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Abstract
Very recently, by inspecting large sets of data across all families of superconducting cuprates, it became obvious that the
prevailing nuclear magnetic resonance (NMR) interpretation of cuprate properties is not adequate, as it does not account
for the differences between the families, as well as common characteristics beyond simple temperature dependence. From
the most abundant planar Cu shift data, one concludes readily on two electronic spin components with different doping and
temperature dependencies. Their uniform response that causes NMR spin shifts consists of a doping-dependent component
due to planar O, and another due to spin in the planar copper 3d(x2 − y2) orbital, where the latter points opposite the field
direction. Planar Cu relaxation was found to be rather ubiquitous (except for La2−xSrxCuO4), and Fermi liquid-like, i.e.,
independent of doping and material, apart from the sudden drop at the superconducting transition temperature, Tc. Only the
relaxation anisotropy is doping and material dependent. We showed previously that one can understand the shifts within
a two-component scenario, but we failed with a model to account for the relaxation. Here, we suggest a slightly different
shift scenario, still based on the two components, by introducing different hyperfine couplings, and, importantly, we are
able to account for the Cu nuclear relaxation and its anisotropy for all materials, including also La2−xSrxCuO4. The results
represent a solid framework for theory.

Keywords Cuprates · NMR · Electronic properties

1 Introduction

Nuclear magnetic resonance (NMR) is a powerful local,
bulk probe of material properties [1]. This concerns the
chemical as well as electronic structure of materials, which
can be studied locally at various nuclear sites in the unit
cell. The changes in the NMR shifts and relaxation from the
modification of the density of states due to the opening of
a superconducting gap in conventional superconductors are
famous examples [2, 3]. Not surprisingly, after the discovery
of cuprate superconductivity [4], NMR experiments focused
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danicas.dp@gmail.com

Jürgen Haase
j.haase@physik.uni-leipzig.de

1 Felix Bloch Institute for Solid State Physics,
University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany

in particular on planar Cu and O in these type II materials
(for reviews of cuprate NMR, see [5, 6]). However, with the
early focus on only a few systems and a lack of established
theory, the NMR data interpretation ceased to evolve with
a number of questions unanswered. Fortunately, more and
more NMR studies of different materials appeared in the
literature over the years.

During the last 10 years, with special NMR experiments
on La1.85S0.15CuO4 [7], YBa2Cu4O8 [8], and samples of
the HgBa2CuO4+δ family of materials [9, 10], a cornerstone
of the old interpretation was questioned and shown to
be not correct: a single temperature-dependent electronic
spin component, s(T ), that follows from the uniform spin
susceptibility, i.e., s(T ) = χ(T ) · B0, in an external field
B0, is not capable of describing the temperature-dependent
NMR spin shifts, nKd(T ) = nHd · χ(T ). Since nKd(T )

can be measured at various nuclei (n), or for any orientation
(d) of the external field with respect to the crystal axes,
with nHd being the corresponding hyperfine constant, one
demands from different experiments that �nKd ∝ �mKe,
which was clearly not observed in general, only in certain
ranges of temperature [7–10].

/ Published online: 25 April 2020

Journal of Superconductivity and Novel Magnetism (2020) 33:2621–2628

http://crossmark.crossref.org/dialog/?doi=10.1007/s10948-020-05498-y&domain=pdf
mailto: marija.avramovska@uni-leipzig.de
mailto: danicas.dp@gmail.com
mailto: j.haase@physik.uni-leipzig.de


Also during the last decade, the understanding of the
charge sharing in the CuO2 plane advanced significantly
from a more qualitative [11] into a quantitative model
[12, 27]. It became apparent that, e.g., the maximum
temperature of superconductivity correlates with the sharing
of the inherent hole between planar Cu and O, the higher
the oxygen hole content the higher Tc, max [13]. Other
cuprate properties depend on the charge sharing, as well.
This mostly family-dependent behavior stimulated some
of us to inspect also a larger body of NMR shifts and
relaxation for material-dependent differences or common
characteristics.

