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Abstract A new two-band polaronic Hamiltonian is
derived from a generalized periodic Anderson model. The
generalization consists in the completion of the periodic
Anderson model with intra- and inter-band local phonon-
electron interactions. The derivation is achieved by mak-
ing use of two canonical transformations which enable us
to remove these phonon-electron potentials from the ini-
tial Hamiltonian. This decoupling procedure leads to the
appearance of new terms such as a pair-exchange potential,
anisotropic Kondo-lattice terms, and a density-dependent
hybridization. The final Hamiltonian describes a compli-
cated interplay between different tendencies in the inves-
tigated system. Superconductivity can compete with the
Kondo effect or magnetism as well. A simplified scenario
in which the effect of the single-particle hybridization on
superconductivity is investigated. It is shown that this factor
is very efficient as a pair-breaker.

Keywords Superconductivity · Two-band model ·
Phonon-electron interaction · Kondo lattice

1 Introduction

At the beginning of the high-temperature superconductiv-
ity era, the phonon-electron mechanism was not regarded
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to play any relevant role in the explanation of this fasci-
nating phenomenon. Due to the fact that undoped copper
oxides were antiferromagnetically ordered Mott insulators,
many authors perceived these materials as a domain being
under control of purely electronic mechanisms such as for
instance the spin-fluctuation one, especially due to a sim-
ple argument of the weakness of the isotope effect in them.
In order to give a theoretical picture for the description of
these exotic materials, some models such as the Hubbard
model and the t-J one were usually invoked, e.g., in [1].
However, recent experiments have shown that this approach
seems now to be incomplete. The isotope effect turns out
to be quite strong even in comparison to the BCS case
[2]. This takes place in underdoped regime, very close to
the transition to the antiferromagnetic state. Moreover, the
electromagnetic response of these systems to an external
magnetic field expressed by the London penetration length
manifests the isotope effect as well. There is much more
evidence [2] pointing to the importance of strong phonon-
electron interactions and resulting polaronic phenomena
in high-temperature superconductivity. The formation of
the so-called pseudogap is suspected to be brought about
by the strong phonon-electron interactions in contrast to
the view that this is due to the opening of a spin gap
[2]. Such a point of view is justified by the large iso-
tope effect in the case of the temperature T ∗ at which
unpaired polarons start to bind into bipolarons. However,
the bipolarons are not coherent at temperatures between
the critical temperature Tc and T ∗. The coherence appears
below Tc. This kind of behavior is a characteristic for
systems exhibiting the so-called mixed valence, it is, for
substances which contain ions of the same element differing
by 2e concerning their valence. Beside copper oxides, there
is the multitude of them, for example, T i4O7, NaxV2O5

or CsSbCl6 and T lF2 which are not superconductors but
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their ground state is charge-ordered. Besides some super-
conductors such as A15, C15, V3Si, Nb3Ge and cuprates
such as the tungsten bronzes and the doped bismuthates
(Ba1−xKxBiO3 and BaPb1−xBixO3) display the exis-
tence of local pairs because all of them are characterized by
the poor conductivity and narrow bands being the result of
the strong coupling between phonons and electrons [3]. The
importance of phonon-electron interactions is also strongly
stressed in [4].

In this paper, an effective model combining features of
some well-known models has been derived from a gener-
alized two-band periodic Anderson model. The two-band
Anderson model was completed with two local intraband
phonon-electron interactions and a local interband one
describing the transfer of electrons between bands as a result
of emitting or absorbing a local phonon on a lattice site.
Owing to the application of two canonical transformations
to the initial Hamiltonian, one has obtained the separation
of fermionic and bosonic degrees of freedom. The fermionic
part of the final Hamiltonian represents a system of inter-
acting electrons dressed in the lattice deformations. As is
widely known such electrons are called polarons. The result-
ing polarons interact to each other via local effective inter-
and intraband Hubbard like potentials that can be either
positive or negative. Apart of them, there appears a pair-
exchange term describing the charge transfer between both
of bands. Such an interaction was derived and investigated
in [3, 5–8] and can lead to superconductivity regardless of
the sign of the aforementioned Hubbard terms. However, it
is the presence of an anisotropic Kondo lattice component
that is completely new. The Kondo lattice model is usually
derived from the periodic Anderson model via the applica-
tion of the Schrieffer-Wolff transformation as it was made
in [3, 5–8]. A new Hamiltonian with the pair-exchange
interaction and the Kondo lattice term was obtained from
a generalized periodic Anderson model by applying the
Lang-Firsov transformation and next the Schrieffer-Wolff
one. However, this procedure led to the Hamiltonian with-
out the hybridization term that was removed owing to the
latter transformation. In this paper, the hybridization is still
present and additionally a density-dependent hybridization
appears. Moreover, the hopping of polarons takes place not
only within the same bands, but also between bands. These
all terms together make the final Hamiltonian be a com-
bination of such models as the periodic Anderson model,
the two-component model completed with the anisotropic
Kondo lattice one and the so-called d-p model [9]. There-
fore, the new Hamiltonian contains very rich physics and
all of this points to the greater relevance and importance of
phonon-electron interactions in new materials. One needs
to add that the idea of interband phonon-electron interac-
tions was introduced by Yu and Anderson in [10]. In that
paper, beside the conventional hybridization between s and

p spinless electrons, a new term describing the hybridization
between those electrons assisted by phonons was admit-
ted. Such a problem is equivalent to the single-impurity
Anderson model with such two hybridization terms. This
was introduced to explain some anomalies in behavior of
the A15 compounds, e.g., the violation of Mattheissen’s
rule. This idea was next undertaken in the series of papers
[11–16] where the so called two-channel Kondo was inves-
tigated. One of reasons was the possibility of nonmagnetic
Kondo effect in some materials, e.g., SmOs4Sb12 that
possesses a cage-like structure.

At the end of this paper, certain simplified case has
been investigated. A pair exchange potential is assumed
to act between electrons from both of the bands. The
potential competes with the single-electron hybridization
that turns out to be a very efficient pair-breaker. Next,
the results are compared to those of a case with the
pairing channel introduced only in the wider of the
bands.

