Skip to main content
Log in

Numerical Simulation and Experimental Study of Nanosecond Pulsed Laser Cleaning of Aluminum Alloy Surface Paint Layer

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

In this paper, we present a finite element model that utilizes simulation software to simulate the process of moving nanosecond pulsed laser cleaning on the surface paint layer of 2A12 Aluminum alloy. The objective is to analyze the impact of different laser parameters on the distribution of temperature field within both the paint layer and the substrate surface. Furthermore, we perform experimental validation to verify the findings. The results assume that both laser power and scanning speed influence the outcomes of the cleaning process. At a constant scanning speed, the maximum temperature of both the paint surface and the substrate surface linearly increases with rising laser power. In contrast, at a fixed laser power, the scanning speed influences cleaning outcomes through spot overlap, and the surface temperature of the paint layer rises as the scanning speed decreases. The optimum cleaning effect, with a surface roughness (Ra) of 1.0139 μm, is achieved at a scanning speed of 2500 mm/s and a laser power of 30 W. The surface roughness exhibits first a decrease and then increase pattern with rising laser power. These findings offer valuable insights into process parameters for nanosecond pulsed laser cleaning of surface paint layers on Aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D. Zhang, H. Liu, C. Suebka, et al.., Appl. Surf. Sci., 435, 452 (2018).

    Article  ADS  Google Scholar 

  2. T. Palomar, M. Oujja, I. Llorente, et al., Appl. Surf. Sci., 387, 118 (2016).

    Article  ADS  Google Scholar 

  3. A. W. Alshaer, L. Li, and A. Mistry, Opt. Laser Technol., 64, 162 (2014).

    Article  ADS  Google Scholar 

  4. Y. M. Chen, L. Z. Zhou, F. Yan, et al., Chin. J. Lasers, 44, 1202005 (2017).

    Article  Google Scholar 

  5. G. X. Chen, T. J. Kwee, K. P. Tan, et al., Appl. Phys. A, 101, 249 (2010).

    Article  ADS  Google Scholar 

  6. S. Siano, J. Agresti, I. Cacciari, et al., Appl. Phys. A, 106, 419 (2012).

    Article  ADS  Google Scholar 

  7. Y. Kim, J. M. Lee, S. H. Cho, et al., Opt. Lasers Eng., 43, 1010 (2005).

    Article  Google Scholar 

  8. G. X. Chen, T. J. Kwee, K. P. Tan, et al., Appl. Phys. A, 101, 249 (2010).

    Article  ADS  Google Scholar 

  9. T. Shan, F. Yin, S. Wang, et al., Appl. Opt., 59, 9313 (2020).

    Article  ADS  Google Scholar 

  10. T. W. Qiu, J. L. Yi, C. Cheng, et al., Laser Optoelectron. Prog., 58, 0514001 (2021); https://doi.org/10.3788/LOP202158.0514001

  11. Z. H. Guo, Numerical Simulation and Experimental Research on Nanosecond Pulse Laser Paint Removal, Ph.D. Theses, Jiangsu University, Zhejiang (2020).

  12. Z. H. Guo, J. Z. Zhou, X. K. Meng, et al., China Laser, 46, 191 (2019).

    Google Scholar 

  13. C. F. Liu, G. Y. Feng, G. L. Deng, et al., Laser Technol., 40, 274 (2016).

    Google Scholar 

  14. S. Marimuthu, A. Mhich, I. S. Molchan, et al., J. Heat Transfer, 135, 121301 (2013).

    Article  Google Scholar 

  15. M. P. Mateo, T. Ctvrtnickova, E. Fernandez, et al., Appl. Surf. Sci., 255, 5579 (2009).

    Article  ADS  Google Scholar 

  16. G. Schweizer and L. Werner, Proc. SPIE, 2502, 57 (1995).

    Article  ADS  Google Scholar 

  17. H. X. Lou and Z. G. Cheng, Laser J., 23, 52 (2002).

    Google Scholar 

  18. H. S. Lim and J. Yoo, J. Mech. Sci. Technol., 25, 1811 (2011).

    Article  Google Scholar 

  19. H. C. Zhao, Y. L. Qiao, X. Du, et al., China Laser, 48, 246 (2021).

    Google Scholar 

  20. Y. M. Chen, L. Z. Zhou, F. Yan, et al., Chin. J. Lasers, 44, 87 (2017).

    Article  Google Scholar 

  21. F. Song, W. F. Zou, B. Tian, et al., Chin. J. Lasers, 34, 1577 (2007).

    Google Scholar 

  22. W. F. Zou, Y. M. Xie, X. Xiao, et al., Chin. Phys. B, 23, 433 (2014).

    Article  Google Scholar 

  23. Y. Lu, L. Yang, M. Wang, et al., Appl. Opt., 59, 7652 (2020).

    Article  ADS  Google Scholar 

  24. A. C. Tam, W. P. Leung, W. Zapka, et al., J. Appl. Phys., 71, 3515 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Lu, S., Liu, H. et al. Numerical Simulation and Experimental Study of Nanosecond Pulsed Laser Cleaning of Aluminum Alloy Surface Paint Layer. J Russ Laser Res 45, 106–116 (2024). https://doi.org/10.1007/s10946-024-10193-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-024-10193-7

Keywords

Navigation