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Abstract
We show that the nature of quantum phases around the superconductor-insulator transition (SIT) is controlled by charge-
vortex topological interactions, and does not depend on the details of material parameters and disorder. We find three distinct
phases, superconductor, superinsulator, and bosonic topological insulator. The superinsulator is a state of matter with infinite
resistance in a finite temperature range, which is the S-dual of the superconductor and in which charge transport is prevented
by electric strings binding charges of opposite sign. The electric strings ensuring linear confinement of charges are generated
by instantons and are dual to superconducting Abrikosov vortices. Material parameters and disorder enter the London
penetration depth of the superconductor, the string tension of the superinsulator and the quantum fluctuation parameter
driving the transition between them. They are entirely encoded in four phenomenological parameters of a topological
gauge theory of the SIT. Finally, we point out that, in the context of strong coupling gauge theories, the many-body
localization phenomenon that is often referred to as an underlying mechanism for superinsulation is a mere transcription of
the well-known phenomenon of confinement into solid-state physics language and is entirely driven by endogenous disorder
embodied by instantons with no need of exogenous disorder.
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The superconductor-insulator transition (SIT) [1–7] is a
paradigmatic quantum phase transition found in Josephson
junction arrays (JJA) [1, 6] and in 2D disordered super-
conducting films at low temperatures T [2–5]. The tuning
parameter driving the SIT is the ratio of the single junction
Coulomb energy to the Josephson coupling. In 2D films,
this ratio is effectively controlled by varying the film thick-
ness d which regulates the strength of disorder and hence of
Coulomb screening or by applying a magnetic field that sup-
presses the Josephson coupling. This can cause a dramatic
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change in the ground state so that superconductivity is lost
in favor of insulating behavior.

In 1978, ’t Hooft [8] appealed to a solid-state physics
analogy in a Gedankenexperiment to explain quark confine-
ment and demonstrated that this is realized in a phase which
is in many respects similar to the superconducting phase,
but is in a sense a zero particle mobility phase, the extreme
opposite of a superconductor and called hence this phase a
“superinsulator.” In 1996, two of the present authors (mcd
and cat) [9] developed a comprehensive field theory frame-
work for the description of the SIT in JJA. They predicted
that, on the insulating side of the SIT, a new ground-
state forms, corresponding to a novel phase with infinite
resistance. This novel phase is dual to the superconductor,
characterized by zero resistance, and they thus indepen-
dently also called this phase a superinsulator. Independently,
superinsulators were also soon proposed in [10]. Finally,
the name and phenomenon of superinsulation were redis-
covered and experimentally detected by one of the authors
(vmv) and his collaborators in [11, 12] based on the earlier
experimental observations [13, 14]. Superinsulators were
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identified in [11] as a low-temperature charge Berezinskii-
Kosterlitz-Thouless (BKT) [16, 17] phase emerging at the
temperature of the charge BKT transition and was derived
from the wave function–phase-amplitude duality of the
uncertainty principle.

Motivated by ’t Hooft’s beautiful idea [8] and building
on the framework proposed in [9], a comprehensive the-
ory of the SIT and superinsulators was developed in [18]. It
was shown that in duality to the Meissner effect in super-
conductors, which constricts the magnetic field lines pene-
trating a type II superconductor into Abrikosov vortices, in
superinsulators, electric flux tubes that linearly bind Cooper
pairs into neutral “mesons” form. These electric strings con-
fine fluctuating ±Cooper pair charges completely, thereby
impeding electric conductance: Cooper pairs are confined
exactly as quarks in hadrons [18], the finite-temperature
deconfinement transition for linear potentials coinciding
with the 2D BKT transition [19, 20]. This established
superinsulators as a novel, distinct state of matter.

The interpretation of the infinite resistance state in terms
of the superinsulating state dual to superconductivity was
fiercely criticized in [21] by questioning the correctness
of the microscopic modeling of the superconducting films
as a Josephson junction array (JJA) and attacking the
treatment of this array by [11]. Here, we demonstrate
by a straightforward calculation that the nature of the
phases in the critical vicinity of the SIT is determined
solely by fundamental topological interactions and by
gauge invariance. Disorder plays only the role of the
tuning mechanism cranking up and down the effective
strength of the Coulomb interaction that drives the system
across the SIT. Our finding relates the topological nature
of the superinsulator with the earlier finding [12] that
superinsulators, dual to superconductors, emerge as a
consequence of quantum conjugation of the number of
particles N and phase ϕ in the Cooper pair condensate, [N,ϕ]
= i, and the related competition of the uncertainties of these
variables due to the Heisenberg principle, �ϕ�N ≥ 1. This
completely invalidates the critique [21] since microscopic
details of the model are irrelevant.