2 The Model and Both of Transformations

Our starting point is the following Hamiltonian

H = H0 + HI , (2.1)

H0 =
∑

i �=j,σ

tcij c
∗
iσ cjσ + (Ec − μ)

∑

iσ

nc
iσ

+Uc
∑

i

nc
i+nc

i− +
∑

i �=j,σ

tdij d
∗
iσ djσ +

+(Ed − μ)
∑

iσ

nd
iσ + Ud

∑

i

nd
i+nd

i−

+V
∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ )

+Ucd
∑

iσσ ′
nd

iσ nc
iσ ′ + ω

∑

i

b∗
i bi , (2.2)

HI = HI1 + HI2 + HI3, (2.3)

HI1 = gc
∑

iσ

nc
iσ (b∗

i + bi), HI2 = gd
∑

iσ

nd
iσ (b∗

i + bi),

HI3 = gcd
∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ )(b∗
i + bi), (2.4)

c∗
iσ and ciσ represent creation and annihilation operators of

a local electron from the wider s- or p-band whereas d∗
iσ

and diσ concern local electrons from the narrower d-one,
respectively. σ denotes the spin of electrons and i and j

refer to lattice sites. nd
iσ and nc

iσ are the number opera-
tors for electrons. b∗

i and bi are creation and annihilation
operators for a local phonon residing on site i. tcij and tdij
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denote the hopping integrals of the electrons from the s
(p) and the d bands, respectively. They are equal to −tc

and −td , respectively. Ec and Ed refer to the site ener-
gies of electrons, respectively. V is the conventional on-site
hybridization, and the parameters Uc, Ud , and Ucd are the
Coulomb interactions between electrons of the same band
and the different bands, respectively. Subsequently, ω is
the Einstein oscillations frequency and μ is the chemical
potential. Finally, the parameters gc, gd , and gcd are the
electron-phonon couplings. In general, gc and gd are dif-
ferent but for simplicity gc = gd = g will be put here.
Owing to this one avoids some difficulties with the transfor-
mation of the Hamiltonian (2.1). These difficulties will be
outlined further in the text. The Hamiltonian (2.1) represents
a generalized Anderson lattice model in which electrons
from both of bands are strongly coupled to the same local
phonons and to each other through the Coulomb interac-
tions. HI3 describes the transfer of electrons between two
of bands due to the absorption or the emission of local
phonons. This means that an electron occupying one of
orbitals on a lattice site interacts with local phonons. Due
to that, the electron can stay in the same orbital or can get
another one on the same site. One may say that this process
is a kind of hybridization forced by the interaction of local
electrons with local lattice vibrations. Both s-electrons and
d-ones are assumed to be mobile but it is possible to con-
sider localized d-electrons. The periodic Anderson model
is regarded to represent a dense magnetic alloy. A similar
process was invoked in [10–16]. However, the considera-
tions were based on the single-impurity Anderson model
which represents a dilute magnetic alloy. Moreover, s, p,
and localized f-electrons were investigated in [12–16]. Elec-
trons of s-type were mixed with f-ones via the conventional
hybridization while p-electrons were hybridized with f-ones
owing to phonons. It should be noted that f-electrons reside
on a vibrating magnetic ion and interact with mobile elec-
trons. This process gives rise to the two-channel Kondo
effect. Paper [11] considers the possibility of hybridization
of conduction electrons of one type with electrons localized
on such an impurity as a mechanism of tunneling in molecu-
lar junctions. The important fact is that in all of those papers
the electron-phonon terms were not eliminated by means of
the appropriate unitary transformation.

It is convenient to transform the initial Hamiltonian to a
new one expressed in terms of small polarons similarly as
it was made ,e.g., in [2, 3]. To this end, let us use a Lang-
Firsov type transformation

H̃ = U1HU�
1 , U1 = eS1 ,

S1 := g

ω

∑

iσ

(nc
iσ + nd

iσ )(b∗
i − bi). (2.5)

It yields

H̃ =
∑

i �=j,σ

tcij c
∗
iσ cjσ e

g
ω

(b∗
i −bi−b∗

j +bj )

+
∑

i �=j,σ

tdij d
∗
iσ djσ e

g
ω

(b∗
i −bi−b∗

j +bj )+

+Ẽc
∑

iσ

nc
iσ + Ũ c

∑

i

nc
i+nc

i− + Ẽd
∑

iσ

nd
iσ

+Ũd
∑

i

nd
i+nd

i−

+Ṽ
∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ )+

−2ggcd

ω

∑

i

[
(nc

i+ + nd
i+)

×(c∗
i−di−+d∗

i−ci−)+(nc
i−+nd

i−)(c∗
i+di+ + d∗

i+ci+)
]
+

+Ũ cd
∑

iσσ ′
nd

iσ nc
iσ ′ + ω

∑

i

b∗
i bi

+gcd
∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ )(b∗
i + bi), (2.6)

with the definitions of some new symbols in the Hamilto-
nian above

Ẽc := Ec −μ− g2

ω
, Ẽd := Ed −μ− g2

ω
, Ũc := Uc − 2g2

ω
,

Ũcd := Ucd − 2g2

ω
, Ṽ := V − 2

ggcd

ω
, Ũd := Ud − 2g2

ω
.

The transformed creation and anihilation operators for
bosons and fermions are given below

c̃∗
iσ = c∗

iσ e
g
ω

(b∗
i −bi ), c̃iσ = ciσ e− g

ω
(b∗

i −bi ),

d̃∗
iσ = d∗

iσ e
g
ω

(b∗
i −bi ), d̃iσ = diσ e− g

ω
(b∗

i −bi ),

b̃∗
i = b∗

i − g

ω

(
nc

i+ + nc
i− + nd

i+ + nd
i−

)
,

b̃i = bi − g

ω

(
nc

i+ + nc
i− + nd

i+ + nd
i−

)
.

As a result, one obtains a Hamiltonian that has the modified
coupling constants of all the electron-electron interactions
and also both the hopping parameters and the site-energies.
Depending on the strength of the intraband and interband
Coulomb repulsions as well as the phonon-electron inter-
actions, the effective polaron-polaron potentials can be
repulsive or attractive ones. As is widely known attractive
interactions between polarons lead to superconductivity.
Moreover, new terms appear in the resulting Hamiltonian.
They describe a kind of the hybridization which is density-
dependent, i.e., they contribute if a site is occupied by a
polaron with opposite spin. This is a result of the presence
of HI3 term in the initial Hamiltonian which has not been
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eliminated by making use of the transformation U1. In order
to eliminate one, there is a need to apply another unitary
transformation to the transformed Hamiltonian. This new
transformation reads

HF = U2H̃U�
2 , U2 = eS2 ,

where

S2 := gcd

ω

∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ )(b∗
i − bi). (2.7)

One remark should be made here, namely the equality gc =
gd entails the removal of another difficulty. In general, for
gc �= gd [S1, S2] = 0 does not hold. In such a case , due
to [S1, S2] �= 0, the Hamiltonian U1U2HU�

2 U�
1 is not the

same as the Hamiltonian U2U1HU�
1 U�

2 and in order to make
amendments for this there is the necessity to incorporate

the known formula e(A+B) = eAeBe− 1
2 [A,B]. Unfortunately,

this leads to significant complications in finding the new
outcome. That is why it is convenient to put gc = gd

at the cost of some loss of the generality. Owing to this,
[S1, S2] = 0 is satisfied and the order of the transforma-
tions applied to the Hamiltonian (2.1) is arbitrary. Now, let
us transform this Hamiltonian by making use of the trans-
formation U2. The transformed operators take the following
form

b
∗
i = b∗

i − gcd

ω

∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ ),

bi = bi − gcd

ω

∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ ),

c∗
iσ = c∗

iσ cosh

[
gcd

ω
(b∗

i − bi)

]
+d∗

iσ sinh

[
gcd

ω
(b∗

i − bi)

]
,

ciσ = ciσ cosh

[
gcd

ω
(b∗

i − bi)

]
−diσ sinh

[
gcd

ω
(b∗

i − bi)

]
,

d
∗
iσ = d∗

iσ cosh

[
gcd

ω
(b∗

i − bi)

]
+c∗

iσ sinh

[
gcd

ω
(b∗

i − bi)

]
,

diσ = diσ cosh

[
gcd

ω
(b∗

i − bi)

]
−ciσ sinh

[
gcd

ω
(b∗

i − bi)

]
.

