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Abstract
We propose non-reciprocal interferometers for matter waves and explore them by means of modeling. These interferometers
may be implemented as asymmetric quantum rings with broken time-inversion symmetry. Our preliminary analyses lead
us to predict that these devices will feature asymmetric transport properties for particles such as electrons, for which the
interferometers’ ground states act as directional filters. As a function of the electron velocity, the filters seem to let electrons
preferentially pass in one direction rather than in the reverse, thereby reducing the entropy of the electron systems in the
contacts. Mechanisms are discussed that are candidates to prevent directional filtering if the filters are operating in thermal
equilibrium with incoherent electron reservoirs.
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C’est la dissymétrie qui crée le phénomène
Pierre Curie

1 Introduction

The discovery of superconductivity [1] enabled the transport
of an electric charge without dissipation. Sustained, construc-
tive work to develop sophisticated superconducting materials
has led to enormous advances in the performance of supercon-
ductors and in raising their critical temperature [2, 3]. Interes-
tingly, dissipation-free charge flow exists also in non-
superconducting systems. Atoms, molecules, atomic clus-
ters, and mesoscopic conducting rings may carry such
currents; see, e.g., [4–6].

Quantum-Hall systems [7] also transport current loss-
free if biased in a quantum-Hall plateau [7, 8]. Loss-free
currents have furthermore been found to flow along the
edges of topological insulators; see, e.g., [9]. The flow of
these currents benefits from topological protection against
back-scattering by elastic scattering events that preserve
time-reversal symmetry. Indeed, the use of topologically
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protected surface currents in chip interconnects has been
proposed [10]. In all systems described, dissipation-free
transport is based on sustained quantum coherence and the
suppression of inelastic scattering.

One may also want to consider ratchets and Brown-
ian motors [11, 12] to transport charge along channels
or wires. Such ratchets are microscopic, time-reversal-
invariant machines that move particles due to perturbations
that drive the system. Fueled by operation out of equilib-
rium, ratchets are therefore not a suitable means to design
loss-free conductors.

Here, we report on our search for further possibilities
to realize loss-free charge flow in non-superconducting
devices or wires, and propose non-reciprocal filters for
electrons as candidates. This search has been motivated
by the fundamental question of whether such a device or
wire is realizable in principle and by the implications its
sheer existence might have [11, 13]. We present several
proposals for such devices to initiate a discussion of their
properties and underlying principles and to trigger further
developments of this novel approach.

2 Fundamental Requirements for Achieving
Loss-Free Transport

We first recall a classic theorem by Bloch [14, 15], which
states that the ground state of a (almost arbitrary) system of
electrons can only carry a current if the time-reversal invari-
ance of the Hamiltonian is explicitly broken, for example,
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by an external magnetic field. Breaking time-reversal
invariance in phase-coherent systems either by a magnetic
field or a current bias may easily lead to persistent currents
in superconductors, quantum-Hall systems, and mesoscopic
configurations smaller than the inelastic scattering length.

But even in systems that are intrinsically time-reversal
invariant, current flow with no voltage gradient may occur
by spontaneous or by external time-reversal symmetry
breaking. This current flow is not a ground-state property,
however. The dc-Josephson effect is one example. In that
case, the left–right asymmetry that determines the current
direction is not caused by the barrier itself, which may
be engineered to be perfectly symmetric, but by the phase
difference of the superconducting condensate on both sides
of the junction.

We consider here a possible current that is observable
without applied voltage in normal-conducting devices in
which time-reversal symmetry is broken by an applied
magnetic field. In addition, the devices break spatial-
inversion symmetry. For simplicity, the systems are assumed
here to be fully elastic such that no energy is dissipated
in the device during particle transport. If the device
is characterized as a scattering center in a uniform
environment, the amplitudes f (p, s; p′, s′) for scattering
across the device from state (p, s), where p is the
momentum and s the spin, into state (p′, s′), do not
necessarily fulfill the relation

|f (p, s; p′, s′) |=| f (−p′, −s′; −p, −s) | . (1)

Equation (1) follows from the reciprocity theorem for time-
reversal invariant scattering potentials [16]. We therefore
suggest searching for devices for which the probability of an
electron traversing the barrier from left to right is different
from the probability of the time-reversed process, i.e.,