The T = 0 partition function of a quantum many-
body system in D spatial dimension is determined by the
Euclidean action of a classical system in (D + 1) dimensions.
The effective action governing this partition function can
then be expanded in a series of derivatives. The universal
properties of the system, including the phase structure and
the nature of the possible phases, are determined by the
relevant and marginal terms in this effective action. The
more terms one includes, the more microscopic details are
modeled and taken into account.

It has been recognized since the very early days of the
SIT studies that the relevant degrees of freedom for the
SIT are charges (Cooper pairs) and vortices and that the

possible phases are determined by the competition between
these two types of degrees of freedom [4–6]. Charges and
vortices are subject to topological interactions, embodied by
the Aharonov-Bohm/Aharonov-Casher (ABC) phases they
acquire when encircling one another. A local formulation
of such topological interactions requires the introduction
of two emergent gauge fields aμ and bμ coupled to the
conserved charge and vortex currents, respectively. The
Euclidean topological action for these gauge fields is the
mixed Chern-Simons action [22]

S =
∫

d3x i
κ

2π
aμεμαν∂αbν + i

√
κaμQμ + i

√
κbμMμ ,

(1)

where κ is the dimensionless charge (κ = 2 for a Cooper
pair) and

Qμ =
∑

i

∫
Qi

dτ
dq

(i)
μ (τ )

dτ
δ3(x − q(i)(τ )) ,

Mμ =
∑

i

∫
Mi

dτ
dm

(i)
μ (τ )

dτ
δ3(x − m(i)(τ )) ,

(2)

with {Qi} and {Mi} representing the world lines, parametrized
by q(i) and m(i), of elementary charges and vortices, respec-
tively (we use natural units c = 1, � = 1). Integrating out the
gauge fields (one needs an intermediate regulator for this)
gives

Slinking = 2π i
∫

d3x Qμεμαν

∂α

−∇2
Mν . (3)

For charge-anticharge and vortex-antivortex fluctuations,
represented by closed loops {Qi} and {Mi}, this is the
sum of the integer Gauss linking numbers between closed
loops of the two kinds. These linking numbers represent
the Aharonov-Bohm/Aharonov-Casher phases accumulated
when one charge completely encircles a vortex and
viceversa. Because of the factor (2π i), such integer linking
numbers do not contribute to the partition function. They
do, however, for generic, infinitely extended world lines
of charges and vortices. The action (1) is the local
representation of these topological interactions.

The charge and vortex number currents Qμ and Mμ are
conserved. Correspondingly, the gauge fields are invariant
under the U(1) gauge transformations aμ → aμ + ∂μλ

and bμ → bμ + ∂μχ . The full effective action for the
SIT must then respect these two gauge invariances. The
Chern-Simons term is the only marginal gauge invariant
term in 2D since it is the unique gauge invariant term
involving only one field derivative. Topological interactions
thus dominate near the SIT. From a purely field-theoretic
point of view, the charge and vortex world lines represent
the singularities in the dual field strengths fμ = εμαν∂αbμ

and gμ = εμαν∂αaμ arising from the compactness of the two
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U(1) gauge groups [23]. A proper formulation of a compact
U(1) gauge theory, however, requires the introduction of an
ultraviolet lattice regularization [23]. This was done for the
mixed Chern-Simons model in [9].

It is now easy to derive what the possible phases are near
the SIT . If only charges condense, the current Qμ becomes
a field that can be expressed as Qμ = (

√
κ/2π)εμαν∂αcν ,

while Mμ vanishes. The field cμ can then be reabsorbed by
a shift of bμ. If we couple the charge current to a probe
electromagnetic gauge field Aμ, we obtain the action

S =
∫

d3x i
κ

2π
aμεμαν∂αdν + i

κ

2π
bμFμ , (4)

where dμ = bμ + cμ and Fμ = εμαν∂αAν is the dual field
strength. This shows that the Chern-Simons term, that must
be integrated over aμ and dμ, decouples. The integration
over bμ, instead, yields the electromagnetic effective action.
To do it, we need a gauge invariant regulator, which, to
dominant order, must be constructed from the “electric” and
“magnetic” fields of the bμ gauge potential. This gives

SSC
eff ∝

∫
d3x vF0

1

−∇2
3

F0 + 1

v
Fi

1

−∇2
3

Fi , (5)

where ∇3 = ∂0∂0 + v2∇2 and v is the speed of light in the
medium. In Coulomb gauge A0 = 0, ∂ iAi = 0, the effective
action reduces to

SSC
eff ∝

∫
d3x AiAi , (6)

and the induced current ji = δSeff/δAi satisfies the London
equations,

∂0j ∝ E ,

rot j ∝ B .
(7)

This implies that the electric condensation phase is a
superconductor.