Before the new Hamiltonian is given certain thing should
be made here. This Hamiltonian is to have the purely
fermionic character. That is why we would like to get rid
of bosonic contributions from it. The Hamiltonian HF has
terms modified by some functional factors involving the lat-
tice deformation. To deal with these terms, the Hamiltonian
HF is averaged over the unperturbed phonon eigenstates of
Hph = ω

∑
i

b∗
i bi (see Appendix) and the energy of phonons

is neglected in analogy to that done in [3]. Therefore, let us
notice that

Tr
(
ρe±α(b∗

i −bi )
)

= e− 1
2 α2 coth βω

2 ≈ e− 1
2 α2

,

where β = 1
kT

, α is an arbitrary constant and at low

temperatures coth(
βω
2 ) ≈ 1 while

ρ = e−βHph

Tre−βHph
.

The full transformed Hamiltonian HF for the arbitrary
nonzero gcd together with the aforementioned factors after
averaging over ρ have been relegated to Appendix.

The resulting Hamiltonian in the gcd

ω
� 1 limit takes the

following form

H =
∑

i �=j,σ

t
c
ij c

∗
iσ cjσ +

∑

i �=j,σ

t
d
ij d

∗
iσ djσ

+
∑

i �=j,σ

t
cd
ij (c∗

iσ djσ + d∗
iσ cjσ )

+E
cd

∑

iσ

(nc
iσ + nd

iσ )+

+U
dd

cc

∑

i

(nc
i+nc

i− + nd
i+nd

i−)

+U
dc

cd

∑

i

(nc
i+nd

i− + nd
i+nc

i−)

+V
∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ )+

−2ggcd

ω

∑

i

[
(nc

i+ + nd
i+)

(c∗
i−di− + d∗

i−ci−) + (nc
i− + nd

i−)(c∗
i+di+ + d∗

i+ci+)
]
+

+V p

∑

i

(c∗
i+c∗

i−di−di+ + d∗
i+d∗

i−ci−ci+)

+J
± ∑

i

(Sc+
i Sd−

i + Sd+
i Sc−

i ) + J
z
∑

i

Scz
i Sdz

i , (2.8)

where the effective parameters are as follows

t
c = −1

4
(tc − td )e

− (g−gcd )2

ω2 , t
d = 1

4
(tc − td )e

− (g−gcd )2

ω2 ,

t
cd = 1

4
(tc + td )e

− (g−gcd )2

ω2 ,

U
dd

cc = 3

8
(Uc + Ud) + 1

4
Ucd − 2

g2

ω
,

U
dc

cd = 1

8
(Uc + Ud) + 3

4
Ucd + 2

gcd2 − g2

ω
,
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E
c = 1

2
(Ec + Ed + Ucd) − μ − 2g2 + gcd

ω
,

V p = −1

8
(Uc + Ud) + 1

4
Ucd − 2

gcd2

ω
,

V = V − 2
ggcd

ω
, J

± = −1

8
(Uc + Ud) + 1

4
Ucd

+2
gcd2

ω
,

J
z = 8

gcd2

ω
.

The spin operators are defined as follows: Scz
i = 1

2 (nc
i+ −

nc
i−), Sdz

i = 1
2 (nd

i+ − nd
i−), Sc+

i = c∗
i+ci−, Sc−

i = c∗
i−ci+,

Sd+
i = d∗

i+di− and Sd−
i = d∗

i−di+. The hopping integrals

were assumed to be t
c
ij = t

c and t
d
ij = t

d . t
cd
ij is determined

by those ones. The effective Hamiltonian (2.8) describes
a many-polaron system in which some new terms appear.
A new hopping term describes the transfer of polarons of
different bands between adjacent sites. Additionally, new
interactions are found as well. Beside the effective local
Coulomb interactions acting between polarons with oppo-
site spins a pair-exchange potential appears. This kind of
potential was derived from a two-band periodic Anderson
model via the application of the Lang-Firsov transformation
and next the Schrieffer-Wolff transformation [3]. This inter-
action can lead to superconductivity on its own. Moreover,
spin-spin interactions are present as well. They represent a
component that can be recognized as an anisotropic Kondo
lattice model. Therefore, the Hamiltonian H describes a
many-polaron system in which at least three ordering ten-
dencies compete with each other, it is, superconductivity, the
Kondo effect and magnetism that can be driven by RKKY
interactions between neighboring local moments mediated
by conduction electrons [17, 18].

It could be interesting to give a short analysis of the
underlying physics. Let us assume that gcd ≈ g and g

ω
≈

gcd

ω
� 1 hold, then note that t

c = − 1
4 (tc − td ), t

d =
1
4 (tc − td ), t

cd = 1
4 (tc + td ). Moreover, let us admit the

choice Uc ≈ Ud ≈ Ucd = U . This leads to the following
values of the coupling constants

U
dd

cc ≈ U − 2
g2

ω
, U

dc

cd ≈ U, V ≈ V − 2
g2

ω
,

V p ≈ −2
g2

ω
, J

± ≈ 2
g2

ω
, J

z ≈ 8
g2

ω
.

At once, one can recognize the anisotropic Kondo lattice
component with antiferromagnetic coupling constants. It
is clear that in this scenario there can be two attractive
potentials leading to superconductivity which compete
with tendencies driven by the Kondo lattice term. In other

words, in both of the bands, local bipolarons are formed.
At sufficiently low temperatures, they condense and as a
result superconductivity appears. This process is strength-
ened by the presence of the pair-exchange term. In general,
the Kondo lattice term has the tendency to break pairs
and hamper the occurrence of superconductivity, although
there are papers, e.g., [19], reporting the possibility of
the appearance of superconductivity in the Kondo lattice
model.

Of course, some different cases are possible. If for

instance U is sufficiently large, then U
dd

cc > 0 and U
dc

cd > 0
and only one mechanism responsible for superconductiv-
ity remains, namely that one driven by the pair-exchange
potential.

It is worth noticing that the single-particle hybridization
is still present in the transformed Hamiltonian. This term
is usually removed from both the single-impurity Ander-
son Hamiltonian and the periodic Anderson Hamiltonian by
application of the appropriate Schrieffer-Wolff transforma-
tion to them [3, 20]. As a result, one obtains the Kondo
model and the Kondo lattice model, respectively. Here, the
usage of the canonical transformations (2.5) and (2.7) not
only results in the eliciting of the Kondo-lattice component,
but also keeps the hybridization as well. A completely new
fact is that the Kondo-lattice term is obtained by removing
the phonon-electron interactions from the initial Hamilto-
nian. Physically, it means that the processes leading to the
states occupied by polarons from the different bands and
with opposite spins will be stronger and superconductivity
in both bands will be easier suppressed.

