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Abstract The magnetic properties and the critical behav-
ior in Sr1.5Nd0.5MnO4 have been investigated by mag-
netization measurements. The magnetic data indicate that
the compound exhibits a second-order phase transition.
The estimated critical exponents derived from the mag-
netic data using various techniques such as modified Arrott
plot, Kouvel–Fisher method, and critical magnetization
isotherms M (TC, H ). The critical exponent values for this
compound was found to match well with those predicted for
the mean-field model (δ = 2.212 ± 0.124, γ = 0.975 ±
0.018, and β = 0.502 ± 0.012) at TC = 228.59 ± 0.17.
The critical exponent γ is slightly inferior than predicted
from the mean-field model. Such a difference may be due,
within the context of the quenched disorder and essentially
the presence of the Griffiths phase. The temperature varia-
tion in the effective exponent (γeff) is similar to those for
disordered ferromagnets.
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Kairouan, Tunisia

3 Physics Department, Rabigh College of Science and Art,
King Abdulaziz University, P.O. Box 344,
Rabigh 21911, Saudi Arabia

1 Introduction

Transition metal oxides have been the focus of intense
interest over the past several years, a consequence of their
displaying a wide range of unusual magnetic and electronic
properties, aspects of which are not fully understood. To
cite a specific example, such a description is currently appli-
cable to colossal magnetoresistive (CMR) systems, viz.,
oxides with general formula A1−xBxMnO3 where A is a
rare-earth ion and B is a divalent alkaline earth cation
[1], while the layered perovskite manganite Sr2MnO4 con-
taining only Mn4+ ions crystallize in the K2NiF4-type
structure [2, 3]. The feature of this structure is an insulat-
ing NaCl-type structural block separating two neighboring
MnO2 layers [2, 3]. These structures are not much studied,
mainly the magnetic study. The doped of Sr2+ by rare earth
R3+ = La3+ or Nd3+ provides a typical two-dimensional
eg-electron system In these systems, a cascade of mag-
netic, structural, metal–insulator, and charge ordering phase
transitions has been observed by change of doped level,
temperature, applied magnetic field, and pressure [4, 5].
These properties were widely interpreted by means of the
double-exchange (DE) mechanism, proposed by Zener [6],
together with a strong electron–phonon interaction known
as the Jahn–Teller effect [7]. However, the origin of the
observed properties is still not fully understood. Particularly,
it is unclear how the magnetic interactions are renormal-
ized near the PM–FM transition range and what universality
class governs the PM–FM transitions in these systems.

Among the fundamental questions which remain contro-
versial is the universality class related to the paramagnetic
(PM) to ferromagnetic (FM) transition in manganites [8–
10]. The universality class does not depend on microscopic
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details of the system but only on global information such
as the dimension of the order parameter and space. This
practice has been extremely helpful in trying to discern the
complexities of magnetic transitions in real systems [11].
Historically, the critical behavior in the DE model was
described by long-range mean-field theory.

Many of the experimental studies of critical phenomena
have been previously made on ferromagnetic manganites
[12–16], with some controversial results concerning the
critical exponents and even the order of the magnetic tran-
sitions. For example, Morrish et al. [13] had found a high
value of β = 0.495 in a La0.65Pb0.44MnO3 crystal. This
is in good agreement with later results from Lofland et al.
[14] which yield β = 0.45 in La07Sr03MnO3, indicating
a mean-field-like behavior at the magnetic phase transi-
tion. In contrast to this, neutron scattering experiments on
La0.7Sr0.3MnO3 give a rather low β value, 0.295 [15]. Due
to the drastic difference in the physical properties between
La0.7Ca0.3MnO3 with a Curie temperature TC = 250 K
and La0.7Sr0.3MnO3 (TC = 340 K), some authors distin-
guish the archetypical CMR compound La0.7Ca0.3MnO3

as a “low-TC” manganite. It has a higher resistivity, a
sharper resistivity peak near TC and a larger CMR than
La0.7Sr0.3MnO3 [17].