If only vortices condense, the effective action is derived
by setting Qμ = 0 and coupling, as before, a probe
electromagnetic gauge field to the charge current,

S =
∫

d3x i
κ

2π
aμεμαν∂αbν + i

√
κ

2π
bμ(κeFμ + 2πMμ).

(8)

As before, we need gauge invariant regulators to obtain the
effective action, but for both the gauge fields aμ and bμ this
time. Since the Chern-Simons term survives in this case,
both fictitious gauge fields are massive. After removing the
regulator, we obtain the local effective action

SSI
eff ∝

∫
d3x v(κeF0 + 2πM0)

2 + 1

v
(κeFi + 2πMi)

2.

(9)

which is nothing else but the non-relativistic version of
the Polyakov compact QED action [23] (a completely

rigorous formulation requires, of course, the introduction of
a lattice regularization). An important point here is that in
the vortex condensate, the vortex number is not conserved.
This is reflected by the presence of instantons M = ∂0M0

+ ∂ iMi at the end of the vortex world lines Mμ [23].
These instantons force the electric flux into strings, dual
images of Abrikosov fluxes, that cause linear confinement
of charges [23], leading to an infinite resistance state, the
superinsulator [9–12, 18].

Finally, the state where none of the condensates can
form, Qμ = 0, Mμ = 0, is characterized by the purely
topological mixed Chern-Simons long-distance effective
action. This intermediate state, that can appear between the
superconductor and the superinsulator, was originally called
a quantum or Bose metal [25]. Our approach shows that
this intermediate Bose metal is a topological insulator [26],
with the quantum resistance arising exclusively from the
conductance along the edges [24]. Note, however that, while
the flux of this topological insulator is π , the charge is 2e
instead of e since it is a Cooper pair state. This bosonic
topological insulator is thus a level 1 topological insulator,
with no ground-state degeneracy on the torus.

Note that no material or disorder parameter has entered
the above derivations, which are entirely predicated on the
topological interactions alone. The material parameters do
determine the London penetration depth of the supercon-
ductor and the string tension of the superinsulator and, thus,
as we now show the conditions for the particular scenario
of the transition between the phases, but they are totally
irrelevant as far as the nature of the possible phases is
concerned.

As we have have mentioned above, the next order terms
in the derivative expansion of the effective action (1) contain
two derivatives: gauge invariance requires then that they
must be built from the “electric” (fi and gi) and “magnetic”
(f0 and g0) fields of the two gauge potentials. The most
general possible gauge invariant action up to two field
derivatives is then given by

S =
∫

d3x i
κ

2π
aμεμαν∂αbν

+ 1

2e2vμP

f0f0 + εP

2e2v
fifi + 1

2e2qμP

g0g0 + εP

2e2q
gigi

+i
√

κaμQμ + i
√

κbμMμ ,

(10)

with the magnetic permeability μP and the electric
permittivity εP [24], which determine the speed of light
v = 1/

√
μPεP in the material. The two coupling constants

e2q and e2v are phenomenological parameters having the
dimensionality of [mass] and comprising the remaining
material characteristics relevant to this order. It can be
shown [24] that e2q = e2/d , e2v = π2/(e2λ⊥), with d being
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the thickness of the 2D film and λ⊥ = λ2L/d the Pearl
length and λL being the London length of the bulk. This
identification, however, is not relevant for the the structures
of phases emerging in the critical vicinity of the SIT. One
can simply consider e2q and e2v as phenomenological
parameters embodying material parameters and effects of
disorder. Note that to this order in the derivative expansion,
the effective action is perfectly dual with respect to the
mutual exchange of charge and vortex degrees of freedom
and the corresponding coupling constants. Possible duality
breaking is a higher order effect. In field theory, this duality
under the transformation g = ev/eq → 1/g goes under the
name of S-duality (strong-weak coupling duality).

