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Abstract
Nuclear magnetic resonance (NMR) is a powerful quantum probe, but the early conclusions on the physics of the cuprates, 
based on a limited set of data, have to be revised in view of recent findings and results from extensive literature analyses of 
most NMR data. These show two coupled electronic spin components that influence the nuclei, most easily seen with the 
planar Cu shift anisotropy. One component is spin from the recently identified ubiquitous metallic excitations, the other 
likely due to the intrinsic, antiferromagnetically coupled electronic Cu spin. Both components and its intricate interaction 
leave their imprint on nuclear shifts and relaxation. They also show a family dependence seen in the charge sharing between 
planar Cu and O. The main phenomena of the doping and temperature dependences of the interplay between both spins 
components are discussed in terms of an apparent phenomenology that awaits explanation from theory.

1  The Early NMR View

With the advent of cuprate high-temperature superconduc-
tivity [1] and the known power of nuclear magnetic reso-
nance (NMR) in elucidating chemical and electronic prop-
erties of materials [2], there was immediate interest, also 
from theory, in investigating the cuprates with NMR (for a 
review see [3]). The resonances from the Cu and O nuclei in 
the ubiquitous CuO2 plane should contain essential informa-
tion with the various nuclear transitions assigned to chemi-
cal sites, also from the charge reservoir layers. One has to 
remember that NMR of the planar sites concerns isotopes 
with a larger spin, 63,65 Cu ( I = 3∕2 ) and 17 O ( I = 5∕2 ), so 
that the Zeeman resonance is split into 2I lines due to the 
electric hyperfine interaction. These splittings not only com-
plicate the NMR spectra, but they also measure the local 
charge symmetry and we know, today, that the thus derived 
planar O hole content of the 2p� bonding orbital is perhaps 
the only normal state property that is directly related to the 
maximum critical temperature of superconductivity [4, 5].

It was quite natural that, in the early days, the focus was 
on comparing the spin shift and relaxation of doped cuprates 
to those of classical metals and superconductors, given that 
NMR can measure the electronic spin susceptibility [6–8] 

and delivered the first proof of BCS theory [9, 10] with iden-
tifying the coherence peak in 27 Al nuclear relaxation. With 
the cuprates being of type II, even the investigation of the 
condensed state is possible as the magnetic field penetrates 
the sample and the residual diamagnetism in the large mag-
netic fields used for NMR is quite small.

Indeed, the first observations saw rapid nuclear relaxation 
and large shifts, both not only typical for the high density of 
states in metals, but also typical for more localized moments 
(and differences are difficult to detect with a local probe). 
Below the critical temperature of superconductivity ( Tc ), 
shift and relaxation seemed to disappear, a clear indication 
of spin singlet pairing. Not anticipated was the finding first 
seen with the experiments on 89 Y ( I = 1∕2 ) of YBa2Cu3O6+y 
[11] (measurements only above Tc ) that merely the strongly 
doped materials were metal-like in the sense that the NMR 
shift is temperature independent (Pauli spin susceptibility). 
As the doping decreases, the shifts begin to drop at increas-
ingly higher temperatures compared to Tc . This was believed 
to be due to the opening of a spin gap (the pseudogap) at 
those temperatures for more local moments.

Unfortunately, the early NMR experiments con-
cerned mostly a few available materials ( YBa2Cu3O6+y , 
YBa2Cu4O8 , La2−xSrxCuO4 ). With the body of data still 
small, and despite a number of inconsistencies, generic fea-
tures had to be assumed. Importantly, while the Cu magnetic 
shifts can be strongly temperature dependent (above and 
below Tc ) when the magnetic field is perpendicular to the 
crystal c-axis ( c⊥B0 ), they show no temperature dependence 
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at all for c ∥ B0 for La2−xSrxCuO4 and YBa2Cu4O8 , or only 
a rather weak one for YBa2Cu3O6+y . Since planar O shows 
strong temperature-dependent shifts for all directions of 
measurement, as well, and they resemble those at planar Cu 
for c⊥B0 , only an accidental cancellation of the hyperfine 
coupling for c ∥ B0 could explain the data [12] (in a single-
spin component model).