In the first step, all available 63Cu NMR shifts that
are rather abundant and reliable were gathered [14]. And,
indeed, by just plotting these shifts a new phenomenology
emerged, and points immediately to a more complicated
uniform response that cannot be explained with a simple
χ(T ). In the second step, all available 63Cu NMR relaxation
rates were collected [15, 16] and, again, simple plots
revealed a surprisingly different scenario. Here, a rather
material- and doping-independent relaxation was revealed
with spin fluctuations similar, but not in excess to what one
expects from a simple Fermi liquid. Only the relaxation
anisotropy depends on the materials and decreases with
increasing doping.

Then, in a first attempt, we tried to reconcile these
findings [15]. We could show that a two-component
description, as introduced earlier [7] (with two spin
components that couple with two different hyperfine
coefficients, nH 1d and nH 2d , to each nuclear spin, n), is
indeed sufficient to understand the planar Cu shifts (with
the La2−xSrxCuO4 family being some kind of outlier, cf.
Fig. 1). Two spin susceptibilities (χ1, χ2) demand a third
term from a coupling between the two electronic spin
components. That is, one has to write, χ1 = χ11+χ12, χ2 =
χ22 + χ21 (χ12 = χ21), and,

nK‖,⊥ = nH 1‖,⊥ · (a + c) + nH 2‖,⊥ · (b + c) (1)

with a = χ11B0, b = χ22B0, and c = χ12B0, and
the magnetic field parallel and perpendicular to the crystal
c-axis.

In order to independently test the important conclusion of
two spin components with different doping and temperature
dependencies, we investigated the planar O data [20], very
recently. We found that, indeed, planar O shifts demand
two spin components, as well, where one of them is
doping dependent. This encouraged us to search for a better
understanding of the very reliable Cu data, in particular of
the nuclear relaxation and its anisotropy, which we failed to
deliver previously [15].

By plotting a large set of literature Cu relaxation data
[15], we found generic behavior, as well, with the exception

of just one family, La2−xSrxCuO4. In fact, all other cuprates
have rather similar relaxation rates, 1/T1⊥ [16], i.e., if
measured with the magnetic field perpendicular to the
crystal c-axis, c⊥B0, cf. Fig. 2. In particular, just above
Tc the value of 1/T1⊥Tc ∼ 20/Ks for all cuprates,
while Tc can be very different, or even close to zero
for strongly overdoped systems. There is no particular
doping dependence of 1/T1⊥ as one might naively expect if
electronic spin fluctuations beyond those of a more regular
Fermi liquid were to increase toward lower doping levels
(there are hardly data available at very low doping). In
fact, a value of 20/Ks follows with the Korringa relation
[22] from those cuprates with the highest shifts, i.e., the
upper right corner of the shaded triangle in Fig. 1 [15],
which suggests that the shifts have the tendency to be
suppressed if the Korringa relation fails, and it is not
due to an increased relaxation. The situation is somewhat
different for 1/T1‖ since for this direction of measurement
(c ‖ B0) the rates differ between families and have the
tendency to increase with decreasing doping. However, it
was demonstrated that the ratio, [1/T1⊥(T )] /

[
1/T1‖(T )

]
,

is temperature independent for all cuprates, and is the same
above and below Tc; i.e., both rates are proportional to each
other [15, 16].

Interestingly, the La2−xSrxCuO4 family of materials is
the only outlier to this phenomenology, cf. Fig. 2. However,
the anisotropy ratio is also temperature independent and has
a value of about 2.3, very similar to that of some other
cuprates.

In our first attempt at reconciling shift and relaxation
[15], we could only explain the shift suppression, but
failed to present a microscopic model that also explains the
relaxation and its anisotropy. Here, we discuss and modify
our previously suggested two-component scenario [15] in
that we introduce somewhat different hyperfine coefficients,
together with a new notation, still based on the identification
of the two electronic components as being due to planar
Cu 3d(x2 − y2) and likely planar O 2pσ spin densities.
Most importantly, we are able to present a simple, yet
fundamental, model of nuclear relaxation in terms of these
two components that fits all planar Cu relaxation data, even
including the outlier La2−xSrxCuO4.

2 Planar Cu Shifts

Dissimilar from our previous attempt to understand all
planar Cu shift data [15], we will be using a somewhat
different nomenclature and hyperfine coupling coefficients
here. Therefore, we repeat the basic arguments leading to
the description, now.

