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Abstract
The magnitude of the Josephson current completely determines the value of the order parameters in superconductors sepa-
rated by a barrier of low transparency, up to the second order in transparency. The second harmonic in the current value is 
equal to zero in the second approximation of perturbation theory with respect to the barrier transparency, regardless of the 
approximation within which the bulk superconductors are considered. When considering the correction terms, a new small 
parameter arises associated with the height of the potential barrier. This effect leads to the suppression of the modulus of the 
order parameter at the barrier surface and, hence, to the renormalization of the amplitude of the Josephson current.
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1 Introduction

In order to describe the current state in a superconductor 
divided into two parts by a tunnel barrier, it is necessary to 
have the equations describing the state of superconductors 
and an expression for the current density in the entire space, 
including the barrier region. The Gor’kov’s [1] equations 
written for the Green functions in presence the field of a 
potential barrier of small thickness and low transparency 
usually are used for this purpose. When the tunneling barrier 
has a low transparency, the above-mentioned general prob-
lem, being considered in the first two orders of the expansion 
in series by transparency, can be divided into two parts. The 
first one consists in the choice of the type of approximation 
for description of the bulk superconductors. The second part 
dwells in obtaining of the boundary conditions for the cor-
responding equations and for the current density followed 
from the Gor’kov equations.

The second part of the problem was already solved in 
[2] in the second order of perturbation theory in the bar-
rier transparency. The presence of a tunnel barrier with a 
finite transparency between two superconductors leads to 
the appearance of Josephson effect [3]. The current den-
sity value for the Josephson effect imposes the boundary 

condition for the problem under consideration. The law of 
the current conservation throughout the entire space, includ-
ing the area inside the barrier, plays a key role in obtaining 
of this boundary condition. The absence of corrections to 
the modulus of the order parameter proportional to the cur-
rent density in the first order of perturbation theory is also 
an important factor.

For a deeper understanding of the problem under consid-
eration, we will consider four different approximations for 
describing the bulk superconductors:

• Ginzburg–Landau functional [4]
• generalized Ginzburg–Landau functional [5]
• Gor’kov equations for dirty superconductors
• equations for the Green’s functions integrated with 

respect to the energy variable [6].

2  Josephson Current in a Low‑Transparency 
Tunnel Junction

The current density for a tunneling barrier of low transpar-
ency was obtained in [2] for a wide range of temperatures, 
impurity concentrations, and various types of electron reflec-
tion from the barrier surface:

Here R is the resistance of the tunnel barrier, S is the area 
of the barrier, {|Δ1,2|;�1,2} are the values of the moduli and 
phases of the order parameters on the surface of the barrier. 
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When deriving Eq. (1), the current conservation law in the 
entire space, including the sub-barrier region, was essen-
tially used.

Equation (1) allows to study the current state of supercon-
ductors separated by a tunneling barrier within the perturba-
tion theory in the transparency of the tunneling barrier up 
to the second order inclusive. The finite value of the tunnel 
barrier height results in a weak renormalization of the ampli-
tude of the tunneling current in Eq. (1), while its dependence 
on the phase difference remains unchanged. The details of 
this effect will be discussed in Sect. 6.

3  Approach by the Ginzburg–Landau 
Functional for the Description of the Bulk 
Superconductors

The Ginzburg–Landau functional is usually written as

where � = mP0∕2�
2 — is the density of electron states at the 

Fermi surface, A is the vector potential, �(x) is the Riemann 
zeta function

�0 is the external magnetic field, �(k) is the Euler 
psi-function.

Below we restrict ourselves by consideration of a super-
conductor taken in the form of a wire of a small cross section 
divided into two parts by a low-transparency tunnel barrier. 
The current flow does not change the moduli of the order 
parameter |Δ1,2| (this statement is valid in the first order of 
perturbation theory in the small parameter jtr∕jdep << 1 , 
where jtr is the tunneling current density and jdep is the criti-
cal depairing current). Hence, the expressions for the order 
parameters can be represented in the form

Equation (4) is valid in the whole superconductor up to 
the surface of the tunnel barrier.