∑

s,s′
| f (p, s; p′, s′) |2>

∑

s,s′
| f (−p′, s′; −p, s) |2 (2)

[17, 18]. The device function we seek requires asymmetric
transport between two equivalent contacts. Therefore, it
cannot be obtained from conventional asymmetric bipolar
electronic devices such as pn-diodes. Weak non-reciprocal
resistance has been found in materials with magnetochiral
anisotropy such as carbon nanotubes, where the effect
is associated with a sizable sample resistance [19], and
also in non-centrosymmetric superconductors [20]. We are
searching for non-superconducting devices, however, that
like a unidirectional membrane let particles pass or not pass
in a non-reciprocal manner. Photonic non-reciprocal devices
[21, 22] are devices that bear some analogies to the ones we
have in mind.

3 Proposals for Devices

We seek devices wherein electrons would be transmitted
from the left to the right with a higher probability than
electrons approaching the barrier from the right. This also
applies to electrons driven by thermal excitation (Fig. 1).
To break the time-reversal symmetry, we focus on devices
subject to a magnetic field, considering effects caused by
the magnetic field that break the parity of the device in
current-flow direction.

3.1 Devices Using Phase Shifts Induced
by the Rashba Effect

The Rashba effect couples longitudinally to the particle’s
phase [23, 24]. In numerous studies, spin–orbit coupling
and the related Rashba effect have indeed been suggested,
explored, and sometimes even doubted as possible drivers
for lossless currents in homogeneous materials and in
heterostructures; see, e.g., [25–30].

The Rashba effect contributes kinetic energy to particles
that carry a magnetic moment μ and move in a transverse
electric field E. If a magnetic field Ba also exists, the
Hamiltonian of the electron is

H = �
2k2/2m − �k/m(α × σ ) · ẑ − μBa. (3)

Here, k describes the wave number of the electron, where
the canonical momentum is p = �k, m the electron mass,
σ the Pauli matrices, and the unit vector of the direction in
which the electric field is applied. The Rashba momentum
is α = α̂p with α = μEz/2c2 where Ez is the z-component
of the electric field and c the speed of light.

Fig. 1 Illustration of a hypothetical barrier that has a higher
transparency for thermally excited electrons moving from the left
metal to the right than for the ones moving from the right metal to the
left. The parameters E, μc, and n(E) denote the electron energy, the
chemical potential, and the filled density of states, respectively. The
temperature of the metals is Tcon and the barrier temperature is Tb
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For these devices, we now consider the case where
Ez = 0 and Ba is oriented in the y-direction. The electrons
move in the x-direction in an xy-oriented, two-dimensional
quantum well of length l, and their motion is characterized
by a parabolic dispersion E = p2/2m = �

2k2/2m The
field Ba is assumed to be so large that the Zeeman energy
E = −μBa is by far the predominant energy term, yielding
virtually complete spin polarization. For this scenario, (3)
simplifies to

H = �
2k2/2m − α�k/m − μBa, (4)

where k is now oriented in the x-direction. In this case, the
dispersion parabola (Fig. 2a) is spin-split into two parabolas,
as shown by Fig. 2b.

According to (4), these two parabolas are shifted in
opposite directions along the k-axis when |Ez| > 0. The
absolute value of the shift is �kR = α. As the chemical
potential μc � μBa the occupancy of the parabola with
the high-energy spin direction is exponentially small. To
simplify the problem, we therefore disregard this parabola
also for |Ez| > 0.

Striving to combine Rashba and non-Rashba materials in
one device, we start by considering trilayer heterostructures.
Figure 3 shows an example of heterostructures, in which
a barrier layer affected by the Rashba effect connects two
standard non-Rashba metals. If the canonical momentum
of the electrons were conserved in these devices, which,
however, is not the case, the devices would be good
candidates for asymmetric transport. To illustrate this point,
Fig. 3a sketches the transport across such a hypothetical
device. In this case, the barrier layer would feature different
effective barrier heights for electrons tunneling in opposite
directions. However, when the electrons pass from a
standard material into one with Rashba coupling, their

canonical momentum p = �k increases by α independently
of whether the electron travels from left to right or vice
versa, Fig. 3b. The canonical momentum of the entire
system is preserved because the electrons exchange the
momentum with the electromagnetic field. Therefore, these
devices do not feature asymmetric transport properties.