3 The Excitation Spectrum of a Simplified Version

In this section and the next one, a simplified scenario
will be investigated. This is represented by the following
Hamiltonian:

Hred =
∑

i �=j,σ

tcij c
∗
iσ cjσ +

∑

i �=j,σ

tdij d
∗
iσ djσ

+(Ed − μ)
∑

iσ

nd
iσ + (Ec − μ)

∑

iσ

nc
iσ +

+V
∑

iσ

(c∗
iσ diσ + d∗

iσ ciσ )

+Vp

∑

i

(c∗
i+c∗

i−di−di+ + d∗
i+d∗

i−ci−ci+). (3.1)

The Hamiltonian (3.1) describes a two-band fermion sys-
tem in which the exchange of both single particles, and
their pairs between bands is admitted. The idea of the
exchange of electron pairs between two bands as a possible
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mechanism of superconductivity was introduced at the same
time by Moskalenko [21] and Suhl et al. [22]. Here, the
single-particle hybridization is taken into account as a pair
breaker. In systems with narrow bands Coulomb repulsions
are frequently regarded to be destructive to Cooper pairs.
However, in this paper, we would like to focus our attention
to hybridization as a factor destabilizing superconductivity.
This mechanism can take place in heavy-fermion supercon-
ductivity. The Hamiltonian (3.1) does not include the spin-
spin interactions and the interband hopping. The Coulomb
terms have been neglected as well. The density-dependent
hybridization is assumed to be incorporated into the effec-
tive single-particle hybridization.

The Hamiltonian (3.1) transformed to the momentum
space via c∗

iσ = 1√
L

∑
k

e−ikRi c∗
kσ and d∗

iσ = 1√
L

∑
k

e−ikRi d∗
kσ ,

where L denotes the number of lattice sites and the vector
Ri stands for the position of the i-th site, and approximated
by the mean field treatment, reads

HMF =
∑

k

(
ξc
k(nc

k+ + nc
−k−) + ξd

k (nd
k+ + nd

−k−)

+V (c∗
k+dk+ + d∗

k+ck+ + c∗−k−d−k−
+d∗−k−c−k−)+

−	d(c∗
k+c∗−k− + c−k−ck+) − 	c(d∗

k+d∗−k− + d−k−dk+)
)

+2L
	c	d

Vp

=
∑

k

HkMF + 2L
	c	d

Vp

, (3.2)

with the gap parameters

	c = Vp

L

∑

k

〈c∗
k+c∗−k−〉HMF

= Vp

L

∑

k

〈c−k−ck+〉HMF
,

(3.3)

	d = Vp

L

∑

k

〈d∗
k+d∗−k−〉HMF

= Vp

L

∑

k

〈d−k−dk+〉HMF
.

(3.4)

The average 〈A〉HMF
=TrAe−βHMF

Tre−βHMF
, where A is an arbi-

trary operator. ξc
k=εc

k + Ec − μ, ξd
k=εd

k + Ed − μ with
dispersion relations for both of bands εc

k and εd
k . We

assume the two-dimensional square lattice with the nearest-
neighbor hopping.

Now, one can diagonalize the Hamiltonian HkMF . The
Hamiltonian HkMF acts in the 16-dimensional space Mk

spanned by the vectors |n1n2m1m2〉k=(c∗
k+)n1(c∗−k−)n2

(d∗
k+)m1(d∗−k−)m2 |0〉, where ni = 0, 1 and mi = 0, 1 for

i = 1, 2. The diagonalization of this Hamiltonian leads to
the problem of the diagonalization of a 16 × 16 matrix and
thus a formidable task. However, one can apply the method
resembling that one of Czerwonko [23, 24] to the Hamilto-
nian if one defines the operators �k = �c

k + �d
k, �c

k =
nc
k+ − nc

−k− and �d
k = nd

k+ − nd
−k− then the following

commutation relations are satisfied

[�c
k, HkMF ] = [�d

k, HkMF ] = [�k, HkMF ] = 0.

This fact enables us to simplify the problem to the diag-
onalization of the Hamiltonian in invariant subspaces of
Mk. Ultimately, the structure of the Mk is as follows (the
subscript k will be suppressed in the sequel):

(A) There are two 1-dimensional common subspaces Mi

(i = 1, 2) of the operator � i HMF . They are spanned,
respectively, by the following two vectors with the
corresponding eigenvalues λ and E of this operators
equal as follows:

1. |1010〉λ = 2 E1 = ξc + ξd

2. |0101〉λ = −2 E2 = ξc + ξd

(B) There are also two 4-dimensional common subspaces
Mi (i = 3, 4) of � and HMF spanned by the follow-
ing quartets of vectors |n1n2m1m2〉 with eigenvalues
of these operators equal as follows:

3. |1000〉|0010〉|1110〉|1011〉λ = 1 E
j

3 j =
1, 2, 3, 4

4. |0100〉|0001〉|1101〉|0111〉λ = −1 E
j

4 j =
1, 2, 3, 4

where

E1
3 = E1

4 = ξc+ξd−
√

2

2
Em, E2

3 = E2
4 = ξc+ξd+

√
2

2
Em,

E3
3 = E3

4 = ξc+ξd −
√

2

2
En, E4

3 = E4
4 = ξc+ξd +

√
2

2
En

with

Em =
√

ξc2 + ξd2 + 	c2 + 	d2 + 2V 2 − Ein,

En =
√

ξc2 + ξd2 + 	c2 + 	d2 + 2V 2 + Ein,

Ein =
√

ξc4 + ξd4 + 	d4 + 	c4 − 2ξc2ξd2 − 2ξc2	c2 + 2ξd2
	c2 + 2ξc2	d2 − 2ξd2

	d2+
−2	c2	d2 + 4ξc2V 2 + 4ξd2

V 2 + 8ξcξdV 2 + 4	c2V 2 + 4	d2
V 2 − 8	c	dV 2

.
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The eigenvectors of HMF in these subspaces have the
form

|Ej

3 〉 = a
j

3 |1000〉 + b
j

3 |0010〉 + c
j

3 |1110〉 + d
j

3 |1011〉

and

|Ej

4 〉 = a
j

4 |0100〉 + b
j

4 |0001〉 + c
j

4 |1101〉 + d
j

4 |0111〉.
The components are the same for these subspaces and
take the following form

a3/4 = c
j

3/4

ξc − E
j

3/4

[
	c − V R

j

3/4

]
, b

j

3/4

= c
j

3/4R
j

3/4,

d
j

3/4 = c
j

3/4

2ξc + ξd − E
j

3/4

[
V + 	dR

j

3/4

]

with

R
j

3/4 =

= (	c(V − 	c) + (2ξd + ξc − E
j

3/4)(ξ
c − E

j

3/4))(2ξc + ξd − E
j

3/4) − V (ξc − E
j

3/4)(V + 	d)

(V (V − 	c) − (ξd − E
j

3/4)(ξ
c − E

j

3/4))(2ξc + ξd − E
j

3/4) + 	d(	d + V )(ξc − E
j

3/4)
.

The component c
j

3/4 can be found from the normaliza-
tion condition:

a
j

3/4

2 + b
j

3/4

2 + c
j

3/4

2 + d
j

3/4

2 = 1.