Note that this means that the well-known, large negative 
hyperfine coefficient A∥ from a hole in the 3d(x2 − y2) orbital 
had to be cancelled by positive, transferred spin assumed to 
have an isotropic hyperfine coefficient B, i.e., A∥ + 4B ≈ 0 . 
Note also that since A

⟂
 is of much smaller magnitude than 

A∥ [13], only the transferred spin through B survives in the 
description of the planar Cu shifts. Again, this removes a 
possible direct action of the onsite Cu spin and renders the 
Cu shift anisotropy irrelevant. Another important conse-
quence of this assumption concerns nuclear relaxation. Fluc-
tuating fields parallel to the crystal c-axis can only contribute 
to Cu relaxation if the former peak at the antiferromagnetic 
wave vector (to remove the constraint ( A∥ + 4B = 0 ). Note, 
these were fluctuations that one could expect to be present. 
Finally, there is another, very important conclusion from this 
assumption. It defines the orbital shift as the shift observed 
at the lowest temperature for c ∥ B0 (which was by far too 
large, even larger than what one expects from an isolated 
Cu ion [13]).

For metals, the nuclear relaxation ( 1∕T1 ) is proportional 
to temperature (T), and T1TK2 = (�e∕�n)

2ℏ∕(4�kB) , where  
K is the Knight shift and � denotes the gyromagnetic ratios 
of electron and nucleus. This is the famous Korringa relation 
[7] that does not contain the notoriously unknown hyperfine 
coefficients. While this relation appeared to work to some 
extent for planar O and inter-planar Y, it failed most planar 
Cu data as the shifts were too small. So it was concluded that 
the Cu relaxation is enhanced from antiferromagnetic spin 
fluctuations that are shielded from planar O due to symme-
try. Also, the shifts for planar Cu for c⊥B0 are quite similar 
to those of planar O (that is involved in the spin transfer B), 
and this was seen as evidence for single component behavior 
of the cuprates, based on the data for two systems, YBa2Cu3

O6.63 and YBa2Cu4O8 [14, 15].
While this accidental cancellation raised suspicions, there 

was no other sound explanation for the observations, and 
first principle calculations endorsed the hyperfine scenario, 
later [16].

2  More Conflicting Evidence

We have been involved in extended tests of the NMR shift 
scenario, and more evidence turned up pointing to incon-
sistencies, for La2−xSrxCuO4  [17], YBa2Cu4O8  [18], and 
HgBa2CuO4+� [19, 20]. For the latter family, there are large  

temperature-dependent Cu shifts also for c ∥ B0 , but these 
are not even proportional to those measured for the other 
direction. With these inconsistencies and the fact that 
the body of Cu and O NMR experiments on cuprates had 
grown tremendously over the years, due to diligent work 
by a number of groups, it seemed indicated to take a fresh 
look at the entire data, and we began with the collection 
of the planar Cu shifts [21], as one might think that the 
uniform response is rather simple. This turned out not to 
be true, and a complex shift phenomenology was formu-
lated, but a more coherent explanation could not be given 
[21]. In a next step, the planar Cu relaxation data were col-
lected [22, 23], and the expectations were proven wrong 
again, as these offered a surprisingly simple phenomenol-
ogy: a universal relaxation rate, independent on material 
and doping. Previously addressed differences result from 
the relaxation anisotropy that can differ between systems, 
but it is always temperature independent. This immedi-
ately said that the hitherto adopted shift interpretation 
must be flawed, i.e., if the relaxation is not enhanced, the 
shifts must be suppressed [22, 23] where the Korringa 
relation failed. More recently, after collecting all planar O 
data, another simple phenomenology became apparent, as 
depicted in Fig. 1: relaxation and shift are in agreement with  
a temperature-independent but doping-dependent pseudogap 
in a simple metallic density of states that is common to all 

Fig. 1  The traditional cuprate phase diagram (A); it does not distin-
guish between materials with different, highest Tc . As a function of 
doping � , (B) the peudogap closes in a material independent, metallic 
density of states. As a result (C), the Pauli susceptibility (full line), 
responsible for the Knight shift K of a regular metal, undergoing a 
transition (dotted vertical line) to a spin singlet superconducting state, 
is suppessed and shows a temperature dependence due to the Fermi 
function (low energy states are missing); (D) this scenario leads to 
offsets in the Heitler-Teller relaxation rate (proportional to tempera-
ture) due to the missing low energy states (similar to the entropy)
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cuprates [24, 25], similar to what had been proposed from 
specific heat data [26].

Very recently, all Cu and O data amassed so far have 
been compared [27] for an unbiased view of the data, and  
a number of conclusions could be derived. Foremost, the 
same pseudogap phenomenon governs the Cu shifts for 
c⊥B0 . However, the behavior of the shifts for c ∥ B0 remained 
mysterious, but certainly points to a two-component model, 
interestingly, with the same hyperfine coefficients.

