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Abstract

A linear map of qudit tomogram onto qubit tomogram (qubit portrait) is proposed as a charac-
teristics of the qudit state. In view of the qubit-portrait method, the Bell inequalities for two qubits
and two qutrits are discussed within the framework of the probability-representation of quantum me-
chanics. A semigroup of stochastic matrices is associated with tomographic-probability distributions
of qubit and qutrit states. Bell-like inequalities are studied using the semigroup of stochastic matrices.
The qudit–qubit map of tomographic probability distributions is discussed as an ansatz to provide a
necessary condition for the separability of quantum states.

Keywords: qudits, Bell inequalities, separability, entanglement, qubit portrait, probability representa-
tion.

1. Introduction

In the probability representation of quantum states [1], the states are described by probability distri-
butions. For example, the spin states are described by probability distribution (called spin tomogram)
w(m,−→n ) [2, 3], where m is the spin projection on a direction determined by a unit vector −→n . The role
of spin tomograms for studing the separability and entanglement of quantum states was pointed out
in [4]. Our aim here is to investigate the properties of spin tomograms for one and two spins. Within
the quantum-information framework [5], we study qubits and qudits within the context of separable and
entangled states. We will obtain that the separable two-qubit states can be associated with 4×4 stochas-
tic matrices which form a semigroup. This property provides the Bell inequality [6, 7] which serves as
a criterion of the separability. The Bell inequalities were considered in the context of the probability
representation in [8–11]. The probability representation for spin states was discussed and developed
in [12–17]. The Shannon entropy [18] of spin state was considered in [19, 20]. A linear map of the spin-
tomographic-probability distribution (called qudit tomogram) onto qubit tomogram is constructed. The
map provides a qubit portrait of qudit states. The qubit portrait is used to get a necessary condition of
the separability of multiqudit states. The preliminary remarks of such map were presented in [21]. Some
multiqudit states will be discussed as examples.

The paper is organized as follows.
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In Sec. 2 we review properties of stochastic matrices. In Sec. 3 we derive an inequality to be used
for studying the Bell inequality. In Sec. 4 we consider some matrices as vectors. In Sec. 5 we give a
geometrical picture associated with probabilities. In Sec. 6 we present an example of 3×3 stochastic
matrices. In Sec. 7 we show an example of qubit states. In Sec. 8 we discuss entangled two-qubit states.
In Sec. 9 we formulate a new separability criterion related to a semigroup of stochastic matrices. In
Sec. 10 the new necessary condition of separability is suggested. In Sec. 11 an example of two-qubit
entangled state is considered. In Sec. 12 the qubit-portrait method is applied to the qubit–qutrit state.
In Sec. 13 a concrete example is given, while Sec. 14, the general reduction criterion of separability is
formulated. In Sec. 15 conclusions and perspectives are discussed.

2. Qubits and Stochastic Matrices

For one qubit (or for the spin-1/2 particle state) any state vector |ψ〉 has the form

|ψ〉 =

(
a

b

)
, 〈ψ| = (a∗, b∗) , (1)

where the complex numbers a = a1 + ia2 and b = b1 + ib2 satisfy the normalization condition

〈ψ|ψ〉 = |a|2 + |b|2 = 1. (2)

The 2×2 density matrix of the pure state |ψ〉 reads

ρψ = |ψ〉〈ψ| =

(
|a|2 ab∗

ba∗ |b|2

)
. (3)

The trace of the density matrix is
Tr ρψ = |a|2 + |b|2 = 1. (4)

The diagonal elements of the density matrix determine the probabilities for spin projections on the z-axis
m = +1/2 and m = −1/2, i.e.,

−w(+1/2) = |a|2, w(−1/2) = |b|2. (5)

Since the probabilities satisfy condition (2), they can be parameterized as follows:

|a|2 = cos2 Θ, |b|2 = sin2 Θ. (6)

Let us introduce the matrix

M =

(
p q

1− p 1− q

)
, (7)

where the real numbers p and q satisfy the inequalities

1 ≥ p ≥ 0, 1 ≥ q ≥ 0. (8)
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The nonnegative numbers p, 1−p and q, 1−q can be considered as probability distributions. A numerical
example of such matrix reads

MN =

(
1/10 2/5
9/10 3/5

)
. (9)

There are two probability distributions. The first one is (1/10, 9/10) and the second one is (2/5, 3/5).
The important property of the set of matrices M is that the product of two matrices of the form (7) has
the same form, i.e.,

M1M2 =

(
p1 q1

1− p1 1− q1

) (
p2 q2

1− p2 1− q2

)
=

(
p3 q3

1− p3 1− q3

)
, (10)

where
p3 = p1p2 + q1(1− p2), q3 = p1q2 + q1(1− q2). (11)

The set of matrices (7) forms a semigroup. The unit matrix belongs to the set. The inverse matrix

M−1 =
1

detM

(
1− q −q
p− 1 p

)
, detM = p(1− q)− q(1− p), (12)

does not satisfy the condition (8) and does not belong to the set of matrices (7). If parameters p and
q are arbitrary real numbers, the set of matrices M with detM 6= 0 provides the two-dimensional Lie
group. If parameters p and q are complex numbers, the set of matrices M provides the four-dimensional
Lie group. The subset of stochastic matrices of the form

N =

(
p 1− p

1− p p

)
(13)

is also the semigroup. In fact,

N1N2 =

(
p1 1− p1

1− p1 p1

) (
p2 1− p2

1− p2 p2

)
=

(
p3 1− p3

1− p3 p3

)
, (14)

where the nonnegative number
p3 = p1p2 + (1− p1)(1− p2) (15)

determines the matrix elements of matrix

N3 =

(
p3 1− p3

1− p3 p3

)
. (16)