The continuous nature of the FM to PM transition
has been investigated carefully for high-TC manganites
such as the work of Tozri et al. for the compound
La0.7Pb0.05Na0.25MnO3 (TC = 335 K) [9] and also Ghosh
et al. for La0.7Sr0.3MnO3 (TC = 355 K) [20]. On the
other hand, an unexpected dependence of the order of the
ferromagnetic transition on doping has been reported for
La1−xCaxMnO3. The transition in La0.8Ca0.2MnO3 is con-
tinuous [18], while that for La0.7Ca0.3MnO3 was found to
be of first order in various studies [19–21]. Quenched dis-
order in the Mn sublattice of La0.67Ca0.33MnO3 introduced
by Ga doping leads to a rounded magnetic phase transition
characterized by the critical properties of a Heisenberg-like
ferromagnet [22]. This result implies a conventional behav-
ior of the magnetic Mn sublattice in this manganite which
is, however, impaired by additional effects in the undoped
La0.67Ca0.33MnO3. There are still other conflicting results
about the ferromagnetic transition in the series of com-
pounds La1−xCaxMnO3. From static magnetization studies,
a tricritical behavior was found for x = 0.40 [23], while
critical exponents close to those of the Heisenberg univer-
sality class have been found for x = 0.20 [18]. The same
for work from Nasri et al. also found change for x = 0.2 in
the compound La0.6Ca0.4−xSrxMnO3.

Contrary to this, Rivadulla et al. [24] propose a heteroge-
neous magnetic ordering owing to intrinsic random fields or
random anisotropies for the ranges x > 0.4 and x < 0.25
with a continuous phase transition. Finally, the experimental

estimates are still controversial concerning the critical expo-
nents and even the order of the magnetic transitions includ-
ing three-dimensional 3D-Heisenberg interaction [25, 26],
3D-Ising values [27, 28], mean-field values [29], and those
that cannot be classified into any universality class ever
known [30]. To better understand the nature of the PM–FM
transition, it is important to study in detail the critical expo-
nents associated with the transition, based on a systematic
investigation of the critical behavior in terms of the modified
Arrot plot [31] and Kouvel–Fisher [32] methods.

The aim of this work is the studies of the critical behav-
ior in Sr1.5Nd0.5MnO4 at its PM–FM transition via the
detailed measurement of the dc magnetization. We find that
the critical exponents for Sr1.5Nd0.5MnO4 are close to those
theoretically predicted for the mean-field model.

Griffiths phases, associated with various forms of disor-
der, have also been reported in a number of other systems
[33–37]. In this letter, we address the question of whether
a Griffiths phase is always a precursor to the deference of
values of critical exponent.

2 Experimental Details

The polycrystalline Sr1.5Nd0.5MnO4 compound is prepared
from precursors of Sr2O3 (4N-purity), Nd2O3 (4N), and
MnO2 by a solid-state reaction [38]. The raw powders were
pre-heated before weighting and mixing by the following.
These powders were mixed in a required atomic ratio with
an agate mortar and pressed into pellets, which were put
into a platinum boat. The pellets were fired at 1400 K for
6 h in air, followed by slowly cooling to room temper-
ature. X-ray powder diffraction data of the sample were
measured using a diffractometer system equipped with a
single-crystal graphite monocromator (MAC MXP18 pow-
der X-ray diffractometer). The diffraction patterns were
collected with CuKα radiation over a 2θ range from 10
to 80◦ with a step width of 0.015◦ and counting time of
4.5–6.0 s (variable). The magnetization and susceptibility
measurements were performed in a (BS2) magnetometer.
The magnetization was measured as a function of field (H )
and temperature (T ), respectively. The field dependence of
the magnetization (M) was carried out at 3 K in an applied
field of 0.05 T.