Below, we try to give a summary of the current status 
of the NMR data analysis from which we derive reliable 
elements that can serve for a better understanding of the 
cuprates. Since the charge sharing measured with NMR 
gives important family dependences that we also find in the 
Cu shifts, we will begin with a brief recapitulation of the 
planar charges.

3  Charge Sharing in the CuO
2
 Plane

It was estimated, early on, that the nominal hole in the Cu 
3d(x2 − y2) orbital is responsible for a strong, local electric 
field gradient [13, 28] that splits the planar Cu Zeeman line. 
Its effect on planar O through hybridization was expected 
to be much weaker. Later, it was pointed out that the charge 
sharing between Cu and O appears to be related to Tc [29], 
and, after calibrating the NMR quadrupole splitting by means 
of the electric hyperfine constant, accessible independently 
from atomic spectroscopy [30], it was shown that NMR can 
measure doping locally. Then, after the first 17 O NMR meas-
urements of electron-doped materials were recorded [31], 
it became clear that even the hole distribution in the parent 
compound could be measured with NMR. The following sim-
ple relation holds [31],

where nCu and nO are the hole contents measured with NMR 
of planar Cu and O, respectively, cf. Fig. 2. The hereby 
defined parameter �—the doping measured with NMR—
agrees well with x in La2−xSrxCuO4 [30], but there are subtle 
differences between � and what is believed to be the doping 
(e.g., for YBa2Cu3O6+y it is observed that at optimal dop-
ing � ≈ 0.2 [31, 32]). Most importantly, the sharing of the 
nominal hole of the parent material ( � = 0 ) between Cu and 
O sets some families apart, and 2nO was shown to be nearly 
proportional to the maximum Tc at optimal doping. That 
is, a phase diagram in terms of nCu and 2nO carries greater 
physical significance, as it can predict the maximum Tc as 
well as other properties [33]. New DMFT calculations [5, 
34] confirm this role of the planar O charge.

With regard to the sharing of charge in the parent and as 
a function of doping, 3 families of hole doped materials are 

(1)1 + � = nCu + 2nO,

readily distinguished by nCu and 2nO of the parent, as well 
as the slope Δ�nCu∕Δ� (2nO) , i.e., how doped holes enter the 
CuO2 plane, cf. Fig. 2. For La2−xSrxCuO4 , the slope is rather 
small as the doped holes mostly enter the planar O bonding 
orbital that has the smallest hole content of the cuprates. For 
the YBa2Cu3O6+y family of materials, the slope is about 0.5 
and for the systems that can have the highest Tc it is slightly 
larger, cf. Fig. 2. We will find below that the planar Cu shift 
anisotropy is qualitatively different for these 3 groups of 
materials, as well.

4  Review of More Recent Insight

4.1  Planar O NMR

A metallic density of states common to all cuprates with a 
temperature-independent pseudogap that is set by doping is 
in agreement with all found literature data (the maximum 
pseudogap is similar to the exchange coupling J) [24, 25]. 
Excitations across this gap, as the Fermi function opens or 
closes as a function of temperature, are responsible for the 
unusual temperature dependences of shift and relaxation, 
cf. Fig. 1. The anisotropies of shift and relaxation are rather 
independent of temperature and follow from the expected 
hyperfine coefficient of planar O [16]. When the gap is 
closed, one recovers the Korringa relation between planar 
O shift and relaxation as for a normal metal (the normalized 
relaxation rate of 1∕17T1∥�T ≈ 0.22∕Ks for out of plane fluc-
tuations give 17K

⟂c ≈ 0.2% ). Note that the original 89 Y NMR 
data [11] agree with this scenario, as well as the specific heat 
[26]. The gap varies not only with doping, but also among 

Fig. 2  The sharing of the charge in the CuO2 plane between Cu ( nCu ) 
and O ( nO ) as determined with NMR [31] leads to the NMR doping 
� = nCu + 2nO − 1 . Different families can be distinguished, and for 
the hole-doped materials ( 𝜁 > 0 ) we find the same families lead to 
different planar Cu shift anisotropies

1755Journal of Superconductivity and Novel Magnetism (2022) 35:1753–1760



1 3

families [24]. At low temperatures, in the presence of a gap, 
there is small, additional relaxation and shift, perhaps from 
in-gap states.