Formula (15) can be used to define the new associative star-product of real (or complex) numbers p1 ?p2.
The set of matrices (13) is called the semigroup of bistochastic matrices. The semigroup can be embedded
into the Lie group of complex matrices with complex parameters p. The sum of numbers both in columns
and rows of bistochastic matrices is equal to one. The bistochastic matrices can be associated with n×n
unitary matrices u with matrix elements ujk satisfying the condition

n∑
k=1

| ujk |2= 1,
n∑
j=1

| ujk |2= 1. (17)
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Thus the stochastic matrix ℘ with matrix elements

℘jk =| ujk |2 (18)

is the bistochastic matrix. This means that the group u(n) of unitary n×nmatrices induces the semigroup
of bistochastic matrices (17). The tensor product of two bistochastic matrices is a bistochastic matrix.
Thus the group of tensor product of unitary matrices u(n1)⊗ u(n2) creates the semigroup, which is the
tensor product of bistochastic matrices ℘1⊗℘2 with matrix elements | u(n1)jk |2 and | u(n2)αβ |2. In view
of the property (14), one can introduce the associative product of probability distributions. In fact, given
two probability distributions p1, 1−p1 and p2, 1−p2, one can associate with the probability distributions
two vectors

−→w1 =

(
p1

1− p1

)
≡

(
w

(1)
1

w
(1)
2

)
, (19)

−→w2 =

(
p2

1− p2

)
≡

(
w

(2)
1

w
(2)
2

)
(20)

and two matrices

N1 =

(
w

(1)
1 w

(1)
2

w
(1)
2 w

(1)
1

)
, (21)

N2 =

(
w

(2)
1 w

(2)
2

w
(2)
2 w

(2)
1

)
. (22)

We define the associative product −→w3 of two vectors (called the star-product) −→w1 ∗ −→w2 = −→w3 using the
result of multiplication of two matrices N1 and N2 given by (14) and (15) to find the components of the
vector −→w3. We obtain

w
(3)
1 = w

(1)
1 w

(2)
1 + w

(1)
2 w

(2)
2 , (23)

w
(3)
2 = w

(1)
2 w

(2)
1 + w

(1)
1 w

(2)
2 . (24)

This result can be generalized by introducing the associative product by means of the same tools for
N -dimensional vectors. The components of the product vector read

pm =
N∑
k=1

w[k+m−1]NWk, (25)

where [k +m− 1]N means the number{
k +m− 1, if k +m− 1 < N,

k +m− 1−N, if k +m− 1 > N.
(26)

The eigenvalues of the stochastic matrix (7) are

λ1 = 1, λ2 = p− q. (27)

They satisfy the condition
|λk| ≤ 1, k = 1, 2. (28)
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The eigenvectors of the stochastic matrix (7) read

|U1〉 =

(
1

q−1(1− p)

)
, |Up−q〉 =

(
−1
1

)
. (29)

This means that the matrix M can be presented in the form(
p q

1− p 1− q

)
= U

(
1 0
0 p− q

)
U−1, (30)

where the matrix U reads

U =

(
1 1

q−1(1− p) −1

)
. (31)

In the case p = q, the determinant of the stochastic matrix equals zero. The inverse matrix has the form

U−1 =
1

1 + q−1(1− p)

(
1 1

q−1(1− p) −1

)
. (32)

This means that

U−1 = U
1

1 + q−1(1− p)
(33)

and

U2 = (1 + q−1(1− p))

(
1 0
0 1

)
. (34)

From this property follows

U2k = (1 + q−1(1− p))k
(

1 0
0 1

)
, (35)

U2k+1 = (1 + q−1(1− p))kU. (36)

We obtain from (30)(
p q

1− p 1− q

)n
= U

(
1 0
0 (p− q)n

)
U−1, n = 1, 2, 3, . . . (37)

Since |p− q| ≤ 1, for large n one has |(p− q)|n � 1. In this case,(
1 0
0 (p− q)n

)
−→

(
1 0
0 0

)
. (38)
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3. Useful Inequality

Now we prove a useful inequality for scalar product of two pairs of real vectors. Let∣∣∣(−→a1
−→
b1)
∣∣∣ < c and

∣∣∣(−→a2
−→
b2)
∣∣∣ < c, (39)

where c is a positive number. Then the convex sum cos2 γ(−→a1
−→
b1) + sin2 γ(−→a2

−→
b2) satisfies the inequality∣∣∣cos2 γ(−→a1

−→
b1) + sin2 γ(−→a2

−→
b2)
∣∣∣ < c. (40)

By induction, we get the inequality for generic convex sum. If |−→ak
−→
bk | < c, then∣∣∣∣∣∑

k

pk(−→ak
−→
bk)

∣∣∣∣∣ < c, (41)

where the coefficients

1 ≥ pk ≥ 0,
∑
k

pk = 1. (42)

In particular, we get the following inequality. If
−→
b1 =

−→
b2 = · · · =

−→
bk = · · · =

−→
B , the property (41) reads∣∣∣∣∣∑

k

pk(−→ak
−→
B )

∣∣∣∣∣ < c, (43)

i.e., ∣∣∣∣∣∑
k

(pk−→ak)
−→
B

∣∣∣∣∣ < c. (44)

4. Matrices as Vectors

Below we discuss the well-known properties of matrices, namely, how matrices can be interpreted as
vectors. For example, the real 2×2 matrix

µ =

(
a b

c d

)
(45)

can be considered as the vector

−→µ =


a

b

c

d

 . (46)
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The sum of two matrices µ1 and µ2

µ1 + µ2 =

(
a1 + a2 b1 + b2

c1 + c2 d1 + d2

)
(47)

can be interpreted as the sum of two vectors with the following components:

−→µ1 +−→µ2 =


a1 + a2

b1 + b2

c1 + c2

d1 + d2

 . (48)

Then the number Tr (µtr
1 µ2) = a1a2+b1b2+c1c2+d1d2, where µtr

1 is transposed matrix µ1, is the standard
scalar product of two vectors, i.e.,

Tr
(
µtr

1 µ2

)
= (−→µ1

−→µ2) . (49)

Fig. 1. Simplex of probabilities 1 ≥ w1 ≥ 0 and
1 ≥ w2 ≥ 0.