3 Scaling Analysis

A second-order magnetic phase transition near the Curie
point is characterized by a set of interrelated critical expo-
nents, β (associated with the spontaneous magnetization),
γ (relevant to the initial magnetic susceptibility), and δ
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(associated with the critical magnetization isotherm) [39]
The mathematical definitions of the exponents from magne-
tization measurements can be described as follows [39–41]:

• Below TC , the temperature dependence of the sponta-
neous magnetization MS(T ) = lim

H→0
(M) is governed

by β exponent through the relation

MS(T ) = M0(−ε)β; ε < 0, T < TC (1)

• Above TC, the initial susceptibility χ−1
0 (T ) =

lim
H→0

(
H
M

)
is given by

χ−1
0 (T ) =

(
h0

M0

)
εγ ; ε > 0, T > TC (2)

• At TC, M and H are related by the following equation:

M = DH
1
δ ; ε = 0, T = TC (3)

where ε = T −TC
TC

is the reduced temperature,M0 as well
as h0 and D are critical amplitudes.

The magnetic equation of state is a relationship among
the variables M (H, ε), H and T . From the scaling hypoth-
esis this can be written as

M(H, ε) = εβf±(H/εβ+γ ) (4)

where f+ for T > TC and f− for T < TC are regular
analytic functions. Equation (4) implies that for true scaling
relations and right choice of β, γ and δ values, the scaled
M/ |ε|β plotted as a function of H/ |ε|β+γ reveals that the
magnetic isotherms in the vicinity of TC fall on two individ-
ual branches, one for T < TC and the other for T > TC.
However, exponents often show various systematic trends or
crossover phenomena as one approaches TC [42, 43]. This
occurs if a magnetic system is governed by various compet-
ing couplings and/or disorders. In that case, it is useful to
generalize the power laws for the critical behavior by defin-
ing effective exponents for ε �= 0. It can be mentioned that
effective exponents are nonuniversal properties and here we
only analyze the effective exponent commonly used, γeff,
defined as

γeff = d lnχ−1
0 (ε)

d ln(ε)
.

– In the asymptotic limit ε → 0, the effective exponents
approach the universal critical (asymptotic) exponent.

– In the critical regime (asymptotic limit), where χ ∝
(T − TC)γ γeff, defined as

lim γeff = γ

ε → 0

– At high temperatures (meanfield theory, T → ∞),
where we can establish the law of Curie–Weiss, χ = C

(T − Tc)
−1, γeff is defined by

lim γeff = 1
ε → ∞

4 Results and Discussion

The structural analysis was carried out by X-ray diffraction
(XRD) at room temperature. The data were analyzed by the
Jana program [44]. This refinement of XRD shows that sam-
ple Sr1.5Nd0.5MnO4 crystallizes in the tetragonale structure
with Pmmm space group [45].

4.1 Magnetic Properties

The magnetization presents a very sharp FM–PM transition
at Curie temperature TC, which is near room tempera-
ture. The magnetic transition temperature (TC) is defined
as the inflection point of dM/dT (Fig. 1). We have found
that the transition temperature TC for the Sr1.5Nd0.5MnO4

compound is (245 K), followed by a decrease of sponta-
neous magnetization in the 300–100 K temperature range.
This decrease of magnetization should be probably due to
a spin canted state between manganese and neodymium
spin systems. In fact, such type of canting due to rare-
earth ion is indeed possible for manganites as also been
reported in previous experimental results by Park et al. for
Nd0.5Sr0.5MnO3 bulk material [45] and by Biswas et al. for
Nd0.5Sr0.5MnO3 nanocrystalline material [46].

This compound presented a Griffiths phase in form
of FM cluster system within a PM matrix is indicated
by macroscopic magnetization experiments [47–54]. The

Fig. 1 Variation of the magnetization and the dM/dT as a function
of temperature in an applied field of 0.05 T for Sr1.5Nd0.5MnO4
compound
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magnetic anomaly is more obvious in the inverse sus-
ceptibility and its derivative as a function of temperature
[27].

4.2 Arrott–Noakes Plot

Figure 2 shows the M vs. H plots for Sr1.5Nd0.5MnO4. As
can be seen, the magnetization curves indicate a gradual FM
to PM transition, which were used to determine TC and the
critical exponents β, γ , and δ.

