Skip to main content
Log in

Novel Staggered Arrangement Array of Micro-Disk Cavity Semiconductor Lasers

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

A micro-disk cavity semiconductor laser has unique advantages in chip light sources and is particularly important to realize high integration, high power, and parallel optical output. Based on the directional output characteristics of an InGaAs/InAlAs quantum cascade limaçon-shaped micro-disk cavity laser with a deformation factor of 0.42, we demonstrate a novel staggered arrangement array. Furthermore, we study the thermal characteristics of the novel staggered arrangement array of a micro-disk cavity laser with a radius of 100 μm, using the ANSYS finite element analysis method. We determine that array distribution with a horizontal distance of 500 μm and a longitudinal distance of 280 μm has acceptable heated dissipation characteristics. The device performance results show that the staggered arrangement array device has good directional output properties, with a parallel far-field divergence angle of 71°. The peak output power of the staggered arrangement array device is 45.5 mW, which is 4.3 times of a single device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Z. Hao, F. L. Wang, M. Tang, et al., Photonics Res., 7, 543 (2019).

    Article  Google Scholar 

  2. Y. Wan, J. Norman, and J. Bowers, Semicond. Semimet., 101, 305 (2019).

    Article  Google Scholar 

  3. J. V. Campenhout, P. R. Romeo, P. Regreny, et al., Opt. Express, 15, 6744 (2007).

    Article  ADS  Google Scholar 

  4. M. Roiz, A. Monakhov, E. Kunitsyna, et al., J. Appl. Phys., 127, 173105 (2020).

  5. L. He, Şahin Kaya Özdemir, and Y. Lan, Laser Photonics Rev., 7, 1 (2013).

    Article  Google Scholar 

  6. H. Li, X. Hao, Y. Li, et al., J. Mat. Sci., 56, 1 (2021).

    Google Scholar 

  7. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A, 137, 393 (1989).

    Article  ADS  Google Scholar 

  8. S. L. Mccall, A. Levi, R. E. Slusher, et al., Appl. Phys. Lett., 60, 289 (1992).

    Article  ADS  Google Scholar 

  9. G. D. Chern, H. E. Tureci, A. D. Stone, et al., Appl. Phys. Lett., 83, 1710 (2003).

    Article  ADS  Google Scholar 

  10. L. Shang, L. Liu, and L. Xu, Appl. Phys. Lett., 92, 0711 (2008).

    Google Scholar 

  11. S. S. Sui, Y. Z. Huang, M. Y. Tang, et al., IEEE J. Sel. Top. Quantum Electron., 1, 1 (2016).

    Google Scholar 

  12. T. Jiang and Y. Xiang, Phys. Rev. A, 99, 2 (2019).

    Google Scholar 

  13. J. W. Ryu, J. Cho, I. Kim, and M. Choi, Sci. Rep., 11, 9 (2019).

    Google Scholar 

  14. Marcus, Kraft, Jan, and Wiersig, Opt. Laser Technol., 89, 23819 (2014).

  15. C. Yan, J. Shi, P. Li, et al., Phys. Rev. A, 56, 285 (2014).

    Google Scholar 

  16. J. Fang, H. Zhang, Y. Zou, et al., Appl. Opt., 58, 7708 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changling Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yan, C., Pang, C. et al. Novel Staggered Arrangement Array of Micro-Disk Cavity Semiconductor Lasers. J Russ Laser Res 43, 354–360 (2022). https://doi.org/10.1007/s10946-022-10059-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10059-w

Keywords

Navigation