(C) There is one 6-dimensional common subspace M5 of
� and HMF spanned by the vectors |0000〉, |1100〉,
|0011〉, |1001〉, |0110〉, |1111〉. The eigenvalue of �

in M5 is λ = 0, whereas the Hamiltonian has the
following eigenvalues:

E1
5 = E2

5 = ξc + ξd, E3
5 = ξc + ξd − Eo1,

E4
5 = ξc + ξd + Eo1, E5

5 = ξc + ξd − Eo2,

E6
5 = ξc + ξd + Eo2,

where

Eo1 =
√

ξc2 + ξd2 + 	d2 + 	c2 + 2V 2 + 2Ein,

Eo2 =
√

ξc2 + ξd2 + 	d2 + 	c2 + 2V 2 − 2Ein

and

Ein =
√

ξc2ξd2 + 	c2ξc2 + 	d2
ξd2 + 	c2	d2 − 2ξcξdV 2 + 2	c	dV 2 + V 4.

The eigenvectors in this subspace for i = 1, 2, 3, 4, 5,
6 are given by:
|Ei

5〉 = ai
5|0000〉 + bi

5|1100〉 + ci
5|0011〉 + di

5|0110〉
+ei

5|1001〉 + f i
5 |1111〉, (3.5)

where the components take the following form

ai
5 = ci

5

Ei
5

[
	c − 	dRi

5

]
, bi

5 = −ci
5R

i
5,

di
5 = −ei

5 = − V ci
5

ξc + ξd − Ei
5

[
1 − Ri

5

]
,

f i
5 = ci

5

2ξc + 2ξd − Ei
5

[
	d − 	cRi

5

]
(3.6)

with

Ri
5 = (2ξc + 2ξd − Ei

5)(	
c(	c − 	d) − (2ξd − Ei

5)E
i
5) + Ei

5(	
d − 	c)	d

(2ξc + 2ξd − Ei
5)(	

d(	c − 	d) + (2ξc − Ei
5)E

i
5) + Ei

5(	
d − 	c)	c

.
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The component ci
5 can be found from the normal-

ization condition:

ai
5

2 + bi
5

2 + ci
5

2 + di
5

2 + ei
5

2 + f i
5

2 = 1.

The spectrum is complicated but one can recognize the
ground state energy and the corresponding vector relatively
easily. The lowest energy state vector belongs to the sub-
space Mk5 and its number is i = 3. Therefore, the ground
state energy is E3

k5. This vector has a much more compli-
cated form than the conventional BCS ground state vector.
As one can see, the structure of the ground state reveals
some interesting features since it incorporates states occu-
pied by pairs of electrons from the same band, the quartet
state occupied by two types of pairs as well as the Kondo-
type states with single c-electron and d-electron of opposite
spins.

4 The Zero-Temperature Gaps and the Critical
Temperature

Now, after finding the solution of the eigenproblem of
Hamiltonian HMF , one can look at the gap parameters 	c

and 	d as functions of hybridization V at zero temperature.
In order to determine them, one can use the equations (3.3)
and (3.4) or resort to the following conditions:

L−1 ∂EG

∂	c
= 0 and L−1 ∂EG

∂	d
= 0,

where EG = ∑
k

ξc
k + ∑

k
ξd
k − ∑

k
Eko1 + 2L	c	d

Vp
is the

ground state energy. One obtains

	d = Vp	c

2De

De−μ∫

−μ

dξc

Eo1
+ Vp

2De

⎡

⎣	c	d2
De−μ∫

−μ

dξc

EinEo1

+	c

De−μ∫

−μ

ξc2dξc

EinEo1
+ V 2	d

De−μ∫

−μ

dξc

EinEo1

⎤

⎦ , (4.1)

	c = Vp	d

2De

De−μ∫

−μ

dξc

Eo1
+ Vp

2De
(ξd2

	d + 	d	c2 + V 2	c)

×
De−μ∫

−μ

dξc

EinEo1
, (4.2)

where one has passed to the thermodynamic limit (L −→
∞) and has used the rectangular density of states

ρ(εc
k) =

{ 1
De

, εc
k ∈ (0, De);

0, otherwise,
.

Moreover, one has assumed the d-band to be dispersionless
(ξd
k = ξd = Ed − μ). These two equations must be com-

pleted with the equation for the average number of electrons
in the system per lattice site, namely

n = −L−1 ∂EG

∂μ
.

One can deduce that

nc = 1 − 1

De

De−μ∫

−μ

ξcdξc

Eo1
− ξd2 + 	c2

De

De−μ∫

−μ

ξcdξc

EinEo1

+V 2ξd

De

De−μ∫

−μ

dξc

EinEo1
(4.3)

and

nd = 1 − ξd

De

De−μ∫

−μ

dξc

Eo1
− ξd

De

De−μ∫

−μ

ξc2dξc

EinEo1

+V 2

De

De−μ∫

−μ

ξcdξc

EinEo1
− ξd	d2

De

De−μ∫

−μ

dξc

EinEo1
. (4.4)

Of course, n = nc + nd holds.
To solve the problem above, one needs to resort to numer-

ical methods due to the complexity of equations (4.1), (4.2),
(4.3), and (4.4). Let us focus on the half-filled case, namely,
let μ = De

2 and ξd = 0 then nc = nd = 1. One has to
solve the system of two equations for 	c and 	d . Even this
case is not easily tractable. The following set of parameters
has been assumed: De = 0.2eV and Vp = 0.1eV . As a
result, one obtained 	c = 0, 03609eV and 	d = 0.05eV

at V = 0. The critical value of hybridization at which both
of gaps vanish amounts to Vc = 0.0544eV . Next, we make
the comparison of the two-band case with the single-gap
one from [25, 26]. In [26], the eigenproblem was solved in
the same way as it is done in this paper and the interested
reader is referred to one for more details. Now, let us bring
the following results from [25, 26]

	 =
√

De2

4 sinh2 (
De
Uc

) − 4V 2, Vc = 1

4

De

sinh
(

De
Uc

) , (4.5)

where Uc = 0.1eV is the coupling constant of the attractive
potential acting between c-electrons. The bandwidth of c-
band was assumed to be De = 0.2eV . It turns out that Vc =
0.0138eV whereas 	(V = 0) = 0.027572eV . Therefore,
the critical hybridization in the two-gap case is almost a few
times larger than in the single-gap case. The gap at V = 0 in
the single-gap case is visibly lesser than 	c. Fig. 1 displays
	c, 	d , and 	 as decreasing functions of hybridization V .
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Fig. 1 The dependence of two
superconducting gaps on the
hybridization V is demonstrated.
For making comparison, the
third curve representing the
superconducting gap in the
single-gap model as a function
of the same parameter V has
been added. The calculations
have been made for
De = 0.2eV ,
Vp = Uc = 0.1eV

Now, let us determine the free energy per lattice site. By
making use of the spectrum, one finds

F

L
= 2

	c	d

Vp

+ 1

L

∑

k

(ξc
k + ξd

k ) − 1

Lβ

∑

k

ln 2Mk, (4.6)

where

Mk = 2 + 2 cosh

√
2

2
βEkm

+2 cosh

√
2

2
βEkn + cosh βEko1 + cosh βEko2

and β = 1
kT

. The expression (4.6) will serve us to deter-
mine the finite temperature gaps 	c and 	d , namely the
conditions given below