The conventional method to determine the critical expo-
nents and critical temperature involves the use of Arrott plot
[55]. According to this method, isotherms plotted in the
form ofM2 vs.H /M constitute a set of parallel straight lines
around TC. It can be mentioned that the Arrott plot assumes
the critical exponents following mean-field theory (β = 0.5,
γ = 1, δ = 3). Hence, linear behavior of isotherms in a
high field indicates the presence of mean-field interactions.
The advantages of this plot are that (i) TC can be determined
accurately, since the isotherm at TC will pass through the
origin, (ii) it directly gives x−1

0 (T ) as an intercept on the
H/M axis, and (iii) the intercept on the positive M2 axis
gives MS (T ) (Fig. 3).

The curves obtained from the H/M vs M2 plots of the
sample are shown in Fig. 3. However, all curves in this plot
show a linear behavior having a downward curvature even in
a high field indicating a mean-field-like behavior. Moreover,
the concave downward curvature clearly indicates a second-
order phase transition according to the criterion suggested
by Banerjee [56]; in addition, this curve indicates that a pos-
itive slope is clearly seen in the complete M2 range, which
means that a second-order ferromagnetic to paramagnetic
phase transition happens.

The deeper insight of the magnetic phase transition may
be checked by analyzing the critical phenomena. The exact
values of the critical exponents and the Curie temperature

Fig. 2 Magnetization vs. applied magnetic field μ0H , measured at
different temperatures, for the Sr1.5Nd0.5MnO4 sample

TC were determined from the Arrott-Noakes plots (also
called modified Arrott plots (MAP)).

In this technique, the M = f (H) data are converted into
a series of isothermal

(
M1/β = f ((H/M))1/γ

)
depending

on the following relationship [57, 58]:

(H/M)1/γ = (T − TC)

T1
+ (M/M1)

1/β (5)

A standard Arrott plot uses the critical exponents of the
mean–field theory (β = 0.5, γ = 1, and δ = 3) char-
acteristics of systems with long-range interactions. Thus,
the relation (5) simplifies to a graph of M2 vs. (H/M).
In order to determine correctly the spontaneous magnetiza-
tion and the initial susceptibility for our materials from the
M − H isotherms, we constructed the Arrott plot M2 vs.
(H/M) (Fig. 3). Such curves in the mean-field theory near
TC should form a progression of parallel straight lines for
different temperatures and the line at T = TC should pass
through the origin. However, the present curves were found
to be non-linear at a low field and show a downward curva-
ture suggesting that the mean-field theory cannot describe
the critical behavior for this system. The MAP isotherms of
M1/β vs. (H/M)1/γ are plotted at different temperatures for
this sample by using three models of critical exponents: the
3D-Heisenberg model (β = 0.365, γ = 1.336) (Fig. 4b),
the tricritical mean-field model (β = 0.25, γ = 1) (Fig. 4a),
and the 3D-Ising model (β = 0.325, γ = 1.24) (Fig. 4c).

Based on these curves, all models render quasi straight
lines and nearly parallel to the high-field region. Thus, it is
somewhat difficult to distinguish which one of them is the
best for the determination of critical exponents. In order to
compare these results and select the better model describing
this system, we calculated their relative slopes (RS) which
are defined as Fig. 5 shows the RS vs. T curve for the three
models, 3D-Heisenberg, Ising, and tricritical mean-field
model. The most adequate model should be the one that pos-
sesses an RS value and is very close to the unit. Therefore,

Fig. 3 The M2 vs. H/M isotherms for Sr1.5Nd0.5MnO4 compound
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Fig. 4 Modified Arrott plots a tricritical mean-field model b using
3D-Heisenberg model and c 3D using model

Fig. 5 Relative slope (RS) of Sr1.5Nd0.5MnO4 sample as a function
of temperature defined as RS = S(T )/S (TC), using several methods

we can deduce that the mean-field model is the best model
which can describe our system and for determination of
critical exponents for this compound Sr1.5Nd0.5MnO4 [59].

Fig. 6 Variations of the spontaneous magnetization and the inverse of
the initial susceptibility as a function of temperature deduced from the
Arrott
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As initial values, we have chosen (γ = 1 and β = 0.5)
the critical exponents of the mean-field model based on the
relative slopes (RS). Following a standard procedure, val-
ues of spontaneous magnetization MS (T ) and x−1

0 (T ) are
obtained from a linear extrapolation of MAP at fields above
0.2 T to the intercept with the M1/β and (H/M)1/γ axes,
respectively. Only the high-field linear region is used for the
analysis since MAP deviates from linearity at a low field,
due to the mutually misaligned magnetic domains. Critical
exponents of the mean field (δ = 3, γ = 1, and β = 0.5)
[60] are used as trial critical exponents for this data (Fig. 6).