The total magnetic shift for planar Cu, 63K̂‖,⊥, is the
sum of an orbital and spin shift component, and we have for
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Fig. 1 a Total 63Cu shifts vs. temperature, K̂‖,⊥(T ), for 4 doping
levels of La2−xSrxCuO4 and two directions (c ‖ B0, c⊥B0) of the
external field B0 with respect to the crystal c-axis (adopted from [17]).
K‖ is T independent and similar for all doping levels. K⊥ shows
a much larger spread with doping and decreases rapidly near Tc. b
Sketch of the spin shift K⊥(T ) vs K‖(T ) plot valid for other cuprates
[14], with real data from the 4 doping levels of La2−xSrxCuO4 (with
temperature as an implicit parameter). The shaded area is where the
rest of the many cuprates can be found (the shaded triangle has a
hypotenuse of slope ≈ 1), only typical data are shown by crosses. Data

lie on straight line segments (lines) with a few slopes only: a slope
≈ 1 (dashed lines); a very steep slope (vertical lines); a slope of 2.5.
For example, a slope of 2.5 is typical for HgBa2CuO4+δ (at higher
T ), a steep slope for YBa2Cu4O8, and for symmetry reasons we use
a slope of 1 for some Tl-based compounds, as well as for overdoped
HgBa2CuO4+δ at low T . La2−xSrxCuO4 is a clear outlier with only
the steep slope. In the simple two-component description, cf. (5), (6),
a change in one of the components a, b, or the coupling c leads to the
indicated slopes in the middle of (b); for the subtraction of the orbital
shifts, see main text

the two orientations (c ‖ B0, c⊥B0) of the magnetic field
B0 with respect to the crystal c-axis,

K̂‖,⊥(T ) = KL‖,⊥ + K‖,⊥(T ). (2)

It is of particular use to plot the total shifts K̂⊥(T ) vs.
K̂⊥(T ) [14] with temperature as an implicit parameter, i.e.,
one does not make assumptions about KL‖,⊥. Such a plot
brings out a number of remarkable trends [14, 15]. A sketch
of such a plot is presented in Fig. 1b, and we repeat some
conclusions [15], but also include new ones, below.

A fundamental assumption is [14, 15],

KL⊥ ≈ 0.30%, (3)

since all cuprates show a rather similar low temperature shift
for c⊥B0 with K̂⊥(T → 0) ≈ 0.30%. Therefore, this value
appears to be reliable. It is the same assumption made early
on [5]. We note that this value is backed by first principle
calculations [19] (while this is not the case for KL‖).

Second, except for La2−xSrxCuO4, all data points in
that plot are found in the lower right triangle that has

Fig. 2 a Planar 63Cu relaxation
rates of the cuprates (data from
[16]); 1/T1⊥ of La2−xSrxCuO4
in comparison is about twice as
high as that of other cuprates. b
1/T1⊥ vs 1/T1‖, which is ≈ 2.3
for La2−xSrxCuO4
(highlighted), is very similar to
what is found for other cuprates
(data [16]). It is mostly 1/T1‖
that changes with doping and
material, but remains
proportional to 1/T1⊥ (at all
temperatures)
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as hypothenuse a line of slope 1, i.e., �K̂⊥/�K̂‖(T ) ≈
1. This line points immediately to an isotropic hyperfine
coefficient, while the fact that K̂‖(T ) > K̂⊥(T ) (all
data in the lower, right triangle) demands a second, very
anisotropic hyperfine coefficient that acts mostly for c ‖ B0.
Very similar arguments as put forward in the old literature
let us choose A⊥,‖ and B: note that there must be spin
in the 3d(x2 − y2) orbital, and it is very likely that there
will also be an isotropic coupling term. Then, the NMR
shifts demand, however, that the spin polarization in the
3d(x2−y2) orbital must be negative, as pointed out recently
[14, 15], for we know that A‖ is negative, and |A‖| � A⊥
[23].

Thus, we write with (1),

K‖⊥ = A‖,⊥ · (a + 4cj ) + B · 4(bj + cj ). (4)

For symmetry reasons, we take (bj + cj ) from each of
the 4 neighbors to be the same, i.e., from spin in the planar
O 2pσ orbitals, cf. Fig. 3. As before [15], we will neglect
A⊥ and simply write:

K‖ = A‖(a + 4cj ) + B · 4(bj + cj ) (5)

K⊥ ≈ B · 4(bj + cj ). (6)

This is a different notation from before [15] where we used
b = 4bj .