Let us make a remark. The stochastic matrix M (7)
becomes a new stochastic matrix M ′, if one permutes
columns of the matrix M , i.e.,

M ′ =

(
q p

1− q 1− p

)
. (50)

The same property takes place if one permutes rows of the
matrix M . In this case, we get a new stochastic matrix

M ′′ =

(
1− p 1− q

p q

)
. (51)

5. Geometrical Picture

The probabilities 1 ≥ w1 ≥ 0 and 1 ≥ w2 ≥ 0 such
that w1 + w2 = 1 can be considered in geometrical terms
as points on a simplex which is the line shown in Fig. 1.

As an example, we show a vector with its end posed on
the line that can be given as the column

−→w =

(
w1

w2

)
. (52)

The stochastic matrices transform the vector −→w into another vector
−→
W , for example,

−→
W = M−→w . (53)
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One can check that the vector components(
W1

W2

)
=

(
q p

1− q 1− p

)(
w1

w2

)
(54)

satisfy the conditions 1 ≥ W1 ≥ 0, 1 ≥ W2 ≥ 0, and W1 + W2 = 1. This means that the stochastic
matrices move the initial point on the simplex into another point on the same simplex.

The new probability distribution described by the vector
−→
W has the components

W1 = qw1 + pw2 and W2 = (1− q)w1 + (1− p)w2.

For bistochastic matrices, one has the transformation

W1 = qw1 + (1− q)w2 and W2 = (1− q)w1 + qw2.

The point w1 = 1/2, w2 = 1/2 is an invariant under this action. For distributions with three components,
the simplex has the geometrical form of the plane shown in Fig. 2.

Fig. 2. Simplex of probabilities w1+w2+w3 ≤ 1,
all values are nonnegative.

All points on the triangle shown in Fig. 2 correspond
to all probability distributions with three outputs.

Below we discuss stochastic matrices which transform
a point on this simplex into another point on the same
simplex.

6. 3×3 Stochastic Matrices and Linear

Maps of Distributions

Let us discuss now the third-order stochastic matrices
of the form

M =

 p1 q1 r1

p2 q2 r2

p3 q3 r3

 , (55)

where the positive numbers pk, qk, and rk (k = 1, 2, 3)
satisfy the normalization condition:

3∑
k=1

pk =
3∑

k=1

qk =
3∑

k=1

rk = 1. (56)

This means that the numbers in columns of the matrix M can be interpreted as probability distributions.
It is easy to check that the set of all matrices M (55) form a semigroup.
Let us give a numerical example of such matrix, i.e.,

M =

 1/10 1/3 8/10
3/10 0 1/10
6/10 2/3 1/10

 . (57)

110



Volume 28, Number 2, 2007 Journal of Russian Laser Research

It is worth noting that the eigenvalues of stochastic matrix M contain λ1 = 1. Stochastic matrices MN

of all dimensions N ≥ 2 have eigenvalues equal to unity. One can see that other eigenvalues of stochastic
matrix MN can be either real or complex. Also all eigenvalues of stochastic matrices MN satisfy the
inequality |λk| ≤ 1, k = 1, 2, . . . , N .

We point out that the permutations of elements of a chosen column transform a stochastic matrix
into another stochastic matrix. The group of all permutations of matrix elements of stochastic matrix
MN has (N !)N+1 symmetry elements. The group elements are independent permutations in each column
(N !)N combined with N ! permutation of columns. The trace of stochastic matrix MN satisfies inequality
TrMN ≤ N . The bistochastic 3×3 matrices have the form (55) but satisfy the extra condition
pk + qk + rk = 1 (k = 1, 2, 3).

The stochastic and bistochastic matrices discussed move the points on the triangle. The point with
components (1/3, 1/3, 1/3) is invariant under the action of bistochastic matrices.

Let us consider the first column of 3×3 stochastic matrix (55). The nonnegative matrix elements in
this column p1, p2, and p3 can be mapped onto three pairs of nonnegative numbers:

P
(1)
1 = p1, P

(1)
2 = (p2 + p3), (58)

P
(2)
1 = p1 + p2, P

(2)
2 = p3, (59)

P
(3)
1 = p1 + p3, P

(3)
2 = p2. (60)

Thus we get three probability distributions
(
P

(1)
1 , P

(1)
2

)
,
(
P

(2)
1 , P

(1)
2

)
and

(
P

(3)
1 , P

(3)
2

)
and the distribu-

tions obtained by permutations of these numbers.
It is easy to see that we constructed the linear map of the initial probability distribution with three

possible outcomes onto a set of probability distributions with two outcomes. The map is invertible. In
fact,

p1 = P
(1)
1 , p2 = P

(2)
1 − P

(1)
1 , p3 = P

(2)
2 . (61)

This means that if two probability distributions (58)–(60) are known,the initial-probability distribution
can be reconstructed. We call the set of probability distributions (58) and (59) “the qubit portrait” of
the initial qutrit distribution. We introduce this terminology because we apply the map constructed to
study the necessary conditions of separability for quantum multiqudit states. Using the ansatz suggested,
one can construct an analogous map for obtaining analogous portraits of joint probability distributions.