The expression for the current density follows from the 
Ginzburg–Landau functional

(2)
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The current conservation law side by side Eqs. (1), (4) 
and (5) determines the value of the parameters {k1,2;�2 − �1} 
for a given current density

In the case when |Δ1| = |Δ2| , the tunneling current den-
sity jcr is equal to [2]:

Equations (6) and (7) demonstrate that the tunneling 
current does not contain the second harmonic of the order 
parameters phase difference �2 − �1 . Let us recall that this 
statement is valid with the accuracy up to the second order 
of perturbation theory in the barrier transparency.

Let us now consider a more general case in which for 
description of the bulk superconductor one use the general-
ized Ginzburg–Landau functional [5]

In Eq. (8) v — velocity on the Fermy surface,

The summation over Matsubara frequencies in Eq. (9) 
was performed in Ref. [5].

As above, the expressions for order parameters Δ1,2 that 
are valid up to the barrier surface can be chosen in the  
form of Eq. (4).

Using the Ginzburg–Landau functional in the form of  
Eq. (8) one can obtain the following expression for the  
current density
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Substituting the order parameters Δ1,2 in the form of Eq. 
(4) into Eq. (10), one obtains the expression for the value of 
the current density in superconductors [1, 2]

Finally, the current conservation law

determines the value of the quantities {k1, k2,�2 − �1} . From 
Eq. (12) it follows that in the adopted approximation of the 
second order of the perturbation theory with respect to the 
transparency of the barrier, the second harmonic in the cur-
rent density is absent.

4  Superconductor with Short Electron Mean 
Free Path

In a superconductor with short electron mean free path (“dirty” 
superconductor), the Gor’kov equations can be reduced to a 
system of differential equations for the Green’s functions, inte-
grated over the energy variable and averaged over the direc-
tions of the momentum on the Fermi surface [6]

where
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Here � is the scalar potential, [,] is a commutator, �S is elec-
tron scattering time with the spin flip. In its turn the current 
density is determined by the expression

where �
0
= e2p2ltr∕3�

2 is the conductivity of the metal in  
its normal state. The expression for the order parameters Δ1,2 
which is valid up to the surface of the tunnel barrier, can be 
again represented in the form of Eq. (4) with constant Δ1,2.

The matrix Green’s function G we will seek in the form

where the parameters {�, �, �} are independent on coordi-
nate constants.

Substituting Eq. (16) into Eqs. (13)−(15), we obtain two 
equations for {�, �} and the expression for the current density:

The quantities {k1,2} are solutions of the equation

Analysis of Eqs. (17)−(19), in the frameworks of the per-
turbation theory up to the second order with respect to the 
barrier transparency, demonstrates the absence of the second 
harmonic of the phase difference �2 − �1 in the tunneling cur-
rent density.

5  Quasi‑Classical Approximation Based 
on the Integrated Over the Energy 
Variable Green Functions Formalism

The equation for the Green’s functions integrated over the 
energy variable can be written in the form [6]
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while the current

Here n is the impurity concentration, � is the scalar, and 
� is the vector potentials. The self-energy part Σ in the Born 
approximation is equal to

with �
��′ as the electron scattering cross section of electron 

by impurity.
In the geometry under consideration, the expression for the 

order parameter Δ , which is valid up to the barrier surface, can 
be chosen in the form

where the values {|Δ|, k,�} do not depend on the coordi-
nates. The matrix Green’s function G acquires the form

Substitution of Eq. (24) into Eqs. (20)−(21) results in the 
following relationships for the quantities {𝛼, 𝛽, 𝛽, k,𝜙}

As the small parameter here appears the ratio of the tun-
neling current density to that one of the depairing current. The 
second-order correction with respect to this parameter does not 
appear in the current density determined by Eq. (21). Conse-
quently, the second harmonic of the phase difference �2 − �1 
is absent in the tunneling current density also under this, fairly 
general, assumptions made in this section.

In the first order in the barrier transparency analyzing Eq. 
(25), one finds the following expression for the quantities 
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Substituting expressions (26) into Eq. (21) for the current 
density, one finds the values of the parameters determining 
the current state in the structure under consideration:

One sees that the second harmonic of the phase differ-
ence �2 − �1 again does not appear in the tunneling current 
even in the considered most general case.