Fig. 3 In an external magnetic field B0 two spin components a and
bj appear, originating from the planar Cu 3d(x2 − y2) and the four
surrounding O 2pσ orbitals, respectively. Due to a coupling (c), the
effective components are (a + 4cj ) and (bj + cj ). While (bj + cj )

is positive for the cuprates, (a + 4cj ) turns out to be negative. The
hyperfine coefficients Ad and B lead to orientation-dependent (d)
NMR shifts Kd = Ad(a + 4cj ) + B(bj + cj ) at the Cu nucleus

A zero spin shift, our first, fundamental assumption
means that

∑
j (bj + cj ) = 0, and we have for the other

orientation:

K̂‖(T → 0) = KL‖ + A‖(a + 4cj ). (7)

In order to estimate the orbital shift,KL‖, for this orientation
of the field, as before [15], the most reliable approach is
to use (3) together with calculations of the orbital shift
anisotropy, since the latter is mostly determined by matrix
elements involving the orbital bonding wave functions of Cu
and O [18, 19]. In fact, we use the suggested value of 2.4
from [19]:

63KL‖ = 2.4 ·63 KL⊥ ≈ 0.72%. (8)

Note that this value could vary between families, but since
the orbital shift for c⊥B0 does not change significantly
between families, we do not expect a large effect for c ‖ B0,
as well. This is important as it means that most cuprates have
a non-vanishing spin shift for c ‖ B0 from a negative spin
polarization in the 3d(x2 − y2) orbital, even at the lowest
temperatures.

As mentioned earlier, a few special slopes govern the
shift-shift plot presented in their figure 7 [14], and we
highlighted them in Fig. 2b, again. These are segments
defined by temperature or doping for which the ratio of
changes in both shifts is constant, �K̂⊥(T )/�K̂‖(T ) = κ,

and one finds 4 slopes, κ ≈ 0, 1, 2.5, ∞. For example,
κ = 1 denotes isotropic shift lines and readily follows from
a mere change of bj only, as it enters both terms in (5) and
(6). Then, κ ≈ 0 in this approximation is realized by a
change in a, only, since we neglected the rather small A⊥.
Note that term c operates on both shifts, K⊥ and K‖, and
must be involved in the special slopes κ = 2.5 and κ ≈ ∞.
While not favored before [15], we believe that κ ≈ ∞ is
caused by a mere change in c. The reasoning is as follows:
not a single material in the shift-shift plot shows a negative
slope, i.e., a slope to the right of κ ≈ ∞. This is remarkable
and must mean that the component a cannot significantly be
involved in shift changes.

With this assumption that cj causes κ ≈ ∞, we note that
(5) and (6) require:

A‖ ≈ −B, (9)

and we have with (5) and (6):

K‖ ≈ B(4bj − a) (10)

K⊥ ≈ B4(bj + cj ). (11)

Note that in this approximation, c effectively acts only for
c⊥B0. Then, the slope of κ ≈ 2.5 is given by a concomitant
change of bj and cj , e.g., �bj = 1.5�cj if both terms
change proportionally.

To summarize, in the above model, the individual
changes of a, bj , and cj correspond to slopes of κ = 0, 1,
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and ∞, respectively, in Fig. 1 (if all bj and cj are the same).
Even if this is not precisely what happens, we think that (10)
and (11) still capture the fundamental aspects of the planar
Cu shifts.

With these results in mind, we can look at the data for
La2−xSrxCuO4 again.

The high temperature shifts for La2−xSrxCuO4, K⊥,
are much larger than what we expect from its K‖ =
B(4bj − a) values. In one scenario, a larger a and larger
bj could position this family at larger K⊥ (for given
cj ). The action of a temperature-dependent cj then leads
to the κ ≈ ∞ slope. Alternatively, cj could be much
larger for La2−xSrxCuO4, i.e., much more positive, at high
temperatures. This also leads to a much larger B(bj + cj ).
Again, a drop in cj then makes (bj + cj ) disappear.

To conclude, while La2−xSrxCuO4 is an outlier in the
shifts, the position in Fig. 1 can be understood within the
two-component scenario, as well.