7. Qubit

If one takes a convex sum of pure state density matrices, the density matrix of mixed state of spin-1/2
particle (or qubit state) can be obtained. This means that the matrix

ρ =
∑
k

pk|ψk〉〈ψk|, (62)

where 1 ≥ pk ≥ 0 and
∑

k pk = 1 is Hermitian matrix

ρ+ = ρ, (63)
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and its trace is equal to unity. The density matrix is nonnegative matrix, i.e., its eigenvalues are non-
negative numbers. The tomogram of the qubit state is defined by formula

w(m,U) =

(
w(+1/2, U)
w(−1/2, U)

)
= (U+ρU)mm, (64)

where U is unitary matrix. It has the form

U =

(
cos θ/2 ei(ϕ+ψ)/2 sin θ/2 ei(ϕ−ψ)/2

− sin θ/2 e−i(ϕ−ψ)/2 cos θ/2 e−i(ϕ+ψ)/2

)
, (65)

and ϕ, θ, and ψ are Euler angles. In reality, the Euler angle ψ is not present in the final expression of
tomogram. The tomogram is the probability distribution. In our previous notation, we can introduce
the stochastic matrix using the substitutions

p = w(+1/2, U1), q = w(+1/2, U2), (66)

i.e.,

M =

(
w(+1/2, U1) w(+1/2, U2)

1− w(+1/2, U1) 1− w(+1/2, U2)

)
, (67)

where the matrix U1 is determined by the angels ϕ1, θ1, and ψ1 and the matrix U2 is determined by the
angels ϕ2, θ2, and ψ2. The constructed stochastic matrix with matrix elements equal to tomographic
probabilities has all the properties of stochastic matrices (7) discussed in the previous sections.

8. Two Qubits: Separable and Entangled States

Let us introduce a unit vector −→n = (sin θ cosϕ, sin θ sinϕ, cos θ), which is the orthogonal vector to
the sphere surface. The tomogram w(m,U) can be considered as a function on the sphere

w(m,U) ≡ w(m,−→n ). (68)

The stochastic matrix M can be rewritten in the form

M =

(
w(+1/2,−→n1) w(+1/2,−→n2)

1− w(+1/2,−→n1) 1− w(+1/2,−→n2)

)
. (69)

One has

w(−1/2,−→n1) = 1− w(+1/2,−→n1),
(70)

w(−1/2,−→n2) = 1− w(+1/2,−→n2).

Now we consider two qubits. This means that we consider the 4×4 density matrix ρ. The tomogram
of two-qubit state reads

w(m1,m2,
−→n ,

−→
N ) = (U †ρU)m1m2,m1m2 , (71)
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where U is the 4×4 unitary matrix, which is the tensor product of two 2×2 unitary matrices

U = U1 ⊗ U2, (72)

with U1 and U2 given by formula (65) with the Euler angels ϕ1θ1ψ1 and ϕ2θ2ψ2, respectively. The vector
−→n is determined by the Euler angels ϕ1, θ1 and the vector

−→
N is determined by the Euler angels ϕ2, θ2.

A simply separable state has the tomogram of a factorized form

w(m1,m2,
−→n ,

−→
N ) = w1(m1,

−→n )w2(m2,
−→
N ).

Now we construct the 4×4 stochastic matrix following the rule.
We take four vectors −→a ,

−→
b , −→c , and

−→
d . Then we choose two vectors −→n to be equal to −→a and−→

b and two vectors
−→
N to be equal to −→c and

−→
d . We have two probability distributions for the first

qubit w1(m1,
−→a ) and w1(m1,

−→
b ), and two probability distributions for the second qubit w2(m2,

−→c ) and
w2(m2,

−→
d ). Then our 4×4 stochastic matrix reads

(M4)k1 =


w1(+1/2,−→a )w2(+1/2,

−→
b )

w1(+1/2,−→a )w2(−1/2,
−→
b )

w1(−1/2,−→a )w2(+1/2,
−→
b )

w1(−1/2,−→a )w2(−1/2,
−→
b )

 , k = 1, 2, 3, 4, (73)

(M4)k2 =


w1(+1/2,−→a )w2(+1/2,−→c )
w1(+1/2,−→a )w2(−1/2,−→c )
w1(−1/2,−→a )w2(+1/2,−→c )
w1(−1/2,−→a )w2(−1/2,−→c )

 , k = 1, 2, 3, 4, (74)

(M4)k3 =


w1(+1/2,

−→
d )w2(+1/2,

−→
b )

w1(+1/2,
−→
d )w2(−1/2,

−→
b )

w1(−1/2,
−→
d )w2(+1/2,

−→
b )

w1(−1/2,
−→
d )w2(−1/2,

−→
b )

 , k = 1, 2, 3, 4, (75)

and

(M4)k4 =


w1(+1/2,

−→
d )w2(+1/2,−→c )

w1(+1/2,
−→
d )w2(−1/2,−→c )

w1(−1/2,
−→
d )w2(+1/2,−→c )

w1(−1/2,
−→
d )w2(−1/2,−→c )

 , k = 1, 2, 3, 4. (76)

This matrix can be presented in the form of tensor product of two stochastic 2×2 matrices, i.e.,

M4 =

(
w1(+1/2,−→a ) w1(+1/2,

−→
d )

w1(−1/2,−→a ) w1(−1/2,
−→
d )

)
⊗

(
w2(+1/2,

−→
b ) w2(+1/2,−→c )

w2(−1/2,
−→
b ) w2(−1/2,−→c )

)
. (77)
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We call this stochastic matrix “simply separable stochastic matrix.” One can check that matrix (77)
satisfies the Bell–Clauser–Horne–Shimony–Holt inequality (so-called Bell–CHSH inequality) [7]

|(M4)11 − (M4)21 − (M4)31 + (M4)41 + (M4)12 − (M4)22 − (M4)32 + (M4)42
+(M4)13 − (M4)23 − (M4)33 + (M4)43 − (M4)14 + (M4)24 + (M4)34 − (M4)44| ≤ 2. (78)

This inequality can be rewritten in the matrix form as |Tr (M4I)| ≤ 2, where

I =


1 −1 −1 1
1 −1 −1 1
1 −1 −1 1
−1 1 1 −1

 . (79)

The inequality has to be preserved, if one changes the matrix I by the product matrix Ĩ = IC, where
C = C1 ⊗ C2. Here two 2×2 matrices C1 and C2 are arbitrary stochastic matrices. In vector form,
M4 →

−→
M4 and, according to the rules of Sec. 3, I →

−→
I , this inequality reads∣∣∣(−→I −→M4

)∣∣∣ ≤ 2. (80)

Due to the property of convex sums (41), one can state that if one constructs a convex sum of matrices
of the type M4

M =
∑
k

PkM
(k)
4 , Pk ≥ 0,

∑
k

Pk = 1, (81)

the inequality ∣∣∣−→I −→M ∣∣∣ ≤ 2, (82)

or

|Tr(MI)| ≤ 2 (83)

can be obtained.