L−1 ∂F

∂	c
= 0 and L−1 ∂F

∂	d
= 0

yield

2	d

Vp

= 1

L

∑

k

[√
2
∂Ekm

∂	c
Fk1 + √

2
∂Ekn

∂	c
Fk2

+∂Eko1

∂	c
Fk3 + ∂Eko2

∂	c
Fk4

]
, (4.7)

2	c

Vp

= 1

L

∑

k

[√
2
∂Ekm

∂	d
Fk1 + √

2
∂Ekn

∂	d
Fk2

+∂Eko1

∂	d
Fk3 + ∂Eko2

∂	d
Fk4

]
, (4.8)

where

∂Eko1/2

∂	c
= 	c

Eko1/2
± 	cξc

k
2 + 	c	d2 + 	dV 2

EinEko1/2
,

∂Ekn/m

∂	c
= 	c

Ekn/m

±−	cξc
k

2+	cξd
k

2−	c	d2−2	dV 2 + 2	cV 2 + 	c3

EinEkn/m

,

∂Eko1/2

∂	d
= 	d

Eko1/2
± 	dξd

k
2 + 	d	c2 + 	cV 2

EinEko1/2
,

∂Ekn/m

∂	d
= 	d

Ekn/m

±	dξc
k

2−	dξd
k

2−	d	c2+2	dV 2−2	cV 2 + 	d3

EinEkn/m

,

and the functions

Fk1 = sinh
√

2
2 βEkm

Mk
, Fk2 = sinh

√
2

2 βEkn

Mk
,

Fk3 = sinh βEko1

Mk
, Fk4 = sinh βEko2

Mk
. (4.9)

The average number of electrons per lattice site can be
obtained owing to the following condition n = − 1

L
∂F
∂μ

that
yields

n = 1

L

∑

k

2 + 1

L

∑

k

[√
2
∂Ekm

∂μ
Fk1 + √

2
∂Ekn

∂μ
Fk2

+∂Eko1

∂μ
Fk3 + ∂Eko2

∂μ
Fk4

]
, (4.10)

with the derivatives

∂Eko1/2

∂μ
= −ξc

k + ξd
k

Eko1/2

±−ξc
kξd

k
2 − ξd

k ξc
k

2 − ξc
k	c2 − ξd

k	d2 + V 2(ξc
k + ξd

k )

EinEko1/2

and

∂Ekn/m

∂μ
= −ξc

k + ξd
k

Ekn/m

± −ξc
k

3 − ξd
k

3 + ξc
kξd

k
2 + ξd

k ξc
k

2 + 1
2 (ξc

k − ξd
k )(	c2 − 	d2

) − 4V 2(ξc
k + ξd

k )

EinEkn/m

.
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Fig. 2 The dependence of the
critical temperature on the
hybridization V is demonstrated.
Two curves are presented—one
for the two-gap model and the
other for the single-gap one. The
calculations have been made for
De = 0.2eV ,
Vp = Uc = 0.1eV

The sign “ + ” corresponds to the indices “1” and “n” while
“ − ” to “2” and “m”.

The pair of equations (4.7) and (4.8) will serve us to find
the equation for the critical temperature Tc that for 	c = 0,
	d = 0, ξd

k = 0, and μ = De
2 ( the half-filled case) reads

1 = I 2

I cI d
, (4.11)

where

I = 2

Vp

+ 1

De

De
2∫

− De
2

dξc

[
2
√

2V 2

EinEm

F1 − 2
√

2V 2

EinEn

×F2 − V 2

EinEo1
F3 − V 2

EinEo2
F4

]
,

I c = 1

De

De
2∫

− De
2

dξc

[√
2

(
1

Em

+ 2V 2 − ξc2

EinEm

)

×F1 + √
2

(
1

En

− 2V 2 − ξc2

EinEn

)
F2+

+
(

1

Eo1
+ ξc2

EinEo1

)
F3 +

(
1

Eo2
− ξc2

EinEo2

)
F4

]
,

I d = 1

De

De
2∫

− De
2

dξc

[√
2

(
1

Em

+ 2V 2 + ξc2

EinEm

)
F1

+√
2

(
1

En

− 2V 2 + ξc2

EinEn

)
F2 + F3

Eo1
+ F4

Eo2

]
,

with

Eo1 =
√

ξc2 + 4V 2, Eo2 = |ξc|, Ein = V 2, (4.12)

Em =
√

2

2
(

√
ξc2 + 2V 2 − |ξc|),

En =
√

2

2
(|ξc| +

√
ξc2 + 2V 2),

Ein = |ξc|
√

ξc2 + 4V 2. (4.13)

The graph of the critical temperature in the two-gap case
versus the single-particle hybridization V is shown on
Fig. 2. The calculations were done for the same set of
parameters as in the case of the ground state. It is seen that
Tc is a decreasing function of V . Initially, for small val-
ues of V , the decrease is not rapid but in the vicinity of
V = 0.05432eV at which Tc = 0 this becomes very fast.
Note that for V = 0 Tc = 244.61K , and this value can be
numerically found from the following equation

4De

Vp
2βc

=
De
2∫

0

dξc

ξc
tanh

1

2
βcξ

c,

that can be easily derived. The single-particle hybridization
is a strong factor reducing this temperature. One can see
from Fig. 2 the effectiveness of the competition of single-
particle hybridization with the pair exchange mechanism
of superconductivity. The influence of the single-particle
hybridization on the critical temperature in the case of the
single-gap case was investigated as well. The comparison
of both of cases is shown on Fig. 2. The curve representing
this case is similar in shape to that for the two-gap one but
Tc = 178.19K for V = 0 as well as V = 0.017eV at which
Tc = 0 are lesser than in the former one. The equation for
Tc reads

2De

Uc
=

De
2∫

− De
2

dξc

[(
1

EV

− 1

|ξc|
)

F1 +
(

1

EV

+ 1

|ξc|
)

F2 + F3

|ξc| + F4

EV

]
, (4.14)
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where Fi for i = 1, .., 4 are the same as the functions (4.9)
with EV = Eo1, Eo2 = |ξc| and Em in F1 along with En

inF2 identical to (4.13) while Uc = 0.1eV .

5 Conclusions

The aim of this paper was to get an effective two-band
polaronic Hamiltonian combining superconductivity and
features of the Kondo lattice model via the removal of local
phonon-electron interactions by making use of two canoni-
cal transformations. In this way, one has obtained a system
in which beside effective intraband and interband Coulomb
potentials a pair-exchange interaction and an anisotropic
Kondo-lattice component have appeared. Due to this at
least superconductivity and Kondo effect compete with one
another and it is not excluded that other kinds of ordering are
possible. It is important that the single-particle hybridization
is still present in the final Hamiltonian. A density-dependent
hybridization term is quite new one. Moreover, a new hop-
ping term describing the intersite transfer of polarons from
different bands appeared as well. All these aforementioned
terms make the new Hamiltonian comprise features of a few
models. These are the anisotropic Kondo-latticemodel, the
periodic Anderson model, the d-p model, and the so-called
two-component model with local pairs [3, 5].