3 Planar Cu Relaxation

The nuclear relaxation rate 1/T1‖ measures the in-plane
fluctuating magnetic fields, 〈h2⊥〉, from electronic spin
fluctuations, while 1/T1⊥ is affected by both, in-plane,
〈h2⊥〉, as well as out-of-plane, 〈h2‖〉, fields (only fluctuating
field components perpendicular to the nuclear quantization
axis lead to nuclear spin flips, required for spin-lattice
relaxation).

Phonons will cause nuclear relaxation for quadrupolar
nuclei (I > 1/2, like Cu and O) as they modulate the
electric field gradient, but it has been shown that the
magnetic fluctuations dominate in most situations [24, 25],
and the recent analysis of all Cu relaxation data shows that
a simple magnetic mechanism appears to capture the overall
behavior quite well [15, 16].

In a straightforward approach, one would assume nearly
isotropic spin fluctuations filtered by the nuclear hyperfine
coefficients, which can then lead to a relaxation anisotropy.
The electronic correlation time (τ0) of electronic spin
fluctuations is expected to be very fast compared with the
slow precession of the nuclei. Thus, the nuclear relaxation
rates can be written as [18]:

1

T1‖
= 3

2
γ 2 · 2〈h2⊥〉τ0 (12)

1

T1⊥
= 3

2
γ 2

[
〈h2⊥〉 + 〈h2‖〉

]
τ0, (13)

from which the relaxation anisotropy follows:

1/T1⊥
1/T1‖

= 1

2
+ 〈h2‖〉

2〈h2⊥〉 . (14)

Given that the shifts demand two different electronic spin
components coupled to the nuclei through an anisotropic
constant A‖,⊥ and an isotropic constant B, one should
allow for two different fluctuating spin densities α and
β = ∑

j βj , as well. Furthermore, since the fluctuations are
caused by rapid exchange, the correlation time τ0 should be
the same for both components.

We thus write:

〈h2⊥,‖〉 ≈ 〈(
∑

j

Bβj + A⊥,‖α)2〉 (15)

〈h2‖〉 ≈ B2〈(
∑

j

βj − α)2〉, (16)

〈h2⊥〉 ≈ B2〈(
∑

j

βj + f α)2〉, (17)

where we introduced f = A⊥/B ≈ −A⊥/A‖ if A⊥α is not
negligible (see below).

With these expressions for the fluctuating field compo-
nents, we seek to explain a rather doping- and material-
independent 1/T1⊥ (it only increases marginally with
decreasing doping) and a material- and doping-dependent
1/T1‖ that explain the temperature-independent anisotropy
(14), as well as the exceptional behavior found for
La2−xSrxCuO4.

In the first scenario, one might be interested to see
what would be the consequences of totally uncorrelated
spin fluctuations for the 5 spin components, i.e., 〈βiβj 〉 =
〈β2

0〉δij , and 〈βjα〉 = 0, cf. Fig. 4. We then have 〈h2⊥〉 =
4〈β2

0〉 and 〈h2‖〉 = 4〈β2
0〉 + 〈α2〉, thus with (12) and (13) for

uncorrelated (u) fluctuations:

1

T1‖,u
= 3

2
γ 2B2 · 8〈β2

0〉τ0 (18)

1

T1⊥,u

= 3

2
γ 2B2 ·

[
8〈β2

0〉 + 〈α2〉
]
τ0, (19)

and it follows for the anisotropy:

1/T1⊥,u

1/T1‖,u
= 1 + 〈α2〉

8〈β2
0〉
. (20)

Clearly, for 〈α2〉 � 〈β2
0〉, we find near isotropic relaxation,

and in order to explain the largest anisotropy of about
3.3 [16], we conclude 〈α2〉 ≈ 18.4〈β2

0〉. This implies,
however, rather large changes of α and β for meeting the
experimental observations, i.e., the change in relaxation
between materials and different doping levels, which
appears to be difficult to meet in this approach (we do notice
that a large α could be present, which demands that we do
not neglect A⊥ for the modeling of nuclear relaxation).