It is inspiring to note that, although the particle’s kinetic
energy E = 1/2mv2 is symmetric in v also for a finite
Rashba momentum α, the particle’s canonical momentum
and wave number are not symmetric: p = �k = mv +
α. Particles traveling with the same absolute velocity in
opposite directions v1 = −v2 are characterized by wave
numbers with different absolute values

�k1 = mv1 + α, (5a)

�k2 = mv2 + α = −mv1 + α (5b)

see Fig. 4. The asymmetric relationship between �k and v

has been observed in numerous experiments; see, e.g., [31].
The problem of achieving asymmetric transport has

now been mapped onto the more conventional problem of
converting changes of the electron wavelength into changes
of device transmission. As the electron phase is not gauge-
invariant, the electron phase in any such device must
be compared with a reference phase. Therefore, we now
consider utilizing waves �I(x, t) and �II(x, t) that pass a
device on a Rashba path I and on a non-Rashba reference
path II, respectively, and then interfere with each other. The
layout of these devices is shown in Fig. 5. We note that
related mesoscopic rings with inhomogeneous spin–orbit
coupling have already been explored in a different context
[32, 33]. The two paths I and II may be compared to the two
wave paths used in Aharonov–Bohm-type devices [34]. In
our proposed device, path I induces a direction-dependent

µc

(a) (b) (c)

Fig. 2 Influence of the applied magnetic field Ba and of the Rashba
effect on the band structure of material I. Panel a shows the standard
parabolic dispersion of the material for Ba = 0 and Ea = 0 where k is
the wave number in the x-direction. Panel b illustrates the case where
a large magnetic field Ba is applied and where Ea = 0. The magnetic
field causes a spin splitting of the dispersion, such that two bands offset

by twice the Zeeman energy are obtained. Panel c illustrates the case
where both Ba and Ea are applied. The Rashba effect induces a shift
of the two parabolas along the k-axis, such that their minima are posi-
tioned at �k = α and at �k = −α, respectively. The chemical potential
μc in the device is chosen such that μc � μBa
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(a)

µc

standard metal standard metalRashba material

(b)

µc

standard conductor standard conductorRashba material

Fig. 3 Band structure of a tunnel junction with a barrier shaped by the
Rashba effect. Panel (a) illustrates the case that such a device would
show asymmetric transport if the canonical momenta of the electrons

were conserved. As the electrons exchange momentum with the elec-
tromagnetic field when passing into and out of the barrier, symmetric
transport is obtained, panel (b)

shift δϕI,AB(x) �= δϕI,BA(x) of the wavefunctions’ phase
ϕ(x), where A and B denote the two contacts of the device,
and the index AB specifies that the electron moves from
A to B. This phase shift is used to tune the particle’s
transmission probabilities tAB(v) and tBA(v) as the wave
packet is made to interfere at the end of path I with the
packet that travelled via path II. A particle entering the
device at A with |�AB(A)|2 = 1 reaches terminal B with
a probability of tAB(v) = |�AB(B)|2. A particle entering
the device at B reaches A with a probability of tBA(v) =
|�BA(A)|2.

To determine the phase change of the particle on path I,
we first assess the phase change induced by the electron’s
total energy δϕI,AB,E = Etot�τ . Owing to | v1 |=| v2 |,
the energy Etot = 1/2mv2 as well as the particle’s travel
time �τ are independent of the travel direction δϕI,AB,E =
δϕI,BA,E . Note that the spin has been fixed. As Etot�τ does
not introduce a direction-induced phase change, it does not
require further consideration.

With the assumption that the electron’s phase changes
can be described analogously to the phase changes of wave
packets in conventional materials, (5) yield the phase change

of an electron starting at A(x = 0) and traveling on path I
to arrive at B(x = l) as

�ϕAB,I = (mv1 + α)l, (6a)

neglecting phase retardation at the beam splitters. An
electron starting at B and traveling to A on path I changes
its phase by

�ϕBA,I = (mv1 − α)l. (6b)

Path II is designed such that there the Rashba effect
vanishes, done, for example, by setting E = 0 for this path.
Therefore

�ϕAB,II = �ϕBA,II = mvIIl. (7)