9. Separable and Entangled States

By definition, the quantum state of two qubits is separable, if the state tomogram can be presented
in the form of convex sum of simply separable tomograms, i.e.,

w (m1m1
−→n1
−→n2) =

∑
k

Pkw
(k)
1 (m1

−→n1)w
(k)
2 (m2

−→n2), Pk ≥ 0,
∑
k

Pk = 1, (84)

where the index k can be understood as a collective index with any number of components including
both discrete and continuous ones. One can see that the stochastic matrix corresponding to tomogram
(84) has the form of the convex sum of matrices of the type (77), i.e.,

M4 =
∑
k

Pk

(
w(k)(+1/2,−→a ) w(k)(+1/2,

−→
d )

w(k)(−1/2,−→a ) w(k)(−1/2,
−→
d )

)
⊗

(
w(k)(+1/2,

−→
b ) w(k)(+1/2,−→c )

w(k)(−1/2,
−→
b ) w(k)(−1/2,−→c )

)
.

(85)
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We call this stochastic matrix the separable stochastic matrix.
Lemma

The product of two stochastic matrices M (1)
4 and M

(2)
4 corresponding to tomograms of separable states

of two qubits is the convex sum of simply separable stochastic matrices.

Proof

Let F1 be stochastic matrix corresponding to a separable two-qubit quantum state, i.e., it can be written
in the form (85) which we denote as

F1 =
∑
k

Pkw
(k)
(1) , (86)

where

w
(k)
(1) =

(
w(k)(+1/2,−→a1) w(k)(+1/2,

−→
d1)

w(k)(−1/2,−→a1) w(k)(−1/2,
−→
d1)

)
⊗

(
w(k)(+1/2,

−→
b1) w(k)(+1/2,−→c1)

w(k)(−1/2,
−→
b1) w(k)(−1/2,−→c1)

)
.

(87)

Let F2 be another stochastic matrix of the form

F2 =
∑
s

ρsw
(s)
(2), (88)

where ρs ≥ 0 and
∑

s ρs = 1. The notation (88) means that we change in (87)

k → s, −→a1 → −→a2,
−→
d1 →

−→
d2,

−→
b1 →

−→
b2 ,

−→c1 → −→c2 .

Now we calculate the product matrix

F = F1F2 =
∑
ks

(Pkρs)w
(k)
(1)w

(s)
(2). (89)

Since the rule of multiplication of tensor products of matrices reads

(a⊗ b)(c⊗ d) = (ac)⊗ (bd), (90)

one has

F =
∑
j

Qjw
j , (91)

where j is a collective index j = (ks), the matrix w(j) is the 4×4 stochastic matrix of simply separable
form. This means that the matrix F satisfies the Bell–CHSH inequality

|Tr (FI)| ≤ 2. (92)
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10. Necessary Condition of Separability

The lemma proved above is used to formulate the necessary condition of separability of a two-qubit
state. In fact, if one has the two-qubit separable state with spin tomogram w(m1m2

−→n1
−→n2), the set of

matrices associated with the tomogram, in view of the rule

M
(−→a −→b −→c −→d ) =


w
(
+1

2
−→a + 1

2

−→
b
)

w
(
+1

2
−→a + 1

2
−→c
)

w
(
+1

2

−→
d + 1

2

−→
b
)

w
(
+1

2

−→
d + 1

2
−→c
)

w
(
+1

2
−→a − 1

2

−→
b
)

w
(
+1

2
−→a − 1

2
−→c
)

w
(
+1

2

−→
d − 1

2

−→
b
)

w
(
+1

2

−→
d − 1

2
−→c
)

w
(
−1

2
−→a + 1

2

−→
b
)

w
(
−1

2
−→a + 1

2
−→c
)

w
(
−1

2

−→
d + 1

2

−→
b
)

w
(
−1

2

−→
d + 1

2
−→c
)

w
(
−1

2
−→a − 1

2

−→
b
)

w
(
−1

2
−→a − 1

2
−→c
)

w
(
−1

2

−→
d − 1

2

−→
b
)

w
(
−1

2

−→
d − 1

2
−→c
)

 ,

(93)

forms the semigroup of matrices satisfying inequality (83). This property can be used as a criterion of
the separability.

For example, we take the two matrices M1

(−→a1
−→
b1
−→c1
−→
d1

)
and M2

(−→a2
−→
b2
−→c2
−→
d2

)
. We check that for both

matrices the product
F = M1M2

(−→a1
−→
b1
−→c1
−→
d1
−→a2
−→
b2
−→c2
−→
d2

)
satisfies inequality (83) for arbitrary directions

(−→ak−→bk−→ck−→dk) with k = 1, 2.
This property can be generalized to any number of directions k = 1, 2, . . .
It is worth noting that the product of two density matrices of two separable quantum states is not

the density matrix of a quantum state.

11. Example of Entangled States

Let us consider a known example of entangled state of two qubits

ρ =
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 . (94)

We construct the tomogram of this state using the matrices (71) and (72). The result reads

w

(
+

1
2
,+

1
2
,−→n1,

−→n2

)
=

1
2

(
cos2

Θ1

2
cos2

Θ2

2
+ sin2 Θ1

2
sin2 Θ2

2

)
+

1
4

sinΘ1 sinΘ2 cos (ϕ1 + ϕ2),

w

(
+

1
2
,−1

2
,−→n1,

−→n2

)
=

1
2

(
cos2

Θ1

2
sin2 Θ2

2
+ sin2 Θ1

2
cos2

Θ2

2

)
− 1

4
sinΘ1 sinΘ2 cos (ϕ1 + ϕ2),

(95)

w

(
−1

2
,+

1
2
,−→n1,

−→n2

)
=

1
2

(
cos2

Θ1

2
sin2 Θ2

2
+ sin2 Θ1

2
cos2

Θ2

2

)
− 1

4
sinΘ1 sinΘ2 cos (ϕ1 + ϕ2),

w

(
−1

2
,−1

2
,−→n1,

−→n2

)
=

1
2

(
cos2

Θ1

2
cos2

Θ2

2
+ sin2 Θ1

2
sin2 Θ2

2

)
+

1
4

sinΘ1 sinΘ2 cos (ϕ1 + ϕ2).
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The matrix M
(−→a ,−→b ,−→c ,−→d ) associated with tomogram (95) has 16 matrix elements:

M11 =
1
2

(
cos2

Θa

2
cos2

Θb

2
+ sin2 Θa

2
sin2 Θb

2

)
+

1
4

sinΘa sinΘb cos (ϕa + ϕb),

M21 =
1
2

(
cos2

Θa

2
sin2 Θb

2
+ sin2 Θa

2
cos2

Θb

2

)
− 1

4
sinΘa sinΘb cos (ϕa + ϕb),

M31 =
1
2

(
cos2

Θa

2
sin2 Θb

2
+ sin2 Θa

2
cos2

Θb

2

)
− 1

4
sinΘa sinΘb cos (ϕa + ϕb),

M41 =
1
2

(
cos2

Θa

2
cos2

Θb

2
+ sin2 Θa

2
sin2 Θb

2

)
+

1
4

sinΘa sinΘb cos (ϕa + ϕb),

M12 =
1
2

(
cos2

Θa

2
cos2

Θc

2
+ sin2 Θa

2
sin2 Θc

2

)
+

1
4

sinΘa sinΘc cos (ϕa + ϕc),

M22 =
1
2

(
cos2

Θa

2
sin2 Θc

2
+ sin2 Θa

2
cos2

Θc

2

)
− 1

4
sinΘa sinΘc cos (ϕa + ϕc),

M32 =
1
2

(
cos2

Θa

2
sin2 Θc

2
+ sin2 Θa

2
cos2

Θc

2

)
− 1

4
sinΘa sinΘc cos (ϕa + ϕc),

M42 =
1
2

(
cos2

Θa

2
cos2

Θc

2
+ sin2 Θa

2
sin2 Θc

2

)
+

1
4

sinΘa sinΘc cos (ϕa + ϕc),

(96)

M13 =
1
2

(
cos2

Θd

2
cos2

Θb

2
+ sin2 Θd

2
sin2 Θb

2

)
+

1
4

sinΘd sinΘb cos (ϕd + ϕb),

M23 =
1
2

(
cos2

Θd

2
sin2 Θb

2
+ sin2 Θd

2
cos2

Θb

2

)
− 1

4
sinΘd sinΘb cos (ϕd + ϕb),

M33 =
1
2

(
cos2

Θd

2
sin2 Θb

2
+ sin2 Θd

2
cos2

Θb

2

)
− 1

4
sinΘd sinΘb cos (ϕd + ϕb),

M43 =
1
2

(
cos2

Θd

2
cos2

Θb

2
+ sin2 Θd

2
sin2 Θb

2

)
+

1
4

sinΘd sinΘb cos (ϕd + ϕb),

M14 =
1
2

(
cos2

Θd

2
cos2

Θc

2
+ sin2 Θd

2
sin2 Θc

2

)
+

1
4

sinΘd sinΘc cos (ϕd + ϕc),

M24 =
1
2

(
cos2

Θd

2
sin2 Θc

2
+ sin2 Θd

2
cos2

Θc

2

)
− 1

4
sinΘd sinΘc cos (ϕd + ϕc),

M34 =
1
2

(
cos2

Θd

2
sin2 Θc

2
+ sin2 Θd

2
cos2

Θc

2

)
− 1

4
sinΘd sinΘc cos (ϕd + ϕc),

M44 =
1
2

(
cos2

Θd

2
cos2

Θc

2
+ sin2 Θd

2
sin2 Θc

2

)
+

1
4

sinΘd sinΘc cos (ϕd + ϕc).

One can see that the matrix M (96) violates the condition (83), which is the Bell inequality, for some
angles and takes the maximum value 2

√
2, which is the Cirelson bound [22]. This is due to the entangle-

ment of state (94). Violation of the Bell inequalities is a signal that the state is entangled. The product
M of two matrices (96) corresponding to angles Θa, Θb, Θc, Θd, ϕa, ϕb, ϕc, and ϕd for the first matrix M1

and Θa′ , Θb′ , Θc′ , Θd
′ , ϕa′ , ϕb′ , ϕc′ , and ϕd′ for the second matrix M2, i.e., M = M1M2 must satisfy the

Bell inequality (83) for a separable state. These matrices form a semigroup which is the sub-semigroup
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of all stochastic matrices constructed by means of tomograms of all quantum states.

12. Reduction of the Qubit–Qutrit Separability Property to Bell

Inequalities for Two Qubits.

In this section, we demonstrate the new necessary condition of separability of qubit–qutrit state using
the probability representation of quantum states. The idea of the construction is to find the qubit portrait
of the qutrit state discussed in the previous sections. If one has the probability-distribution vector with
three nonnegative components

−→
W =

 W1

W2

W3

 , (97)

where W1 +W2 +W3 = 1, a new probability-distribution vector −→ρ can be constructed as follows:

−→ρ =

(
ρ1

ρ2

)
=

(
W1

W2 +W3

)
. (98)

This means that each three-dimensional distribution induces two-dimensional ones. One can use all
vectors

−→
ρ

′
=

(
ρ

′
1

ρ
′
2

)
=

(
W1 +W2

W3

)
(99)

and

−→
ρ

′′
=

(
ρ

′′
1

ρ
′′
2

)
=

(
W1 +W3

W2

)
(100)

Let us consider a simply separable state of the qubit–qutrit system with the density operator

ρ̂(1, 2) = ρ̂(1)⊗ ρ̂(2).