In the second scenario, cf. Fig. 4, we assume that all
spins are aligned; i.e., the 5 fluctuating spin components are
correlated, with 〈βiβj 〉 = 〈β2

0〉 and 〈βjα〉 = ±αβ0. We note
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Fig. 4 Fluctuating spins α and
β0, respectively located in the
Cu 3d(x2 − y2) and O 2pσ

orbital. a, all 5 spin components
fluctuate independently, i.e.,
〈αβ0〉 = 0, 〈βiβj 〉 = β2

0δij ,
b, the fluctuations are fully
correlated, i.e.,
〈αβ0〉 = αβ0, 〈βiβj 〉 = β2

0

that the field fluctuations 〈h2⊥〉 ≈ B2〈(∑j βj + f α)2〉 that
enter (12) and 〈h2‖〉 ≈ B2〈(∑j βj − α)2〉 that determine
(13) are both quadratic in the resulting local spin densities.
Therefore, in order to find a rather flat dependence for the
relaxation for c⊥B0 on β0, as demanded by the experiment,
we need to be close to its minimum, while at the same time,
the parabola must be shifted by a negative α compared with
the other parabola in order to meet a smaller but varying
relaxation rate for c ‖ B0. The results of simple calculations
according to (12), (13) with (16) and (17) are shown in
Fig. 5. We observe that there is only a special region with
solutions that fit the experiments, for β0/α = 0.04 to
0.11 according to anisotropies ranging from 3.3 to 1.0,
respectively, cf. Fig. 5.

Furthermore, an increase of α by a factor of about 1.3,
at an anisotropy ratio of 2.3, increases the relaxation rates
in both directions by about a factor of 2, cf. Fig. 5, which
readily explains the data found for La2−xSrxCuO4. We thus
conclude that the two components β0 and α are crucial for
the cuprates, but appear to be very similar for most of the
materials.

4 Discussion

It seems out of question that a two-component scenario
describes the shifts and relaxation in the cuprates quite well.
It has spin density located in the Cu 3d(x2 − y2) orbital,
which couples to the nucleus through the rather anisotropic
hyperfine constant A‖,⊥, and, most likely, the planar O 2pσ

orbital, leading to an isotropic hyperfine interaction given
by (4).

The spin density α is much larger than β0, as one expects
from the overall material properties; however, the uniform
response of both spins is quite different, also due to the
coupling term cj .

The special slopes observed in the shift-shift plot,
cf. Fig. 1, are caused by changes of the individual spin

components as a function of doping or temperature, except
for the slope κ ≈ 2.5 that must stem from a concomitant
change of bj and cj . This leads to the simple conclusion
that A‖ ≈ −B (while A⊥ ≈ 0.15A‖ [23]), and it leaves us
with a straightforward description of the spin shifts of the
cuprates in terms of (10) and (11), i.e., K‖ ≈ B(4bj − a)

and K⊥ ≈ B4(bj +cj ) (in these equations, we also adopted
a different notation in terms of bj compared with our earlier
analysis [15]). We note that the conclusion that A‖ ≈ −B

has a similar origin as in the old interpretation.

Fig. 5 a Calculated nuclear relaxation rates for c ‖ B0 (1/T1‖) and
c⊥B0 (1/T1⊥) as a function of the ratio of the two spin components
β0 ≡ βj and α (β0/α), according to (12), (13) with (16) and (17), in
arbitrary units. b The anisotropy of the relaxation (14) varies between
4 and 0.5 in the same range of β0/α. Corresponding line segments for
La2−xSrxCuO4 with an anisotropy of about 2.3 are indicated, as well
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Looking again at Fig. 1b, the cuprates are sorted in this
shift-shift plot effectively by the high-temperature bj , the
component that grows with increasing doping (toward the
upper right in Fig. 1b). As the temperature is lowered, at
a given temperature, which can be above or at Tc, this
term begins to disappear due to the action of cj (both
components cj and bj can fall together, as well). It is
the coupling to a that sets cj (and effectively couples
different a terms, as well). The component a appears to be
temperature independent. It emerges that either bj or cj can
be exhausted independently indicated by changes in slope
at lower temperatures. However, all cuprates seem to reach
the same (bj + cj ) = 0, which we define as zero spin shift.
Importantly, there is no evidence that there is a different
mechanism as one passes through Tc if the shift began to
change already far above Tc (NMR pseudogap), but cj can
traverse the region below Tc at a much higher rate for given
steps in temperature.

The earlier conclusion [14, 15] that the spin shift for
c ‖ B0 does not disappear at low temperatures, here takes
the formulation that (4bj −a) = 0 and says that the positive
spin density bj and the negative spin density aj can remain
temperature independent for systems with κ ≈ ∞, or bj can
also drop with cj as for the systems with slope κ ≈ 2.5; i.e.,
it does not change in the condensed state, while relaxation
ceases.