The length l of the device is chosen such that the electron
traveling on the two paths from A to B constructively
interferes at B: �ϕAB,I = �ϕAB,II + 2πn, where n is an
integer: l′ := 2πn/(m�v + α), with �v := vI − vII. For
l = l′, the two parts of the waves traveling from B to A

arrive at A with a phase difference of

�ϕBA,I − �ϕBA,II = m�v − α

m�v + α
2πn. (8)
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Fig. 4 Illustration of the energy dispersion and the dependence of the
electron velocity v on the canonical momentum in material I. Note how
the two velocities v1 and v2 = −v1 correspond to two wave numbers
and wavelengths k1, λ1 and k2, λ2, respectively, which have different
absolute values

For �v �= 0 we find that �ϕBA,I − �ϕBA,II �= 2πn, except
for the special case of m�v = α. For �ϕBA,I − �ϕBA,II �=
2πn, at least a part of the electron wave is reflected back to

path II

path I

material I

BA

Ba, µ

Ea

x

y

z 0 l

Ah

material II

Fig. 5 Sketch of the device layout. The two materials I and II form
a quantum ring of length l that is contacted at its ends A and B. An
electric fieldEa is applied in the z-direction. An applied magnetic field
Ba provides for a spin polarization such that the electron magnetic
moments μ point in the y-direction

B. On the path to B, this reflected wave acquires additional
phase shifts which affect the probability for the particle
to exit at B. Because this electron travels in the device
a longer average path than the electron that entered at A,
it is more likely to scatter inelastically, to then possibly
leave the device via port B. We point out that the mean-
free path for inelastic scattering of an electron of velocity
v must not be much smaller than l′; see also [35, 36]. The
condition �v �= 0 can be fulfilled by selecting two different
materials with appropriate band structures for paths I and
II, as illustrated in Fig. 6. Therefore, our analysis shows
that tAB(v) �= tBA(v)for devices for which (i) l = l′, (ii)
m�v �= α, and (iii) �v �= 0.

The analysis entails that like a magnetic-field biased
Aharonov–Bohm ring, a uniform, coherent loop that
includes a Rashba conductor generates a circulating current
in the ground state (see Fig. 7) with

m

qnq

∮
j(r)ds = nh −

∮
(qA(r) + α(r))ds, (9)

where j and nq denote the current density and the carrier
density, respectively.

Before discussing possible effects that could jeopardize
the functioning of the device, we will now analyze whether
the Rashba effect is a prerequisite for directional transport.

3.2 Devices Using Phase Shifts Induced by the Vector
Potential

To explore whether directional transport can be achieved
without the Rashba effect, we express the Hamiltonian of
(3) as

H = 1/2m(mv(r) + qA(r) + α(r))2 − μB (10)

Equation (10) makes it evident that A(r) and α(r) coupling
to the charge q and to the magnetic moment μ, respectively,
have an equivalent influence on the electron phase. This
equivalency suggests that devices with directional transport
may also be realizable by replacing α(r), which is not
constant in the direction transverse to the motion, by a
vector potential that is also oriented parallel to p and varies
along the transverse direction. Such a vector potential is
provided by a magnetic flux penetrating the loop hole Ah,
much like in standard Aharonov–Bohm rings.

Adding to the standard quantum ring geometry, our new
devices require the velocity v(r) to differ on the two paths
of the interferometer. To fulfill this consideration, we arrive
at the second device proposal, shown in panel (b) of Fig. 8
in comparison to the Rashba device displayed in panel
(a). In contrast to the Rashba-based devices, these devices
require the application of a magnetic flux penetrating Ah,
but need neither spin polarization nor the Rashba effect.
If we used gate potentials, they could even be made of
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Fig. 6 Suggested band
structures of materials I and II.
The bottom of the band of
material I is offset by an energy
of VI with respect to the bottom
of the band of material II. As a
result, the electrons of material I
have a lower velocity at the
chemical potential than those of
material II

material I material II

µc

just one material (panel c) which would enhance interface
transparency. These devices phase the same requirements on
inelastic scattering as the Rashba-type device.