4.3 Kouvel–Fisher Plot

In order to obtain the accurate critical exponents, the
Kouvel–Fisher (KF) method has been used based on the
following relationship [61, 62]:

MS(T )

dMS(T )/dT
= T − TC

β
(6)

χ−1
0 (T )

dχ−1
0 (T )/dT

= T − TC

γ
(7)

To determine the critical exponents as well as TC more
accurately, we have analyzed the MS (T ) and x−1

0 (T )

data by the Kouvel–Fisher (KF) plot [63]. According
to this method, MS(T , 0) (dMS(T , 0)/dT)−1 vs. T and
x−1
0 (T )(x−1

0 (T )/dT)−1 vs. T yield straight lines with slopes
1/β and 1/γ , respectively. The KF plot has been presented in
Fig. 6. We have listed the critical exponents obtained from
the Arrott–Noakes plots as well as the KF method along

with TC in Table 1. It is noticed that values of critical expo-
nents as well as TC calculated using both methods match
reasonably well. This suggests that the estimated values are
self-consistent and unambiguous.

4.4 Critical Isotherm Exponent

For the value of δ, it can be determined directly from the
critical isotherm M (TC, H ). Figure 7 shows the magnetic
field dependence of magnetization at T = TC for our
samples. In the insets of Fig. 7, we presented this critical
isotherm on a log–log scale. According to (3), the log (M)
vs. log (H ) plot should be a straight line with slope 1/δ. The
exponent δ has also been calculated from the Widom scal-
ing relation according to which critical exponents β, γ and
δ are related in the following way [63]:

δ = 1 + γ /β. (8)

Using this scaling relation and the estimated values of
β and γ we obtain a δ value which is very close to the
estimates for δ from the critical isotherms at TC. Thus,
the estimates of the critical exponents are consistent. In
Table 1, we report some recent experiment results and we
also include the theoretical values obtained for different
models.

4.5 Scaling Law

In the critical region, magnetization and internal field should
obey the universal scaling behavior. In Fig. 8, we show plots

Table 1 Comparison of critical exponents of Sr0.5Nd0.5MnO4 compound with earlier reports

Composition Technique TC (K) β γ δ Ref.

Sr0.5Nd0.5MnO4 MAP 228.19 0.529 0.975 2.212 This work

K–F analysis 228.14 0.520 0.979 3

C.I (exp)

C.I (calc)

La0.6Ca0.2Sr0.2MnO3 MAP K–F analysis 344.456 0.498 1.053 2.992 [59]

K–F analysis 344.258 0.504 1.038 2.828

C.I (exp)

C.I (calc)

La0.6Sr0.4MnO3 MAP K–F analysis 370.715 0.363 1.332 4.889 [59]

K–F analysis 371.323 0.414 1.255 4.350

C.I (exp)

C.I (calc)

Mean-field model Theory – 0.5 1 3 [60]

3D-Heisenberg model Theory – 0.365 ± 0.003 1.336 ± 0.004 4.80 ± 0.04 [60]

3D-Ising model Theory – 0.325 ± 0.002 1.241 ± 0.002 4.82 ± 0.02 [60]

Tricritical mean-field model Theory – 0.25 1 5 [60]

CI critical isotherm, exp experimental, cal calculated, MAP modified Arrott plots, KF Kouvel–Fisher
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Fig. 7 Isothermal magnetic curves at T = TC. The insets show these
plots in logarithmic scale along with the fitted data to (3)

of M/ |ε|B vs. H/ |ε|β+γ for the considered sample. The
two curves represent temperatures below and above TC. The
inset shows the same data in the log–log scale. It can be
clearly seen from Fig. 8 that the scaling is well obeyed, i.e.,
all the points fall on two curves; one for T < TC and the
other for T > TC. As a consequence, the obtained values of
the critical exponent and TC are reliable and in agreement
with the scaling hypothesis.