Upon addition of the usual electromagnetic action, both
gauge fields acquire a topological Chern-Simons mass. In
the relativistic caseμP = εP = 1, this ism = κeqev/2π [22]. In
the non-relativistic case, it is modified to m = μPκeqev/2π

if the dispersion relation E = √
m2v4 + v2p2 is used

[24]. Note that both the coupling constants e2q and e2v have
dimension [mass]. As a consequence, the quadratic terms
are power-counting infrared irrelevant: this is the reason
why they do not enter in the determination of the nature
of the various phases. Chern-Simons theories, however, are
plagued by an anomaly: the ground-state wave function
differs if the model is considered as a purely topological
model or as the limit m →∞ of a topologically massive
theory [27]. The former is not normalizable, only the latter
makes physical sense. This has the consequence that the
quadratic term is actually non-perturbatively relevant, since
they can drive the system toward fixed points different
from the bosonic topological insulator. These correspond
to continuous [28] phase transition whose location is
determined by an energy-entropy balance for the topological
excitations Qμ and Mμ [9, 24]. The transition can also
be a direct first-order transition between a superconductor
and a superinsulator. The proper derivation of these results
requires an ultraviolet regularization of the model on a scale
corresponding to the coherence length ξ , for example a
lattice of spacing � = ξ . The resulting phase structure [9, 24]
is shown in Fig. 1.

The two parameters driving the quantum phase structure
are the conductance g = (π/e2)

√
d/λ⊥ and η = (1/α)f(K,v)

with α the fine structure constant and K the Landau
parameter of the material. The appearance of α in the
denominator of η shows that the intermediate bosonic
topological insulator (Bose metal) phase opens up only
if quantum fluctuations are strong enough in a particular
material.

The same approach applies also to describe the finite-
temperature behavior of the phases near the SIT [18].
Specifically, linearly confined charges in the superinsulator
are liberated at the deconfinement phase transition, where

Fig. 1 Phase diagram of the vicinity of the SIT. Tuning the parameter
g = (π/e2)

√
d/λ⊥, one drives the system across the SIT. The quantity

η characterizes the strength of quantum fluctuations in a given material

the string tension vanishes. In 2D, this deconfinement
transition is of the Berezinskii-Kosterlitz-Thoulsess (BKT)
[16, 17] type [19] and has been recently observed
experimentally [15]. In 3D superinsulators [18], instead,
the resistance is predicted to have Vogel-Fulcher-Tamman
criticality [20]. This critical behavior has also been recently
experimentally observed in InO films [29], which have a
thickness d 	 ξ , making them good candidates for 3D
superinsulators. This is confirmed also by the apparent
violation of charge-vortex duality in InO films [30]: in
3D, duality is between electric and magnetic fields, not
between charges and vortices. A further confirmation of the
string confinement picture of superinsulation comes from
the recent measurement of strong noise near the threshold
voltage [30]. Indeed, the threshold voltage corresponds to
the critical strength when an applied voltage starts creating
strips of normal insulator, carrying the current, mixed with
the superinsulating matrix. The proximity to this dynamic
phase transition implies exactly strong current fluctuations
near the threshold voltage.

Finally, we conclude by commenting on the suggestions
[30, 31] that many-body localization (MBL) [32] may be
an alternative to the string confinement mechanism for
superinsulation [30]. This is not so. Indeed, it has been
recently pointed out [33] that, in the context of gauge
theories as the one relevant for the SIT, MBL arises
without exogenous disorder, due to the mixing of the charge
superselection sectors implied by the gauge symmetry. In
the example discussed in [33], this mixing arises in the
course of the temporal evolution of quantum states, the
mixing mechanism playing effectively the role of a disorder
average. This process was identified exactly as a transport-
inhibiting mechanism due to confinement in the Schwinger
model in 1D. In the present setting, it is the Polyakov
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monopole instantons that play the role of endogenous,
spontaneous disorder. Accordingly, the summation over
the instanton gas configurations acts as averaging over
disorder as pointed out already in the original literature
[23]. Importantly, the instanton formulation describes not
only 1D, but also the 2D and 3D physical dimensions.
This spontaneous disordering mechanism by instantons has
the same effect, that of mixing, in this case, the flux
superselection sectors, leading to the survival of only the
neutral charge sector as the physical state, while all other,
charged states are localized on the string scale, hence,
inhibition of the charge transport and the infinite resistance.
In the present context, MBL is a different name for the
50-year-old phenomenon of confinement and again it is
endogenous, external disorder plays no role. The same
confinement mechanism that prevents the observation of
quarks is thus responsible for the absence of charged states
and the infinite resistance in superinsulators.
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