4 Device Properties

4.1 Operation in Non-equilibrium

We now consider the case that individual electrons are
injected with a high velocity v into the device. The electron
energy well exceeds the temperature of the barriermv2/2 �
kTb, corresponding to Tcon � Tb in case the electron
energy results from the thermal energy of the contact. If the
inelastic scattering length of these high-energy electrons is
comparable to the device size, these devices work according
to our analysis as valves for electrons and may therefore
be of interest for electronic applications, for example, to
prevent feedback from output to input gates. The bandpass
properties of the devices can be tuned to match the desired
particle velocities by tailoring the device design such as the
number of paths to the requirements. Our analysis suggests
that in this operation regime the device causes an output
current 〈Io(Ba)〉t > 0 to flow in an external conductor that
closes the circuit as illustrated in Fig. 9b. The devices can
be combined into coherent or non-coherent circuits. The
devices can be fast, because their speed is limited by the

Fig. 7 Sketch of a ring consisting of two Rashba materials connected
in antiparallel direction. In its ground state, the ring induces a
circulating current Icirc

electron transfer time. They also can be small because they
may consist of single molecules.

4.2 Operation in Thermal Equilibrium

These devices seem to be non-reciprocal and act as
directional filters that let electrons pass in one or the
other direction depending on the electron velocity. They are
therefore reminiscent of Maxwellian demons. For demon
action, the filter would need to operate at the temperature
of the reservoirs that create the thermal electrons (Tcon =
Tb); see Fig. 1. However, thermal scattering at the aperture
that defines the electron beam and at the filter’s junctions
may suppress electron interference. Filters consisting of
loops provided by one-dimensional conductors or suitable
molecules are robust to this problem; see Fig. 9. Note that
the two arms of the loops, possibly including even the
beam splitters, may also be provided by an inhomogeneous
tunnel barrier. For device operation, a finite phase-coherent,
ballistic current of thermal electrons must be maintained
across the length of the barrier lb, including the splitters,
Fig. 9. In this respect, it is encouraging to note that
pronounced Aharonov–Bohm oscillations of 30 � gold
rings have been measured at ∼ 0.7 K with ac currents of
Irms = 0.2 μA i.e., with electron energies ≤ 1 K [37]. If this
tendency towards ordering prevails also for Tcon = Tb and
without bias voltage is to be answered. In thermodynamic
equilibrium, further effects counteract device operation
because then the electrons that enter the device and the
electrons that there already exist share the same thermal
energy distribution. In response to the phase shifts induced,
e.g., by the Rashba effect or by the Aharonov–Bohm effect,
these carriers form circulating currents. These electrons
affect the filtering effect on the one hand by their magnetic
field and on the other hand by acting as an electron scatterer
that is, however, constantly moving in one direction. We
therefore cannot exclude that also in thermal equilibrium the
velocity distribution of the electrons leaving the ring has a
directional asymmetry.

The second law of thermodynamics demands that the
open source voltage 〈Vo(Ba, lc(v))〉t and the output current
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(b)

Ba

(a)

Ea

(c)

Vg

Ba

Fig. 8 Quantum rings with non-reciprocal transport based on a the
Rashba effect and b, c the Aharonov–Bohm effect. In (b), the symme-
try between the electron paths I and II is broken by using two materials
with different electron velocities v, in (c) by changing the electron

velocity with a gate potential Vg. The devices are characterized by an
inelastic scattering length that is comparable to the circumference of
the loops

Io flowing through an attached wire strictly disappear
under all circumstances, for example for any applied
magnetic field and for any mean electron coherence length
〈Io(Ba, lc(v))〉t ≡ 0, independent of the length’s functional
dependence on the electron velocity. If the output current
and voltage would indeed completely disappear, which
mechanisms are to suppress them to precisely zero under all
conditions?

5 Discussion

In the following, we discuss several possible problems of the
devices and the modeling we have used, without claiming
that our discussion is complete.

(1) In our search for the devices, we have used the con-
cept of free electrons that move with a parabolic

Fig. 9 a Length scales of a
one-dimensional conductor
relevant to device operation. The
loop size lb and the length of the
contacts lcon are required to
obey lcon > lc � lb, where lcis
the coherence length of the
electron. b Illustration of a one-
dimensional conductor (dark
blue) comprising an Aharonov–
Bohm ring with inelastic
scattering, a non-uniform
electric potential Ve, and a
non-uniform vector potential A.
This conductor is part of a loop
that is closed by a standard,
dissipative conductor (light
blue). According to our model, a
circulating current Io flows
through this loop if Tcon > Tb

x

y

(a)

(b)
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dispersion and are described by the model based on
the Schrödinger equation commonly used to describe
Aharonov–Bohm rings and double-slit experiments.
We have also made several widely used approxima-
tions as described. The calculations, arguments, and
approximations analogous to the ones performed here
are based on those commonly used in the literature to
describe the behavior of quantum rings and double-slit
experiments.

