Skip to main content
Log in

Improvement of Giant Magnetoimpedance and Sensitivity in Co68.5-xFe4WxSi16.5B11 (x = 0.8, 2) Ribbons Sandwiched in PVA/Fe3O4 Nanocomposite Films

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this work, giant magnetoimpedance (GMI); magnetic hysteresis loop; and sensitivity of Co68.5Fe4Si16.5B11 (S), Co67.7Fe4W0.8Si16.5B11 (W1), and Co66.5Fe4W2Si16.5B11 (W2) are comparatively studied for evaluating the effect of tungsten (W) on cobalt-based ribbons. At the frequency of 4.5 MHz and current of 25 mA, the values of GMI and sensitivity of W1 and W2 ribbons are, respectively, 105% and 36%/Oe, and 97% and 68%/Oe, so they are significantly enhanced as compared to S ribbons. Next, iron oxide (Fe3O4) nanoparticles are synthesized using the co-precipitation method, and polyvinyl alcohol-Fe3O4 (PVA/Fe3O4) nanocomposite films are prepared by dispersing Fe3O4 nanoparticles with weight ratios of 1–9% in the PVA solution. Then, magnetic properties and sensitivity of W1 and W2 ribbons are studied in the presence of PVA/Fe3O4 nanocomposite films with different ratios on both sides of the ribbons as well as in the absence of PVA/Fe3O4 nanocomposites. The results reveal that by increasing Fe3O4 weight ratio in PVA, the GMI and sensitivity of sandwiched ribbons increase remarkably as compared to ribbons free of PVA/Fe3O4 nanocomposite films. The maximum values of GMI and sensitivity are observed in the W1 ribbon covered with 7% nanocomposite, and sensitivity is enhanced up to 91%/Oe as compared to non-covered ribbons. These results present a new efficient method for increasing GMI and sensitivity in biosensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Panina, L.V., Mohri, K., Bushda, K., Noda, M.: Gaint magneto-impedance and magneto-inductive effect in amorphous alloys (invited). J. Appl. Phys. 76, 6198 (1994)

    Article  ADS  Google Scholar 

  2. Beach, R.S., Berkowitz, A.E.: Giant magnetic field dependent impedance of amorphous FeCoSiB wire. J. Appl. Phys. Lett. 64, 3652 (1994)

    Article  ADS  Google Scholar 

  3. Panina, L.V., Mohri, K., Uchiyama, T., Noda, M., Bushida, K.: Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Tran. Magn. 31(2), 1249 (1995)

    Article  ADS  Google Scholar 

  4. Appino, C., Beatrice, C., Tiberto, P., Vinai, F.: Giant magnetoimpedance and induced anisotropy in joule-heated and conventionally annealed Cobased amorphous materials. J. Magn. Magn. Mater. 215–216, 349 (2000)

    Article  ADS  Google Scholar 

  5. Lei, H., Xungang, D., Baoxia, G., Luyu, Z., Tianmin, W.: Study on preparing and crystallization kinetics of melt-spun Co-based soft magnetic amorphous alloy. Rare Metal Mater. Eng. 37(9), 1628 (2008)

    Article  Google Scholar 

  6. Graham, C., Jr., Egami, T.: Magnetic properties of amorphous alloys. Annu. Rev. Mater. Sci. 8(1), 423 (1978)

    Article  ADS  Google Scholar 

  7. Hernando, B., Sa´nchez, M.L., Prida, V.M., Tejedor, M.: Magnetoimpedance effect in amorphous and nanocrystalline ribbons. J. Appl. Phys. 904783 (2001)

  8. Makhotkin, V.E., Shurukhin, B.P., Lopatin, V.A., Marchukov, P.Y., Levin, Y.K.: Magnetic field sensors based on amorphous ribbons. Sens. Actuators A. 27, 759 (1991)

  9. Tejedor, M., Hernando, B.,Sa´nchez, M.L., Prida, V.M., Va´zquez, M.: Stress and magnetic field dependence of magneto-impedance in amorphous Co66.3Fe3.7Si12B18 ribbons. J.Magn. Magn. Mater. 196, 330 (1999)

  10. Sommer, R.L., Chien, C.L.: Role of magnetic anisotropy in the magnetoimpedance effect in amorphous alloys. Appl. Phys. Lett. 67, 857 (1995)

    Article  ADS  Google Scholar 

  11. Kurlyandskaya, G.V., Levit, V.: Magnetic Dynabeads® detection by sensitive element based on giant magnetoimpedance. Biosens. Bioelectron. 20(8), 1611 (2005)

    Article  Google Scholar 

  12. Zhou, X., Tu, G., Kunkel, H., Williams, G.: Effect of Joule-heating annealing conditions on giant magnetoimpedance of Co-rich amorphous ribbons. Sens. Actuators A Phys. 125(2), 387 (2006)

    Article  Google Scholar 

  13. Semirov, A.V., et al.: Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites. J. Magn. Magn. Mater. 415, 97 (2016)

    Article  ADS  Google Scholar 

  14. Dadsetan, A., Kashi, M. A., Mohseni, S.M.: ZnO thin layer/Fe-based ribbon/ZnO thin layer sandwich structure: introduction of a new GMI optimization method. J. Magn. Magn. Mater. 493, 165697 (2020)

  15. Safronov, A.P., Mikhnevich, E., Lotfollahi, Z., et al.: Polyacrylamide ferrogels with magnetite or strontium hexaferrite: next step in the development of soft biomimetic matter for biosensor application. Sensors 18(1), 257 (2018)