In terms of a simple fluctuating field model, we can
explain the cuprate relaxation rather well. Fast electronic,
Fermi liquid-like spin fluctuations act through two different
hyperfine coefficients with two different electronic spin
densities on the Cu nucleus (or, these densities are part
of that ubiquitous fluid). The corresponding fluctuations
from the 5 locations must be correlated, as one might have
guessed due to the close proximity. The on-site 3d(x2 − y2)

spin (α) is about 10 times as large as that due to one O
neighbor (β0). The spin density α appears to be the same
for all cuprates; except for the La2−xSrxCuO4 family, it is
30% larger. The spin β0 varies with doping and between
materials and leads to the change in 1/T1‖ observed in the
data. For large doping the relaxation anisotropy is about 1
and it increases to about 3.3 for YBa2Cu4O8 (corresponding
to a change in β0 of about 3). For La2−xSrxCuO4 the
anisotropy is 2.3 and thus also β0 is about a factor of two
larger.

Since the 63Cu relaxation begins to disappear only at
Tc, for all cuprates, the electronic, Fermi liquid-like spin
fluctuations freeze out and the relaxation disappears. Thus,
the pseudogap in the relaxation is just due to the correlations
that for planar Cu do not change α and β0 spin alignment.
For planar O the situation is different as the nucleus couples
to two α spins at adjacent Cu nuclei and their coupling
changes, which leads to the pseudogap in the relaxation for
nuclei that are affected by different a spins [26].

The relation between the spin densities α, β0 and the
uniform response of the system in terms of a, bj , and cj is
not known. It appears that the response of α is rather small
compared to that of β, which may not be surprising since
different a should favor antiferromagnetic alignment (that is
somehow affected by β).

It appears that the doping dependent spread in K‖ varies
among the cuprates. This reminds us of the way the charge
carriers enter the CuO2 plane [12]. For the La2−xSrxCuO4

family, the doped charges x enter almost exclusively the
2pσ orbital (np) while for other systems the Cu 3d(x2−y2)

(nd ) is affected as well (x = �nd + 2�np [12, 27]),
and the spread in doping appears to grow with �nd . The
maximum achievable Tc, however, is set by the sharing
of the parent material’s hole content, i.e., n∗

d + 2n∗
p = 1

and Tc, max ∝ n∗
p [12, 13, 28]. Materials with the highest

Tc appear to adopt κ ≈ 2.5, only. However, the jumping
between different slopes κ in different regions of the shift-
shift plot that involves bj and/or cj below Tc is absent for
optimally doped systems, which probably means that bj and
cj are matched at optimal doping.

Finally, one may argue that the intra cell charge variation
between neighboring planar O atoms that appears to be
ubiquitous and that can respond to the external magnetic
field [22, 29] could be involved in the two component
scenario.

5 Conclusions

Two spin densities were shown to reside in the planar
Cu 3d(x2 − y2) and likely the planar O 2pσ orbitals,
respectively, with hyperfine constants A‖,⊥ and B ≈
−A‖. They connect the Cu nuclear spins with a rather
ubiquitous Fermi liquid-like bath. The relaxation anisotropy
is predominantly due to changes in the planar O spin
density that increases with doping. Near Tc, these electronic
fluctuations freeze out and the relaxation disappears.

The uniform response a and bj of the two electronic spins
on Cu and O is special in the sense that a is negative while
bj points along the field. The coupling term cj between a

and bj sets the temperature dependence of the shift above
(NMR pseudogap) and below Tc. Interestingly, at the lowest
temperatures, 4(bj + cj ) approaches the same value for
all cuprates, probably zero, but a remains and most of bj ,
as well, resulting in a non-vanishing spin shift for c ‖ B0,
K‖ ≈ (4bj − a) = 0.

The coupling term cj must be related to a coupling
between different spin components ai on different Cu
nuclei, and it is argued that the pseudogap phenomenon
for planar O nuclear relaxation, and that of Y, is just a
consequence of the temperature dependence of cj , an effect
that cannot be there in the Cu relaxation data.
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This simple two-component scenario appears to fit all
cuprates, in particular also the only outlier family so far,
La2−xSrxCuO4, which must make it a reliable framework
for theory.
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