Then the tomogram of this state is the probability distribution of the form

w(m1,
−→n1,m2,

−→n2) = w1(m1,
−→n1)W (m2,

−→n2), (101)

where the spin projection m1 take values −1/2 and +1/2 and the spin projection m2 takes values −1, 1,
and 0.

In the form of a six-dimensional vector, tomogram (101) can be rewritten as follows:

−→w (−→n1,
−→n2) = −−→w1/2(

−→n1)⊗
−→
W1(−→n2), (102)

where

−−→w1/2 =

(
w1(−→n1)
w2(−→n1)

)
(103)
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and

−→
W1(−→n2) =

 W1(−→n2)
W2(−→n2)
W3(−→n2)

 . (104)

Thus one has

−→w (−→n1,
−→n2) =



w1(−→n1)W1(−→n2)
w1(−→n1)W2(−→n2)
w1(−→n1)W3(−→n2)
w2(−→n1)W1(−→n2)
w2(−→n1)W2(−→n2)
w2(−→n1)W3(−→n2)


. (105)

Now we apply the described ansatz of reduction of the three-dimensional distributions to the two-
dimensional ones. From (104), we obtain the vector

−→ρ1(−→n2) =

(
W1(−→n2)

W2(−→n2) +W3(−→n2)

)
. (106)

This reduction induces the reduction of the six-vector (105) to the four-vector

−→ρ (−→n1,
−→n2) =


w1(−→n1)W1(−→n2)

w1(−→n1)(W2(−→n2) +W3(−→n2))
w2(−→n1)W1(−→n2)

w2(−→n1)(W2(−→n2) +W3(−→n2))

 . (107)

One has the simple observation. If a tomogram is simply separable, the reduced distribution vector
−→ρ (−→n1,

−→n2) is also simply separable distribution. From this property follows the same property for a convex
sum of simply separable distributions.

One has for a separable quantum state of the qubit–qutrit system the following property of its spin
tomogram.

Let the spin tomogram be given by a probability distribution w(m1,
−→n1,m2,

−→n2), which corresponds
either to separable or entangled state.

Let us denote this tomogram by the vector

−→w (−→n1,
−→n2) =



w (+1/2,−→n1,+1,−→n2)
w (+1/2,−→n1, 0,−→n2)
w (+1/2,−→n1,−1,−→n2)
w (−1/2,−→n1,+1,−→n2)
w (−1/2,−→n1, 0,−→n2)
w (−1/2,−→n1,−1,−→n2)


. (108)
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Then we introduce the four-vector

−→ρ (−→n1,
−→n2) =


w (+1/2,−→n1,+1,−→n2)

w (+1/2,−→n1, 0,−→n2) + w (+1/2,−→n1,−1,−→n2)
w (−1/2,−→n1,+1,−→n2)

w (−1/2,−→n1, 0,−→n2) + w(−1/2,−→n1,−1,−→n2)

 . (109)

Now we apply the criterion of separability discussed in the previous sections and used for two-qubit states.
This means that we construct stochastic 4×4 matrix where in the column there are the components of
vectors (109) with the corresponding vectors −→n1 and −→n2

P
(−→a ,−→b ,−→c ,−→d ) =‖ −→ρ

(−→a ,−→b )−→ρ (−→a ,−→c )−→ρ
(−→
d ,
−→
b
)−→ρ (−→d ,−→c ) ‖ . (110)

We obtain the result.
If the matrix elements of matrix (110) violate the Bell inequality, the qubit–qutrit state is entangled.

Fulfilling the Bell inequality (92) is the necessary condition of separability of the qubit–qutrit state.

13. Qubit–Qutrit and Two Qutrits

In this section, we present here two examples of entangled states.
Let the density matrix of a qubit–qutrit state in the standard basis |1/2,m1〉|1,m2〉 have the form

ρ =
1
2



1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 1


. (111)

Two unitary matrices transforming qubits

U11 = eiϕ1/2 cos
θ1
2
, U12 = ieiϕ1/2 sin

θ1
2
, U21 = ie−iϕ1/2 sin

θ1
2
, U22 = e−iϕ1/2 cos

θ1
2

(112)

and qutrits

V11 = eiϕ2 cos2
θ2
2
, V12 = ieiϕ2

sinΘ2√
2
, V13 = −eiϕ2 sin2 θ2

2
,

V21 = i
sinΘ2√

2
, V22 = cos Θ2, V23 = i

sinΘ2√
2
, (113)

V31 = −e−iϕ2 sin2 θ2
2
, V32 = ie−iϕ2

sinΘ2√
2
, V33 = e−iϕ2 cos2

θ2
2
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can be used to construct the 6×6 matrices U ⊗ V and U † ⊗ V †. The diagonal matrix elements of the
matrix [

(U † ⊗ V †)ρ(U ⊗ V )
]
m1m2,m1m2

= w(m1,
−→n1,m2,

−→n2) (114)

provide the spin tomogram of state (111). Here the two vectors are determined by angles Θ1, ϕ1, Θ2,
and ϕ2 as follows:

−→n1 = (sinΘ1 cosϕ1, sinΘ1 sinϕ1, cos Θ1) and −→n2 = (sinΘ2 cosϕ2, sinΘ2 sinϕ2, cos Θ2).

One has

w

(
+

1
2
,−→n1,+1,−→n2

)
=

1
2
|U11V11 + U21V31|2 , w

(
+

1
2
,−→n1, 0,−→n2

)
=

1
2
|U11V12 + U21V32|2 ,

w

(
+

1
2
,−→n1,−1,−→n2

)
=

1
2
|U11V13 + U21V33|2 , w

(
−1

2
,−→n1,+1,−→n2

)
=

1
2
|U12V11 + U22V31|2 , (115)

w

(
−1

2
,−→n1, 0,−→n2

)
=

1
2
|U12V12 + U22V32|2 , w

(
−1

2
,−→n1,−1,−→n2

)
=

1
2
|U12V13 + U22V33|2 .