The results point to much greater importance of the
phonon-electron interactions in new materials such as for
instance cuprates and heavy fermions. They can lead to the
Kondo effect or magnetism on its own provided that beside
the intraband phonon-electron potentials the interband one
is taken into account as well.

The Hamiltonian (2.8) describes an extremely complex
many-particle system. The investigation of the general form
poses a very challenging task but can bring in new insight
into the understanding of the interplay between supercon-
ductivity and other phenomena in some substances. That is
why in this paper only one simplified situation has been
considered. The simplification consisted in rejecting all
effective interactions apart from the so-called pair-exchange
potential and the single-electron hybridization. It has been
shown that there are two gaps in this system and they van-
ish if the hybridization increases. Additionally, it has been
demonstrated that the critical temperature decreases as well.
The next step will be the incorporation of neglected interac-
tions into considerations. Now, the case with ξd of a finite
width and the interband hopping is being investigated. The
spin-spin interactions also seem especially interesting for
this purpose.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

Appendix

The transformed Hamiltonian HF is obtained via the appli-
cation of the transformation U2. It reads

HF =
∑

i,jσ

[
tcijA

++
ij − tdijA

−−
ij

]
c∗
iσ cjσ

+
∑

i,jσ

[
tdijA

++
ij − tcijA

−−
ij

]
d∗
iσ djσ +

∑

i,jσ

[
tdijA

−+
ij

−tcijA
+−
ij

]
c∗
iσ djσ +

+
∑

i,jσ

[tcijA−+
ij − tdijA

+−
ij ]d∗

iσ cjσ +
∑

iσ

E
c

i n
c
iσ +

∑

iσ

E
d

i nd
iσ

+(Ed − Ec)
∑

iσ

A3
i (c

∗
iσ diσ − d∗

iσ ciσ )+

+
∑

i

U
c

i n
c
i+nc

i− +
∑

i

U
d

i nd
i+nd

i−

+
∑

i

Ucd
i1 (nc

i+nd
i− + nd

i+nc
i−) +

∑

iσ

Ucd
i2 nc

iσ nd
iσ +

+Ũ c
∑

iσ

(A7
i n

c
iσ − A8

i n
d
iσ )(d∗

i−σ ci−σ − c∗
i−σ di−σ )

+Ũd
∑

iσ

(A8
i n

c
iσ − A7

i n
d
iσ )(d∗

i−σ ci−σ − c∗
i−σ di−σ )+

+V
∑

iσ

(d∗
iσ ciσ + c∗

iσ diσ ) − 2
ggcd

ω

∑

iσ

(nc
iσ + nd

iσ )

×(d∗
iσ ciσ + c∗

iσ diσ )+

+Ũ cd
∑

iσ

(A8
i + A7

i )(n
d
iσ − nc

iσ )(d∗
iσ ciσ − c∗

iσ diσ )

+
∑

i

V pi(c
∗
i+c∗

i−di−di+ + d∗
i+d∗

i−ci−ci+)+

+
∑

i

J
±
i (c∗

i+ci−d∗
i−di+ + d∗

i+di−c∗
i−ci+) + ω

∑

i

b∗
i bi .

Some terms are modified by exponential factors involv-
ing the lattice deformation. These factors appear owing to
the mutual multiplications of new operators in the result-
ing Hamiltonian: c∗

iσ , ciσ , d
∗
iσ , and diσ . The operators are

combinations of terms containing cosh
[

gcd

ω
(b∗

i − bi)
]

and
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sinh
[

gcd

ω
(b∗

i − bi)
]
. Let us start with those for hoppings,

namely,

A++
ij = e

g
ω

(b∗
i −bi )e

− g
ω

(b∗
j −bj ) cosh

[
gcd

ω
(b∗

i − bi)

]

× cosh

[
gcd

ω
(b∗

j − bj )

]
=

= 1

4

[
e

gcd+g
ω

(b∗
i −bi ) + e

g−gcd

ω
(b∗

i −bi )

]

×
[
e
− g−gcd

ω
(b∗

j −bj ) + e
− gcd+g

ω
(b∗

j −bj )

]
,

A−−
ij = e

g
ω

(b∗
i −bi )e

− g
ω

(b∗
j −bj ) sinh

[
gcd

ω
(b∗

i − bi)

]

× sinh

[
gcd

ω
(b∗

j − bj )

]
=

= 1

4

[
e

gcd+g
ω

(b∗
i −bi ) − e

g−gcd

ω
(b∗

i −bi )

]

×
[
e
− g−gcd

ω
(b∗

j −bj ) − e
− gcd+g

ω
(b∗

j −bj )

]
,

A+−
ij = e

g
ω

(b∗
i −bi )e

− g
ω

(b∗
j −bj ) × cosh

[
gcd

ω
(b∗

i − bi)

]

× sinh

[
gcd

ω
(b∗

j − bj )

]
=

= 1

4

[
e

gcd+g
ω

(b∗
i −bi ) + e

g−gcd

ω
(b∗

i −bi )

]

×
[
e
− g−gcd

ω
(b∗

j −bj ) − e
− gcd+g

ω
(b∗

j −bj )

]
,

A−+
ij = e

g
ω

(b∗
i −bi )e

− g
ω

(b∗
j −bj ) sinh

[
gcd

ω
(b∗

i − bi)

]

× cosh

[
gcd

ω
(b∗

j − bj )

]
=

= 1

4

[
e

gcd+g
ω

(b∗
i −bi ) − e

g−gcd

ω
(b∗

i −bi )

]

×
[
e
− g−gcd

ω
(b∗

j −bj ) + e
− gcd+g

ω
(b∗

j −bj )

]
.

The remaining factors are as follows

A1
i = cosh

[
gcd

ω
(b∗

i − bi)

]2

= 1

4
(e

2gcd

ω
(b∗

i −bi ) + 2 + e
−2gcd

ω
(b∗

i −bi )),

A2
i = × sinh

[
gcd

ω
(b∗

i − bi)

]2

= 1

4
(e

2gcd

ω
(b∗

i −bi ) − 2 + e
−2gcd

ω
(b∗

i −bi )),

A3
i = cosh

[
gcd

ω
(b∗

i − bi)

]
sinh

[
gcd

ω
(b∗

i − bi)

]

= 1

4
(e

2gcd

ω
(b∗

i −bi ) − e
−2gcd

ω
(b∗

i −bi )),

A4
i = cosh ×

[
gcd

ω
(b∗

i − bi)

]4

= 1

16
(e

4gcd

ω
(b∗

i −bi )

+6 + e
−4gcd

ω
(b∗

i −bi ) + 4e
2gcd

ω
(b∗

i −bi ) + 4e
−2gcd

ω
(b∗

i −bi )),

A5
i = sinh ×

[
gcd

ω
(b∗

i − bi)

]4

= 1

16
(e

4gcd

ω
(b∗

i −bi ) + 6 + e
−4gcd

ω
(b∗

i −bi ) − 4e
2gcd

ω
(b∗

i −bi )

−4e
−2gcd

ω
(b∗

i −bi )),

A6
i = cosh

[
gcd

ω
(b∗

i − bi)

]2

sinh

[
gcd

ω
(b∗

i − bi)

]2

= 1

16
(e

4gcd

ω
(b∗

i −bi ) − 2 + e
−4gcd

ω
(b∗

i −bi )),

A7
i = cosh

[
gcd

ω
(b∗

i − bi)

]3

sinh

[
gcd

ω
(b∗

i − bi)

]
=

= 1

16
(e

4gcd

ω
(b∗

i −bi ) − e
−4gcd

ω
(b∗

i −bi )

+2e
2gcd

ω
(b∗

i −bi ) − 2e
−2gcd

ω
(b∗

i −bi )),

A8
i = cosh

[
gcd

ω
(b∗

i − bi)

]
sinh

[
gcd

ω
(b∗

i − bi)

]3

=

= 1

16
(e

4gcd

ω
(b∗

i −bi ) − e
−4gcd

ω
(b∗

i −bi ) − 2e
2gcd

ω
(b∗

i −bi )

+2e
−2gcd

ω
(b∗

i −bi )).