  16. Lotfollahi, Z., Amirabadizadeh, A., Safronov, A.P., Beketov, I.V., Kurlyandskaya, G.V.: Magnetoimpedance effect in CoFeMoSiB as-quenched and surface modified amorphous ribbons in the presence of iron oxide nanoparticles of water based ferrofluid. J. Sens. 4365682, 1–9 (2017)

    Article  Google Scholar 

  17. Amirabadizadeh, A., Hassanzadeh, M., Sarhadi, R., Rasouli, M. R.: Structural and magnetic properties of ribbons Co68.5-xFe4WxSi16.5B11 (x = 0.8, 2) in amorphous and crystalline states. Iran. J. Crystallogr. Mineral. 27(2), 495 (2019)

  18. Lotfollahi, Z., García-Arribas, A., Amirabadizadeh, A., Orue, I., Kurlyandskaya, G.V.: Comparative study of magnetic and magnetoimpedance properties of CoFeSiB-based amorphous ribbons of the same geometry with Mo or W additions. J. Alloys Compd. 693, 767 (2017)

    Article  Google Scholar 

  19. Carmona-Carmona, A., Palomino-Ovando, M., Hernández-Cristobal, O., Sánchez-Mora, E., Toledo-Solano, M.: Synthesis and characterization of magnetic opal/ Fe3O4colloidal crystal. J. Cryst. Growth 462, 6 (2017)

    Article  ADS  Google Scholar 

  20. Gnanaprakash, G., Mahadevan, S., Jayakumar, T., Kalyanasundaram, P., Philip, J., Raj, B.: Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater. Chem. Phys. 103, 168 ( 2007)

  21. Akhavan, A., Khoylou, F., Ataeivarjovi, E.: Preparation and characterization of gamma irradiated starch/PVA/Zno nanocomposite films. Radiat. Phys. Chem. 138, 49 (2017)

    Article  ADS  Google Scholar 

  22. Mallakpour, S., Motirasoul, F.: Use of PVA/α-MnO 2-stearic acid nanocomposite films prepared by sonochemical method as a potential sorbent for adsorption of Cd (II) ion from aqueous solution. Ultrason. Sonochem. 37, 623 (2017)

    Article  Google Scholar 

  23. Amirabadizadeh, A., Sarhaddi, R., Vahedipanah, Z., Mardani, R.: Structural, morphological, electrical and magnetic properties of nanostructured COFe thin films prepared by spray pyrolysis deposition method. Surf. Rev. Lett. 22(5), 1550068 (2015)

    Article  ADS  Google Scholar 

  24. Morrish, A.H., Yu, S.P.: Magnetic measurements on individual microscopic ferrite particles near the single-domain. Phys. Rev. 102, 670 (1956)

    Article  ADS  Google Scholar 

  25. Nabeel Rashin, M., Hemalatha, J.: Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics 54, 834 (2014)

    Article  Google Scholar 

  26. Buzea, C., Pacheco, I.I., Robbie, K.: Nanomaterials and nanoparticles: sources and toxicity. J. Biointerphases 172 (2007)

  27. Mathew, D.S., Juang, R.S.: An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51 (2007)

    Article  Google Scholar 

  28. Kannapiran, N., Muthusamy, A., Chitra, P., Anand, S., Jayaprakash, R.: Poly (o-phenylenediamine)/NiCoFe2O4 nanocomposites: synthesis, characterization, magnetic and dielectric properties. J. Magn. Magn. Mater. 423(16), 208 (2017)

    Article  ADS  Google Scholar 

  29. Guimaraes, A.P.: Principles of Nanomagnetism. Springer-Verlag, Berlin Heidelberg (2009)

    Book  Google Scholar 

  30. Muraca, D., Cremaschi, V., Knobel, M., Sirkin, H.: Influence of Ge on magnetic and structural properties of Joule-heated Co-based ribbons: giant magneto- impedance response. J. Magn. Magn. Mater. 320, 2068 (2008)

    Article  ADS  Google Scholar 

  31. Knobel, M., Vázquez, M., Kraus, L.: Giant Magnetoimpedance Handbook of Magnetic Materials. Elsevier. 15, 497 (2003)

    Google Scholar 

  32. Chaturvedi, A., Stojak, K., Laurita, N., Mukherjee, P., Srikanth, H., Phan, M.H.: Enhanced magnetoimpedance effect in Co-based amorphous ribbons coated with carbon nanotubes. J. Appl. Phys. 111, 07E507 (2012)

  33. Wang, T., Yang, Z., Lei, C., Lei, J., Zhou, Y.: Quantitative determination of magnetic beads using a magnetoimpedance-based lab-on-a-chip platform. J. Appl. Phys. 115(22), 223901 (2014)

  34. Kumar, A., Mohapatra, S., Fal-Miyar, V., Cerdeira, A., Garcia, J.A., Srikanth, H., Gass, J., Kurlyandskaya, G. V.: Magnetoimpedance biosensor for Fe3O4 nanoparticle intracellular uptake evaluation. Appl. Phys. Lett. 91(14), 143902 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amirabadizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirabadizadeh, A., Hassanzadeh, M., Sarhaddi, R. et al. Improvement of Giant Magnetoimpedance and Sensitivity in Co68.5-xFe4WxSi16.5B11 (x = 0.8, 2) Ribbons Sandwiched in PVA/Fe3O4 Nanocomposite Films. J Supercond Nov Magn 35, 201–213 (2022). https://doi.org/10.1007/s10948-021-05984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05984-x

Keywords

Navigation