4.2  Planar Cu Relaxation

The planar Cu relaxation offers a very simple phenomenol-
ogy [22, 23]. It shows the opening of the superconducting 
gap at Tc for all superconducting materials, with 1∕T1⟂T  
dropping from about 20/Ks at Tc to 0 (notable is the absence 
of a coherence peak). While there is a relaxation anisotropy 
that varies between about 0.8 and 3.4 for different materials 
and doping levels, it is temperature independent, so that the 
rates measured for different directions of the magnetic field 
are strictly proportional to each other, and we can focus on 
just one direction ( c⊥B0).

There is no pseudogap in the planar Cu relaxation, which 
had been assumed to be dominated by antiferromagnetic 
spin fluctuations (while it could not be brought in agree-
ment with neutron scattering [35]). The temperature depend-
ence of 1∕T1⟂ above Tc lags behind ideal metallic behavior 
above about 200 K. However, this is true even for the most 
overdoped systems (even those that do not superconduct), 
and they share the same 1∕T1⟂T  below 200 K with the most 
underdoped materials for which data are available (doping 
just below 10%).

Note that the corresponding relaxation rates are related to 
local field fluctuations ( ⟨h2

∥,⟂
⟩ ) with the correlation time �0 

(electronic fast fluctuation limit) [13] by,

Thus, a rather ubiquitous 1∕T1⟂ and a material-dependent 
1∕T1∥ , as found for planar Cu, point to a fairly material and 
temperature independent 

⟨
h2
∥

⟩
 from electronic spin fluctua-

tions with fixed �0 , i.e., along the crystal c-axis (with A∥).
Obviously, we know from the planar O data that such a 

density of states exists, except that it has a pseudogap for 
planar O. Then, the pseudogap could have to do with fluc-
tuating field symmetry, and we discuss this below. If we 
invoke the Korringa relation, we find a shift of 0.89% for 
1∕T1⟂T = 20∕Ks , about the shift range seen for planar Cu, 
cf. Fig. 3.

4.3  Planar Cu Shifts

As was noticed in the old picture, the shifts 63K
⟂
 are simi-

lar to those of planar O for all directions ( 17K� ); a recent 
analysis gives more details [27]. Thus, 63K

⟂
(T , �) shows 

the same pseudogap behavior as O. If one inspects all pla-
nar Cu data [27] one finds that there are many materials 

(2)

1

T1∥

=
3

2
�2
n
⋅ 2

⟨
h
2

⟂

⟩
�0,

1

T1⟂

=
3

2
�2
n

[⟨
h
2

⟂

⟩
+
⟨
h
2

∥

⟩]
�0.

for which 63K∥(T , �) is also temperature dependent, unlike 
La2−xSrxCuO4 . Furthermore, if 63K∥(T , �) is temperature 
dependent it shows the same pseudogap behavior as 63K

⟂
 

and planar O [27]. Note that these large differences, between 
La2−xSrxCuO4  and other materials, cannot be caused by 
changes in the hyperfine coefficients (since 63K

⟂
(T , �) 

and 17K�(T , �) are not affected, as well as the universal 
relaxation).

This is best seen if one inspects the Cu shift anisotropy of 
all materials, i.e., in plots of both shifts against each other, 
63K

⟂
(T , �) vs. 63K∥(T , �) , as in Fig. 7 in [21]; a sketch is pro-

vided in Fig. 3. In such a plot, all data points lie on lines with 
3 different slopes that reign in certain ranges of temperature 
or doping. These slopes are defined by,

and 𝜅1 ≳ 10 , �2 = 1 , and �3 = 2.5 . By itself, the appearance of 
3 different slopes would mean 3 different hyperfine coefficients 
for different ranges of temperature in a single-component pic-
ture, an unlikely scenario. The steep slope is not only found 
for La2−xSrxCuO4 , as mentioned above, also very different 
systems show it in certain ranges of temperature. Most sys-
tems assume �3 = 2.5 at lower temperatures, and �2 = 1 as a 
function of doping sets the three families apart.