6  The Role of the Finite Value of the Barrier 
Height

The finiteness of the tunnel barrier height results in the 
renormalization of the order parameter magnitude in the 
vicinity of the barrier even in the absence of flowing cur-
rent. Analysis of the Gor’kov’s equation when current 
is zero leads to the following expression for the Green’s 
function F inside the barrier

where C1,2 are some constants, d is the thickness of the bar-
rier, V is the height of the barrier. A significant jump of the 
function F occurs at the surface of the barrier when its trans-
parency is small. As result, instead of the standard require-
ment at the barrier surface

one obtains the following boundary condition for the func-
tion �P(�)

where � is the normal to the superconductor surface, �−1 
correlation length definite in Eq. (39) and

(see Eqs. (20) and (24))
Right-hand side of Eq. (30) is the first nonzero term of 

expansion over steps of inverse quasiclassical parameter.
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We look for solution of this system of equations by means 
of the method of perturbation theory with respect to the 
small parameter determined by Eq. (30). In result one finds

where

while Δ0 is the value of the order parameter modulus at large 
distances from the barrier. The function ��(1)(�)satisfies the 
boundary condition (30) and the following equation

where
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Substituting the expressions for the quantities {Δ(1),Γ(�)} 
into Eq. (33), one obtains the equation for the quantity � in 
explicit form

In the presence of non-zero current the Green’s function 
G can be chosen in the form
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�
(𝜔) >2

(
�
𝜕𝜒

𝜕�

)
1

𝜔 < 𝛼
�
(𝜔) > +|Δ| < 𝛽

�
(𝜔) > +

1

2𝜏tr

(43)

⎧
⎪⎨⎪⎩
j =

𝜋e𝜈v2

3

𝜕𝜒

𝜕�
T
�
𝜔

< 𝛽� >2 1

𝜔 < 𝛼�(𝜔) > +�Δ� < 𝛽�(𝜔) > +
1

2𝜏tr

⎫⎪⎬⎪⎭1,2

(44)jtr =
𝜋

eSR
sin(𝜙2 − 𝜙1)T

∑
𝜔

< 𝛽
�
(𝜔) >1< 𝛽

�
(𝜔) >2
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In Eq. (44), the quantities {< 𝛽
�
(𝜔) >1,2} should be taken at 

the barrier surface. The current conservation law means that

7  Conclusion

A superconducting current can flow in a superconductor 
divided into two parts by a barrier (Josephson effect). The 
correction to the modulus of the order parameter is equal to 
zero in the first order of the perturbation theory in the value 
of the tunneling current. An important fact which was found 
above is the existence of the phase difference jump (�2 − �1) 
of the order parameter between the opposite sides of the 
barrier while maintaining an unambiguous interpretation of 
the Gor’kov’s equation for the function F at the coinciding 
points in the underbarrier region. As a result, at low trans-
parency of the tunneling barrier, the study of the Josephson 
effect splits into two parts, as was done above. Knowledge of 
the solutions of the Schrödinger equation for wave functions 
in the field of a potential barrier is insufficient to recover the 
Gor’kov’s correlation functions. The boundary conditions 
obtained on this basis and the results following from them 
are erroneous [7–9].

In the case of the finite value of the barrier height the 
derivative from the order parameter on the barrier surface 
(�

�

�r
)|Δ| is non zero.

It is very important that in the first order of perturbation 
theory in the transparency of the barrier, this slope does 
not depend on the magnitude of the current density. As a 
result, the phases �1,2 can be easily reconstructed using Eq. 
(43) and they do not acquire additional dependence on the 
phase difference �2 − �1 (see Eqs. (43)−(44)). As a result, 
the second harmonic in the current density, being calculated 
in the second order of the perturbation theory with respect 
to the barrier transparency, turns out to be zero.

The finiteness of the potential barrier height leads to 
suppression of the order parameter modulus in the vicin-
ity of the barrier and, thus, to a weak renormalization of 
the Josephson current amplitude. Its phase dependence is 
of particular interest because in the low-frequency limit 
the expression for current is retained with the replacement 

(45)jtr = j1 = j2

�Φ∕�t = 2eV  (V is the potential difference across the bar-
rier) [10].

For typical set of junction parameters {vF = 108sm∕sec,

V∕�F = 10;p∕ℏ� = 104,m = 9.8 ⋅ 10−28gr} we  ob t a in 
the following smallness value, connected with Eq. (30): 
Δ1∕Δ0 ≈ 1.15 ⋅ 10−4
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