Skip to main content
Log in

Ultra High Sensitive Niobium NanoSQUID by Focused Ion Beam Sculpting

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The nanosuperconducting quantum interference device (nanoSQUID) is a powerful tool for nanoscience investigations. In this paper, the main features of niobium nanoSQUID based on deep submicron Josephson tunnel junctions have been investigated. The superconductive nanosensor has a rectangular loop of (1 × 0.4 μm 2) interrupted by two square Josephson junctions having a side length of 0.3 μm. The crucial steps of the fabrication process have been performed using focusing ion beam (FIB) nanosculpting technique. A full characterization of the nanosensor has been performed including the measurement of the voltage swing, the voltage responsivity, the spectral density of the magnetic flux and spin noise and the investigation of the main characteristics as a function of the temperature. Due to a very high responsivity (2.9 mV/ Φ0), the nanodevice exhibited, at T= 4.2 K, an intrinsic spectral density of the magnetic flux as low as 600 n Φ0/Hz 1/2, corresponding to a magnetic moment noise of 9 μB/Hz 1/2. For temperature less than 4.0 K, the nanodevice shows hysteretic current-voltage characteristics. However, the high critical current modulation depths ensure a suitable sensitivity for nanoscale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. The SQUID Handbook Fundamentals and Technology of SQUIDs and SQUID Systems, edited by J. Clarke and A. I. Braginski, vol. 1 . Wiley-VCH Verlag GmbH &Co. KgaA, Weinheim (2004)

  2. The SQUID Handbook Fundamentals and Technology of SQUIDs and SQUID Systems, edited by J. Clarke and A. I. Braginski, vol. 2. Wiley-VCH Verlag GmbH &Co. KgaA, Weinheim (2006)

  3. Wernsdorfer, W.: Supercond. Sci. Technol. 22, 064013 (13pp) (2009)

    ADS  Google Scholar 

  4. Lam, S.K.H., Tilbrook, D.L.: Appl. Phys. Lett. 82, 1078–1080 (2003)

    Article  ADS  Google Scholar 

  5. Thirion, C., Wensdorfer, W., Mailly, D.: Nat. Mater. 2, 524–527 (2003)

    Article  ADS  Google Scholar 

  6. Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarcuhu, T., Monthioux, M.: Nat. Nanotechnol. 1, 53–59 (2006)

    Article  ADS  Google Scholar 

  7. Troeman, A.G.P., Derking, H., Borger, B., Pleikies, J., Veldhuis, D., Hilgenkamp, H.: Nano. Lett. 7, 2152–2156 (2007)

    Article  ADS  Google Scholar 

  8. Granata, C., Esposito, E., Vettoliere, A., Petti, L., Russo, M.: Nanotechnology 19, 275501 (6pp) (2008)

    Article  Google Scholar 

  9. Hao, L., Macfarlane, J.C., Gallop, J.C., Cox, D., Beyer, J., Drung, D., Schurig, T.: Appl. Phys. Lett. 92, 192507 (2008)

    Article  ADS  Google Scholar 

  10. Granata, C., Vettoliere, A., Russo, R., Esposito, E., Russo, M., Ruggiero, B.: Appl. Phys. Lett. 94, 062503 (2009)

    Article  ADS  Google Scholar 

  11. Hao, L., Aßmann, C., Gallop, J.C., Cox, D., Ruede, F., Kazakova, O., Josephs-Franks, P., Drung, D., Schurig, T.: Appl. Phys. Lett. 98, 092504 (2011)

    Article  ADS  Google Scholar 

  12. Wölbing, R., Nagel, J., Schwarz, T., Kieler, O., Weimann, T., Kohlmann, J., Zorin, A.B., Kemmler, M., Kleiner, R., Koelle, D.: Appl. Phys. Lett. 102, 192601 (2013)

    Article  ADS  Google Scholar 

  13. Russo, R., Granata, C., Esposito, E., Peddis, D., Cannas, C., Vettoliere, A.: Appl. Phys. Lett. 101, 122601 (2012)

    Article  ADS  Google Scholar 

  14. Vasyukov, D., Anahory, Y., Embon, L., Halbertal, D., Cuppens, J., Neeman, L., Finkler, A., Segev, Y., Myasoedov, Y., Rappaport, M.L., Huber, M.E., Zeldov, E.: Nat. Nanotech. 8, 639–644 (2013)

    Article  ADS  Google Scholar 

  15. Granata, C., Vettoliere, A., Russo, R., Fretto, M., De Leo, N., Lacquaniti, V.: Appl. Phys. Lett. 103, 102602 (2013)

    Article  ADS  Google Scholar 

  16. Arpaia, R., Arzeo, M., Nawaz, S., Charpentier, S., Lombardi, F., Bauch, T.: Appl. Phys. Lett. 104, 072603 (2014)

    Article  ADS  Google Scholar 

  17. Ketchen, M.B, Awschalom, D.D., Gallagher, W.J., Kleinsasser, A.W.: IEEE Trans. Magn. 25, 1212–1215 (1989)

    Article  ADS  Google Scholar 

  18. Granata, C., Vettoliere, A., Walke, P., Nappi, C., Russo, M.J.: Appl. Phys. 106, 023925 (2009)

    Article  Google Scholar 

  19. Foley, C.P., Hilgenkamp, H.: Supercond. Sci. Technol. 22, 064001 (5pp) (2009)

    ADS  Google Scholar 

  20. Granata, C., Vettoliere, A., Russo, M., Ruggiero, B.: Phys. Rev. B 84, 224516 (2011)

    Article  ADS  Google Scholar 

  21. Fretto, M., Enrico, E., De Leo, N., Boarino, L., Rocci, R, Lacquaniti, V.: IEEE Trans. Appl. Supercond. 23, 1101104 (2013)

    Article  Google Scholar 

  22. Lacquaniti, V., Androne, D., De Leo, N., Fretto, M., Sosso, A., Belogolovskii, M.: IEEE Trans. Appl. Supercond. 19, 234 (2009)

    Article  ADS  Google Scholar 

  23. Lacquaniti, V., De Leo, N., Fretto, M., Sosso, A., Belogolovskii, M.J.: Appl. Phys. 108 (093701), 1–8 (2010)

    Google Scholar 

  24. Granata, C., Vettoliere, A., Russo, R., Russo, M., Ruggiero, B.: Phys. Rev. B 83, 092504 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Granata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granata, C., Vettoliere, A., Russo, R. et al. Ultra High Sensitive Niobium NanoSQUID by Focused Ion Beam Sculpting. J Supercond Nov Magn 28, 585–589 (2015). https://doi.org/10.1007/s10948-014-2693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2693-y

Keywords

Navigation