Since the old hyperfine scenario has essentially removed 
the planar Cu 3d(x2 − y2) spin from the shift scenario and, in 

(3)� = ΔT ,�
63K

⟂
(T , �)∕ΔT ,�

63K∥(T , �),

Fig. 3  Sketch of the planar Cu shift anisotropy from [21] for some 
materials (the full lines will be discussed in the main text); note that 
the orbital shifts have been subtracted (0.30% and 0.70% for c⊥B0 and 
c ∥ B0 , respectively). There are 3 different slopes: the steep one 
𝜅1 ≳ 10 , the isotropic shift lines for �2 = 1 , and the common slope 
of �3 ≈ 2.5 . Arrows point in the direction of increasing temperature; 
the doping increases to the right along �2 = 1 , or in vertical direction 
for La2−xSrxCuO4 . As a function of doping and temperature materials 
assume one of the 3 slopes, as the two spin components as well as 
their coupling changes
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a sense, replaced it by the transferred coupling (from planar 
O), this complex anisotropy must be caused by the interplay 
of the metallic spin with that of the 3d(x2 − y2) orbital (see 
below).

5  Elements of the New Picture

We believe that in an approach to understand the NMR data 
of the cuprates, one has to focus on the following findings. 

1. There is the universal metallic density of states in the 
cuprates outside a doping-dependent pseudogap that dis-
appears for high doping levels. The pseudogap affects 
planar O shifts and relaxation, as well as 63K

⟂
 , and it can 

also affect 63K∥ , but it is not found for planar Cu relaxa-
tion.

2. The superconducting gap is only clearly seen in the 
planar Cu relaxation data that almost behave in a clas-
sical way and fall from a universal reduced rate of 
1∕T1⟂Tc ∼ 20∕Ks to 0. The relaxation anisotropy is 
strictly temperature independent, but differs between 
the materials (0.5 to 3.4).

3. The orbital shifts are understood for planar O, and for 
c⊥B0 and Cu. There must be another significant Cu shift 
for c ∥ B0 of ≳ 0.6% . We have good reason to believe 
that it is just spin shift, and not due to orbital currents 
[36].

4. The hyperfine coefficient of the 3d(x2 − y2) spins is 
known, with A∥ < 0 and |A∥| ≳ 6|A

⟂
| . Interestingly, it 

seems to be a reliable fact that A∥ ≈ −4B [13, 16].
5. There is the new understanding of the charge shar-

ing and its relation to the maximum Tc . It sets apart 
La2−xSrxCuO4 from YBa2Cu3O6+y , and also from the 
rest of the materials [31]. Interestingly, these families 
differ also in terms of 63K∥.

6  Towards the Understanding 
of the Uniform Response

Planar O shift and relaxation with expected anisotropies 
[25] show that a single metallic spin component, �2(T , �) , 
is behind the temperature (T) and doping ( � ) dependences. 
The density of states is common to all cuprates and the pseu-
dogap is set by doping, so we have a simple description of 
the spin shift,

where C� is the orientation-dependent hyperfine constant 
(in the old literature it was 2C). �2 also changes at Tc , but 
it is not easily discerned in the presence of the pseudogap. 

(4)17K�(T , �) = C� ⋅ �2(T , �),

Importantly, the Korringa relation holds at all doping levels 
(in the sense described above), without major influence of 
electronic correlations.

Then, this electronic spin must couple to the Cu nucleus 
and contribute to the planar Cu shifts. In the old scenario, 
this is the component that defined the single fluid picture 
since it dominates the planar O shift and that of Cu for c⊥B0 . 
So we can approximate the Cu shift by,

where we assumed B to be isotropic (we use the factor of 4 
as in the old scenario), and we will see in the next paragraph 
that this is indeed the case. Before we do so, we note that 
since 17K� and 63K

⟂
 approach zero spin shift at low tem-

peratures for all materials, the low temperature total shift 
must be the orbital shift. This is supported by first principle 
calculations for both nuclei [37]. Thus,

as for spin singlet pairing.
We now address how this metallic spin affects the Cu 

shift for c ∥ B0 , i.e., the Cu shift anisotropy. We remember 
that this is not trivial, and there are 3 slopes, defined in Eq. 
(3), that govern the plot of 63K

⟂
 against 63K∥ , cf. Fig. 3. We 

note that the lines with a slope �2 = 1 (called the isotropic 
shift lines in [21]) are often observed as a function of doping 
for shifts at higher temperatures, i.e., when the shifts have 
become largely temperature independent (metal like), they 
can still vary as a function of doping due to the closing of the 
pseudogap [24]. Thus, �2 = 1 is caused by doping-dependent 
changes of �2 , and a slope of 1 tells us that the associated 
hyperfine coefficient B in Eq. (5) is indeed isotropic; thus, 
Δ�

