., Gupta, D.C.: J. Phys. Chem. Solids 108, 109 (2017)

    Article  ADS  Google Scholar 

  28. Mamunya, Y.P., Zois, H., Apekis, L., Lebedev, E.V.: Powder Technol 140, 49 (2004)

    Article  Google Scholar 

  29. Ross, R.G., Andersson, P., Sundqvist, B., Backstrom, G.: Rep. Prog. Phys 47, 1347 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moubah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadi, A., Lassri, M., M.Sajieddine et al. Magnetic, Electronic, Thermodynamic, and Thermoelectric Properties of Fe16N2 Alloys: Ab Initio Study. J Supercond Nov Magn 35, 1621–1628 (2022). https://doi.org/10.1007/s10948-022-06267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06267-9

Keywords

Navigation