From Table 1, one can found that the critical exponent
β typically has a value in the range of 0.5–0.6, simi-
lar to those of mean-field ferromagnets. Nevertheless, the
reported value of γ is not close to the theoretical value of
the mean-field model. In our case, analysis of critical expo-
nents for Sr1.5Nd0.5MnO4 show that the β value is very

Fig. 8 Scaling plots indicating two universal curves below and above
TC Sr1.5Nd0.5MnO4 sample. Inset shows the same plots on a log–log
scale

close to the mean-field model value and the γ value lies
very far from the 3D-Ising and 3D-Heisenberg models. The
difference originates from β being calculated from fittings
below TC, whereas γ is from above TC. Furthermore, the
critical isotherm exponent δ is again very close to the mean-
field model prediction. Even if TC is not stable, it varies
from 230 to 225 K. The latter, incidentally, indicates—albeit
indirectly—the existent of a Griffiths-type phase [27] in
this specimen; in other time, the absence of a Griffiths-type
phase gives a top δ (generally characterized by large δ values
[39, 43].

One further interesting feature—we have determined
the effective critical exponent γeff according to (5), which
describes the temperature dependence of χ−1 in the so-
called intermediate range. This temperature range is limited
by the critical regime for ε → 0 and by the mean-field range
for ε → ∞.

4.6 Effective Critical Exponents

The effective exponent γeff for this sample is plotted in
Fig. 9. This latter shows that the compound exhibits a non-
monotonic change with ε where γeff shows two peaks: the
first with the highest value (at ε = 0.127) and the second
(at ε = 0162). It can be mentioned, when approaching the
asymptotic regime (ε → 0), that γeff = 0.78 at ε min, where
ε min is the lowest investigated ε and match very well with
the mean-field universality class. As observed for this sam-
ple, γeff shows a non-monotonic temperature dependence
with a maximum which is attained at a reduced tempera-
ture. This behavior is considered as a characteristic feature
of the disordered systems [64]. In contrast, for the crys-
talline FM, γeff decreases monotonically with increasing ε

[64]. Furthermore, it has been shown that chemical (site

Fig. 9 Effective exponent γeff vs. ε = (T − TC)/TC above TC
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disorder) and structural disorders are sufficient to obtain
the typical non-monotonic temperature dependence of γeff
[65]. A recent theoretical study [42], particularly for mean-
field-like FM, has predicted that γeff remains unaffected by
disorder in the asymptotic regime but with the introduc-
tion of disorder; γeff goes through a peak at higher ε. Thus,
this study shows the presence of quenched disorder in this
sample. The effect of weak quenched disorder on the criti-
cal behavior of magnetic systems is predicted by the Harris
criterion [66]: If the critical exponent αpure > 0, disorder
changes the critical exponents. While if the αpure is nega-
tive, the disorder is irrelevant. Using the Rushbrooke scaling
relation expressed as α + 2β + γ = 2, the exponent α is
found to be positive for the system which implies that the
disorder is relevant.

5 Conclusion

To summarize, for the effect of the Nd substitution on
the A-site cation, we have made a comprehensive study in
the phase transition PM–FM. The magnetic measurements
show a PM–FM transition at TC = 228 K. The critical expo-
nents δ, γ and β estimated from various techniques match
reasonably well. It is significant that even with these critical
exponents, magnetization, field, and temperature (M–H–T)
data follow the scaling equation where they collapse into
two distinct branches: one below TC and another above TC.
Estimates of critical exponents yield δ = 2.212 ± 0.124,
γ = 0.975 ± 0.0181, and β = 0.5029 ± 0.0129 with TC =
228.595 ± 0.1722 which are consistent with the nearest-
neighbor mean field, model universality class. Indeed, these
exponent values agree with the predictions for the univer-
sality class of the conventional DE model. The temperature
variation in the effective exponent (γeff) is similar to those
for disordered ferromagnets.

Therefore, the answer to the question raised in the title of
this paper is a GP and always a precursor to the deference
of values of critical exponent and this sign and show by the
effective critical exponents.
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