63K∥ ≈ 4BΔ��2.
Now, we arrive at an important conclusion by inspect-

ing materials with slope �2 = 1 . As the temperature is low-
ered, these (metallic) shifts become eventually temperature 
dependent, and at that point they assume a different slope ( �1 
or �3 ), cf. Fig. 3. Thus, there must be another spin compo-
nent involved that changes as a function of temperature, as 
well, and we call this component �1(T) . This is an important 
conclusion. Then, with �2(T , �) largely describing 63K

⟂
 , the 

hyperfine coupling between the Cu nucleus and �1 must be 
rather anisotropic as this spin acts predominantly for c ∥ B0 . 
Clearly, this can only be the expected A∥,⟂ from spin in the 
3d(x2 − y2) orbital, so we also adopt its sign, and write,

While the Eqs. (7) and (8) may not be exact, they do form a 
rather good description of the Cu shifts. That is, we recover 

(5)63K
⟂
(T , �) ≈ 4B ⋅ �2(T , �),

(6)�2(T → 0) ≈ 0,

(7)63K
⟂
(T , �) = 4B ⋅ �2(T , �),

(8)63K∥(T , �) = A∥ ⋅ �1(T , �) + 4B ⋅ �2(T , �).
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the old hyperfine scenario, also in agreement with first prin-
ciple calculations, but with two different susceptibilities 
(we postulated these before [21, 38]). Note that �1 does not 
depend on doping � for the families with slope 1, but it does 
so for other materials, as we see below. Therefore, we added 
the doping dependence for �1 , as well.

Let us continue the discussion with the cuprates that have 
slope 1 at high temperatures, in more detail. As the tem-
perature is lowered, we find the slopes �3 = 2.5 or 𝜅1 ≳ 10 . 
In other words, �1(T) and �2(T) change together as a func-
tion of temperature: −A∥ΔT�1(T) = 3∕5 ⋅ 4BΔT�2(T) and 
−A∥ΔT�1(T) = 4BΔT�2(T) for slope �3 = 2.5 and 𝜅1 ≳ 10 , 
respectively. One observes in Fig. 3 that at lower tempera-
tures the slope 1 can appear again (lighter lines) with only 
�2 changing, here as a function of temperature.

Note that we have reason to assume that A∥ ≈ −4B so that 
the slopes mean, Δ�1 ≈ Δ�2 , Δ�1 ≈ 0 , and Δ�1 ≈ 3∕5Δ�2 
for 𝜅1 ≳ 10 , �2 = 1 , and �3 = 2.5 , respectively.

Given the discussion above, we conclude that since the 
steep slope describes La2−xSrxCuO4  and YBa2Cu4O8  as 
a function of temperature and doping, for these systems 
ΔT,ζ ⋅ �1(T , �) = ΔT,ζ ⋅ �2(T , �) . Therefore, the doping 
dependence of �1 seems to be a family characteristic as we 
discuss further, below.

Now we look at the absolute size of the susceptibilities. 
63K

⟂
 ranges between 0 and 0.75% (with an orbital shift of 

63KL⟂ = 0.30% ). If we assume the first principle value of 
63KL∥ = 0.70% for the orbital contribution for c ∥ B0 , we find 
that the low-temperature shifts, 63K∥(T → 0) , vary between 
0.5 and 0.8% for different materials. Even if there were 
slight variations of the orbital shift, there is significant spin 
shift �1 far below Tc from the 3d(x2 − y2) spin. In order to 
learn about the size of �1 , we can look at the isotropic shift 
lines. These represent lines with Δ�1 = 0 . We can extend 
those lines in Fig. 3 to the intersection with 63K

⟂
= 0 to 

find out about the size of A∥�1(∼ 300K) . Then we compare 
with A∥�1(T → 0) which are the low-temperature experi-
mental values for the various families (note that �2 = 0 on 
the abscissa). We see that �1 increases with temperature 
by about |A∥|ΔT

�1 ≈ 0.2−0.3% for most of the cuprates, 
but for La2−xSrxCuO4  it increases by about 0.6% so that 
63K∥(T → 0) ≈ 0.