(2) A functioning device requires that at least some
coherence be maintained across the entire device.
The scattering lengths have to be comparable to
the device size. In this case, all contacts and wave
splitters, which may be abrupt or gradual, deserve
special attention. They must be transparent, i.e., they
must feature sufficiently matching states for electrons
passing the barrier close to the chemical potential.
Contacts can never be fully transparent and they may
induce phase retardation effects, which impairs device
performance. Numerous observations of Aharonov–
Bohm oscillations of quantum rings operating at
finite temperatures provide ample evidence that the
incoherency of the contacts and at the device junctions
does not necessarily inhibit device operations at finite
temperatures.

(3) In devices based on the Rashba effect, electrons
move in transverse magnetic fields. They are therefore
subject to the Lorentz force, such that their trajectories
may change or Hall fields may be generated. We
have therefore limited the discussion above to the
motion of electrons in 1D- or 2D-quantum wells
oriented parallel to the magnetic field. Furthermore,
the device proposal applies independently of whether
the particles are charged or neutral. Therefore, it does
not appear in principle that these effects would prevent
the functioning of Rashba-based devices. In devices
based on the Rashba effect, the electron phase also
changes due to vector-potential contributions. The
magnetic self-field of the transport current causes a
magnetic flux to penetrate the hole of the device in the
case where the currents of paths I and II are not the
same. As discussed, such flux or stray fields induce
phase shifts analogous to the Aharonov–Bohm [34]
and the Aharonov–Casher [38] effects. These effects
scale with the area of the loop hole, Ah. However,
as Ah is not a relevant parameter for the operation
of the proposed device and may effectively vanish,
it seems that Aharonov–Bohm-type phase changes
cannot impede the performance of the Rashba-based
devices in principle.

6 Summary and Conclusions

To achieve non-superconducting, loss-free charge transport,
we suggest searching for systems with broken space and
time-inversion symmetry that are subject neither to Bloch’s
(second) theorem nor to the reciprocity theorem. The
candidates we propose are non-reciprocal devices such as
the ones presented in Fig. 8. The device principles apply to
all quasiparticles and particles with an electric charge or a
magnetic moment.

To implement the devices, conducting asymmetric
molecules, consisting for example of asymmetric rings
contacted by backbone chains, are appealing candidates
because of their ease of fabrication, small size, strong phase
coherence (which may allow for high operation tempera-
tures), and possibly well transparent contacts between the
paths. The sorting may also be performed by using different
paths in a crystal, utilizing for example transport in differ-
ent bands or along different crystal directions. Topological
edge and surface states are candidates of interest, too.

Based on several explicit and implicit assumptions our
discussion suggests that the proposed devices show, as
intended, a higher transparency for particles moving with a
velocity v in one direction than in the reverse, not following
the reciprocity theorem, (1). Using the existing motion of
the particles, the ground state of such devices exerts a
sorting function on incoming particles without an electric
bias or moving device components.

In our view, the concept of a state that exerts a dynamic
function, for example, by means of a circulating current,
deserves to be explored from a general perspective in its
own right. Acting like a unidirectional membrane, like
a catalyst for ordering, such a state may sort a variety
of degrees of freedom, such as spins, orbital momentum,
valley occupancy, and velocity, and may use mechanisms
other than quantum interference. Corresponding devices are
therefore driven by quantum mechanical phenomena, but,
if incoherent scattering is involved, operate at the interface
between quantum physics and classical physics.

For Tcon > Tb, we foresee that the proposed devices
induce finite currents in normal, dissipative conductors. For
Tcon = Tb, the second law of thermodynamics requires
that the time-averaged output voltages and currents of such
a device cancel precisely for any ring designs and contact
configuration, at any applied magnetic field and for any
coherence length: 〈Vo(Ba, lc(v))〉t ≡ 0, 〈Io(Ba, lc(v))〉t ≡
0. Because the proposed ground states have a tendency
to enhance order in attached electron reservoirs, it is a
question to us whether the output current and voltage indeed
strictly disappear for Tcon = Tb, and if so, by which
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microscopic mechanisms. These devices therefore permit
novel and exacting tests of the second law.
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