Note that A1
i

2 = A4
i , A1

i A
2
i = A6

i , A1
i A

3
i = A7

i , A3
i A

2
i =

A8
i , A2

i

2 = A5
i , and A3

i

2 = A6
i . The other factors are as

follows

E
c

i = ẼcA1
i − ẼdA2

i − Ũ cdA2
i − gcd2

ω
,

E
d

i = ẼdA1
i − ẼcA2

i − Ũ cdA2
i − gcd2

ω
,

U
c

i = Ũ cA4
i + ŨdA5

i − 2Ũ cdA6
i ,

U
d

i = Ũ cA5
i + ŨdA4

i − 2Ũ cdA6
i ,



J Supercond Nov Magn (2015) 28:2307–2320 2319

U
cd

i1 = Ũ cd(A4
i + A5

i ) − (Ũ c + Ũd)A6
i ,

U
cd

i2 = Ũ cd(A1
i + A2

i ) + 2
gcd2

ω
,

V pi = (Ũ c + Ũ c − 2Ũ cd)A6
i − 2

gcd2

ω
,

J
±
i = (Ũ c + Ũ c − 2Ũ cd)A6

i + 2
gcd2

ω
.

Now having found these factors one could determine the
averages of them over the grand canonical ensemble of free
phonons

ρ = e−βHph

Tre−βHph
,

where Hph = ω
∑
i

b∗
i bi end β = 1

kT
. On knowing that

at low temperatures for an arbitrary α Tr
(
ρe±α(b∗

i −bi )
)

=
e− 1

2 α2 coth βω
2 ≈ e− 1

2 α2
holds, one finds for the arbitrary gcd

TrρA++
ij = 1

4

[
e
− (g−gcd )2

2ω2 + e
− (gcd+g)2

2ω2

]2

,

TrρA−−
ij = 1

4

[
e
− (g−gcd )2

2ω2 − e
− (gcd+g)2

2ω2

]2

,

TrρA+−
ij = 1

4
(e

− (g−gcd )2

ω2 − e
− (gcd+g)2

ω2 ),

TrρA−+
ij = 1

4
(e

− (g+gcd )2

ω2 − e
− (g−gcd )2

ω2 )

TrρA1
i = 1

2
+ 1

2
e

−2gcd 2

ω2 , TrρA2
i = −1

2
+ 1

2
e

−2gcd 2

ω2 ,

TrρA3
i = 0

TrρA4
i = 1

8
(e

− 8gcd 2

ω2 + 3 + 4e
− 2gcd 2

ω2 ),

TrρA5
i = 1

8
(e

− 8gcd 2

ω2 + 3 − 4e
− 2gcd 2

ω2 ),

TrρA6
i = 2e

− 8gcd 2

ω2 − 2, TrρA7
i = TrρA8

i = 0.

Since we are working in the strong coupling regime, it is
g
ω

� 1 and gcd

ω
� 1 then we can neglect terms such

as e
− (gcd+g)2

2ω2 , e
− 8gcd 2

ω2 , and e
− 2gcd 2

ω2 . Thus, in this limit, one
obtains

TrρA++
ij = TrρA−−

ij = TrρA+−
ij = 1

4
e
− (g−gcd )2

2ω2 ,

TrρA−+
ij = −TrρA+−

ij ,

TrρA1
i = 1

2
, TrρA2

i = −1

2
,

TrρA3
i = TrρA7

i = TrρA8
i = 0,

TrρA4
i = TrρA5

i = 3

8
, TrρA6

i = −1

8
.

This approximation has been applied to obtain the Hamil-
tonian (2.8). It is worthwhile to add that the Ising
term with Szc

i Szd
i was incorporated by making use

of the expression nc
i+nd

i+ + nc
i−nd

i− = 4Szc
i Szd

i +
nc

i+nd
i− + nc

i−nd
i+. In opposite limit gcd → 0, one

gets

TrρA++
ij =e−( g

ω )
2
, TrρA−−

ij =TrρA+−
ij =TrρA−+

ij = 0,

TrρA1
i = TrρA4

i =1, TrρA2
i = TrρA3

i = TrρA5
i = TrρA6

i

= TrρA7
i = TrρA8

i = 0.

Thus, after averaging the Hamiltonian HF over the grand
canonical ensamble of free phonons one obtains:

tcij TrρA++
ij − tdij TrρA−−

ij = tcij , tdij TrρA++
ij − tcij TrρA−−

ij = tdij ,

tdij TrρA−+
ij − tcij TrρA+−

ij = tcij TrρA−+
ij − tdij TrρA+−

ij = 0,

TrρE
c

i = Ẽc, TrρE
d

i = Ẽd , TrρU
c

i = Ũ c, TrρU
d

i = Ũd ,

TrρU
cd

i1 = TrρU
cd

i2 = Ũ cd , TrρV ip = TrρJ
±
i = 0

and the averaged Hamiltonian HF is reduced to Hamilto-
nian (2.6).
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17. Lavagna, M., Pépin, C.: Acta Phys. Polon. B 29, 3753 (1998)
18. Hewson, A.C.: The Kondo Problem to Heavy Fermions. Cam-

bridge Universiy Press, Cambridge (1997)
19. Gusmao, M.A., Aligia, A.A. cond-mat.str-el (2000)
20. Schrieffer, J.R., Wolff, P.A.: Phys. Rev. 149, 491 (1966)
21. Moskalenko, V.A.: FMM 8, 503 (1959)

22. Suhl, H., Mathias, B.T., Walker, L.R.: Phys. Rev. Lett. 3, 532
(1959)

23. Czerwonko, J.: Physica C 235–240, 2337 (1994)
24. Czerwonko, J.: Phys. Mol. Rep. 12, 79 (1995)
25. Wiethege, W., Entel, P., Mühlschlegel, B.Z.: Phys. B Condens.

Matter 47, 35–44 (1982)
26. Tarasewicz, P.: J. Supercond. Nov. Magn. 25, 363–375 (2012)


	The Intra- and Interband Phonon-Electron Potentials in a Two-Band Model of Interacting Lattice Fermions
	Abstract
	Introduction
	The Model and Both of Transformations
	The Excitation Spectrum of a Simplified Version
	The Zero-Temperature Gaps and the Critical Temperature
	Conclusions
	Open Access
	Appendix A  
	References