So far, we have discussed the data in terms of the two 
susceptibilities and we saw that these are correlated. This is 
expected for coupled spins, as a magnetic field acting on the 
electronic spin ⟨S1⟩ will also induce a response at the second 
spin ⟨S2⟩ if both spins have a (weak) exchange coupling. The 
total susceptibility is then given by �11 + 2�12 + �22 , and 
Eqs. (7) and (8) change into,

(9)63K
⟂
= 4B ⋅ (b + c)

where we used a shortened notation, as before [38]: 
a = �11, c = �12, b = �22 . With the assumption of A∥ ≈ −4B , 
we have,

We believe that these equations are essential in describing 
the shifts, and they lead to important conclusions, a few 
of which were pointed out before [27, 38]. Note that we 
subsume the family dependence in � , while it is given by 
nCu and nO . The steep slope ( 𝜅1 ≳ 10 ) means that only the 
coupling c(T , �) is responding to doping or temperature. The 
slope �2 = 1 appears if only b(T , �) is affected by doping or 
temperature. Since we do not observe a horizontal slope, i.e., 
due to a alone, we conclude that a is rather independent of 
doping and material. Thus, the variables b and c dominate 
the whole Cu shift anisotropy in Fig. 3. With Eqs. (11) and 
(12) we can also write,

With this, we can understand the shifts. We begin by noting, 
again, that lines with slope �2 = 1 (isotropic shift lines), if 
present, indicate that only b is changing, or, a + c = const. 
These lines occur at high temperatures. Where they inter-
sect 63K

⟂
= 0 we can read off 4B(ah + ch) , or just (ah + ch) 

for short, the high (h) temperature values. Note that at the 
lowest temperatures (b0 + c0) = 0 , but (a0 + c0) can be quite 
large as this shift does not disappear. So for a given mate-
rial with (a0 + c0) = −s0 , we have with (b0 + c0) = 0 also 
(b0 − a0) = +s0.

Let us inspect La2−xSrxCuO4 . We have for high temper-
atures and large doping (bh + ch) ≈ 0.8% . And since only 
c changes (steep slope) at low temperatures Δc ≈ 0.8% 
( Δb ≈ 0) . In view of Eq. (13), if both shifts vanish, 
(a + c) = 0 , as well. An isotropic shift line through the ori-
gin of the shifts should pass the high-temperature points of 
La2−xSrxCuO4 , and it does. So this fact supports the choice 
of the orbital shift c ∥ B0.

As a next example, we take HgBa2CuO4+�  in Fig.  3. 
The high-temperature shifts can be found on an iso-
tropic shift line, as only b changes with doping. If we fol-
low the line to its intersection with the abscissa, we find 
that (ah + ch) ≈ −0.5%  while at the lowest temperature 
(a0 + c0) ≈ −0.75% . We conclude that the change in tem-
perature led to Δa + Δc ≈ 0.25% . In addition, the shift 
change for c⊥B0 gives Δb + Δc = 0.4% and we arrive at 
Δc ≈ 0.24% and Δb ≈ 0.16% between T ≈ 0 and about 

(10)63K∥ = A∥ ⋅ (a + c) + 4B ⋅ (b + c),

(11)63K
⟂
(T , �) = 4B ⋅ (b + c)

(12)63K∥(T , �) = 4B ⋅ (b − a).

(13)63K
⟂
= 63K∥ + 4B(a + c).

1758 Journal of Superconductivity and Novel Magnetism (2022) 35:1753–1760



1 3

300K. The component a did not change with temperature. 
The high-temperature points for the other doping levels 
show that Δbh ≈ ±0.08% for higher (+) and lower (-) doping 
levels, while ch has not changed. And since all arrive at the 
same low temperature shift, the overdoped material exhausts 
ch before it reaches the lowest shift and continues from that 
point with �2 = 1 , while for the underdoped materials the 
slope changes to the steep slope at lower temperatures to 
relinquish the remaining c(T).

It appears that a number of strongly doped materials 
(further to the right on isotropic shift lines) assume the 
steep slope at Tc , but they change to �2 = 1 to give up the 
larger b. The materials with the highest Tc seem to prefer 
to fall with �3 = 2.5 so both changes have to be of given 
size. There is a trade-off between b and c between the 
different materials (and thus to achieve the highest Tc ). 
Perhaps the different isotropic shift lines are just a con-
sequence of a different coupling strength. Note that at 
high temperatures there is no negative shift for c ∥ B0 for 
La2−xSrxCuO4 , but for HgBa2CuO4+�  it is rather large, 
whereas YBa2Cu3O6+y ranges in between. Also, the shifts 
63K

⟂
 appear to be lower for the systems with larger coupling 

(smaller high temperature c). A larger 63K∥ for antiferro-
magnetically coupled spins may indicate stronger coupling 
to the metallic spins, as well. While this is likely, we do not 
know for certain whether the orbital shifts are also slightly 
material dependent for this direction of the field, so that they 
could account for some differences, as well.

La2−xSrxCuO4 and YBa2Cu4O8
 are entirely dominated by 

the steep slope. For all the other systems, a change from the 
high-temperature �2 = 1 slope is initiated by the temperature 
dependence of the shift, either from Tc or the pseudogap. 
But what causes the changes in slope at lower temperatures 
is not clear (maybe it is just demanded by the condensate 
that c and b have to disappear). With the shift measured at 
different fields, it seems not likely that the latter plays a role 
in change of the slope. Clues from other probes or theory 
would be desirable.

7  Nuclear Relaxation

Planar O relaxation [24, 25] is determined by the pseudogap 
in the metal density of states; changes at Tc are difficult do 
discern if the gap is sizable (as for all shifts). Only if the 
pseudogap is nearly closed, Tc decisively changes the tem-
perature dependence. This is in agreement with the action of 
the metallic spin that dominates planar O for all directions 
of the field (according to the anisotropy of the hyperfine 
coefficient). It has been shown that near Tc even relaxa-
tion due to the quadrupolar interaction takes place, but not 
exclusively [39]. This, however, does not change the general 
behavior forced by the pseudogap. There is excess relaxation 

at temperatures near or below the size of the pseuogap. 
However, since we do not know the exact description of 
the pseudogap, or the influence of a gap inhomogeneity, it 
is currently difficult to discuss the behavior in more detail.

Planar Cu relaxation [22, 23] is not at all affected by the 
pseudogap and shows almost classical behavior, i.e., 1∕T1T  
plotted as a function of (T∕Tc) suddenly drops to 0, starting 
just below Tc . In the framework of fluctuating local fields 
[13], cf. (2), and a rather material and doping independent 
1∕T1⟂Tc points to spin with a large hyperfine coefficient per-
pendicular to the CuO2 plane, thus A∥ . Furthermore, the cor-
relation time �0 can only change significantly at Tc . The fact 
that at temperatures ( ≳ 200K ) 1∕T1 lags behind being pro-
portional to T shows that these fluctuations differ from those 
observed at planar O, as one might expect since they come 
from strongly correlated antiferromagnetic spins that interact 
with the metallic ones. The material-dependent anisotropy 
can be understood as a change in correlation between two 
spin components in a simple model that offers perhaps an 
explanation of the pseudogap, as well [38]. It appears that 
the Cu spin imposes a correlation with the metallic spin that 
leads to frustration due to the antiferromagnetic coupling, 
and since the planar O nucleus only sees the latter, it must 
overcome the effective gap to scatter the O nucleus. This 
restriction does not apply to the Cu nucleus.

8  Conclusion

A review of essential old assumptions and their weak-
nesses, together with more recent findings, in particular also 
involving the analyses of literature data, makes it apparent 
that NMR demands a two-component description of the 
cuprates. There is a metallic reservoir of excitations, from 
underdoped to strongly overdoped materials, with a density 
of states common to all cuprates, but it carries a temperature-
independent pseudogap set by doping. This metallic spin not 
only dominates planar O NMR, but also couples to the planar 
Cu nucleus. However, it is the intricate interaction of this 
metallic spin with the strongly antiferromagnetically coupled 
Cu 3d(x2 − y2) spin that leads to the various effects, the pseu-
dogap in shift and relaxation for planar O, and the shift for 
planar Cu, but also the universal Cu relaxation. The interplay 
of the two components is most easily seen in the planar Cu 
shift anisotropy that readily shows the rules of interaction 
as a function of doping and temperature. For example, the 
anisotropy jumps between three different slopes caused by 
the two spins and their coupling, with family-dependent char-
acteristics, and optimal doping prefers a fixed slope set by the 
relative sizes of coupling and polarization, and the maximal 
Tc maybe related to the coupling, as well.

Note that this two-component analysis arose from the fail-
ure of the old single-component picture in view of nearly all 
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planar Cu and O data from the literature to which many inde-
pendent groups contributed. Furthermore, without hardly 
any data manipulation, almost all data have their place in this 
new scenario, so it must be very robust. Clearly, we are only 
beginning to comprehend the deeper consequences for the 
physical picture of the cuprates, but the scenario reminds the 
author of discussions at his first conference on the subject 
after he entered the field, which was summarized by Müller 
here [40].
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