Applying the reduction ansatz we obtain the 4×4 matrix (110). By calculating the modulus of trace of
product of this matrix and the matrix I given by (79), we get the expression, which we denote as follows:

B =
∣∣sinΘa

(
sin2 Θb sinΦab + sin2 Θc sinΦac

)
+ sinΘd

(
sin2 Θb sinΦdb − sin2 Θc sinΦdc

)∣∣ , (116)

where
Φab = ϕa + 2ϕb, Φac = ϕa + 2ϕc, Φdb = ϕd + 2ϕb, Φdc = ϕd + 2ϕc.

One can check that for the parameters

Θa =
π

2
, Θb =

π

2
, Θc =

π

2
, Θd =

π

2
, Φab =

π

2
, Φdc = −π

4
, Φac =

π

4
, Φdb = 0, (117)

the value B (116) is larger than 2, namely,

B = 1 +
√

2. (118)

This means that the qubit–qutrit state is entangled. This is clear because the density matrix (111)
corresponds to the pure entangled state

|Ψ〉 =
1√
2

(
|+ 1/2〉|+ 1〉+ | − 1/2〉| − 1〉

)
.

For the two-qutrit entangled state with 9×9 density matrix comtaining 72 matrix elements equal to zero
except 9 matrix elements

ρ11 = ρ15 = ρ19 = ρ51 = ρ55 = ρ59 = ρ91 = ρ95 = ρ99 = 1/3, (119)
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the spin tomogram can be calculated by the same method using two 3×3 matrices U and V given by the
same relations (113). But the matrix elements of the matrix U are taken to be dependent on angles ϕ1

and Θ1. We get the vector −→w (−→n1,
−→n2) with 9 components:

w(+1,−→n1,+1,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj1Vj1

∣∣∣∣∣∣
2

, w(+1,−→n1, 0,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj1Vj2

∣∣∣∣∣∣
2

;

w(+1,−→n1,−1,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj1Vj3

∣∣∣∣∣∣
2

, w(0,−→n1,+1,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj2Vj1

∣∣∣∣∣∣
2

,

w(0,−→n1, 0,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj2Vj2

∣∣∣∣∣∣
2

, (120)

w(0,−→n1,−1,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj2Vj3

∣∣∣∣∣∣
2

, w(−1,−→n1,+1,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj3Vj1

∣∣∣∣∣∣
2

,

w(−1,−→n1, 0,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj3Vj2

∣∣∣∣∣∣
2

, w(−1,−→n1,−1,−→n2) =
1
3

∣∣∣∣∣∣
3∑
j=1

Uj3Vj3

∣∣∣∣∣∣
2

.

We construct the qubit portrait of this state. One of the four-vectors
−→
P (−→n1,

−→n2) of this portrait has the
components

P1(−→n1,
−→n2) = w(+1,−→n1,+1,−→n2),

P2(−→n1,
−→n2) = w(+1,−→n1, 0,−→n2) + w(+1,−→n1,−1,−→n2)

(121)
P3(−→n1,

−→n2) = w(0,−→n1,+1,−→n2) + w(−1,−→n1,+1,−→n2)

P4(−→n1,
−→n2) = w(0,−→n1, 0,−→n2) + w(0,−→n1,−1,−→n2) + w(−1,−→n1, 0,−→n2) + w(−1,−→n1,−1,−→n2).

Using (120) and (121) and taking pairs

−→n1 = −→a , −→n2 =
−→
b , −→n1 = −→a , −→n2 = −→c

and
−→n1 =

−→
d , −→n2 =

−→
b , −→n1 =

−→
d , −→n2 = −→c ,

one can construct the 4×4 matrix (110). Calculating the modulus of the trace of the product of matrix
(79) with the obtained matrix, we get the value of B of the form

B =
1
2

∣∣[(cos Θb + 1)2 − 2
]
(cos Θa + cos Θd) +

[
(cos Θc + 1)2 − 2

]
(cos Θa − cos Θd)

− sin2 Θb(sinΦab sinΘa + sinΦdb sinΘd)− sin2 Θc(sinΦac sinΘa + sinΦdc sinΘd)
∣∣ . (122)

One can check that for angles

ϕa = 2π, ϕb = −π
8
, ϕc =

π

8
, ϕd = 0, Θa = 0, Θb =

π

2
, Θc =

π

2
, Θd =

π

2
, (123)

the value of B is (1 +
√

2) > 2. It corresponds to entangled two-qutrit state.
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14. General Reduction Criterion of Separability

Now we use the experience with the discussed qubit–qutrit system to formulate a general criterion
of separability for a state of bipartite quantum system. The criterion is based on the property of the
separable state tomogram of the bipartite system.

For simplicity, we take a two qudit separable state with the tomogram of the form (84). Let us
associate with this tomogram the joint probability distribution given as four nonnegative numbers

w̃(M1 = j1,M2 = j2,
−→n1,

−→n2) = w(j1, j2,−→n1,
−→n2),

w̃(M1 = j1,M2 = j2 − 1,−→n1,
−→n2) =

j2−1∑
m2=−j2

w(j1,m2,
−→n1,

−→n2),

(124)

w̃(M1 = j1 − 1,M2 = j2,
−→n1,

−→n2) =
j1−1∑

m1=−j1

w(m1, j2,
−→n1,

−→n2),

w̃(M1 = j1 − 1,M2 = j2 − 1,−→n1,
−→n2) =

j1−1∑
m1=−j1

j2−1∑
m2=−j2

w(m1,m2,
−→n1,

−→n2),

where M1 takes the values j1 and j1−1 and M2 takes the values j2 and j2−1. We reinterpret the obtained
joint probability distribution as “a two–qubit tomogram.” Due to this, the Bell inequality is fulfilled for
the probability distribution, if the initial two-qudit state is separable. We used the ansatz of obtaining the
reduced joint probability distribution by summing the probabilities in the initial probability distribution
with a larger number of possible events (or measurements). But the separability of the initial quantum
state is preserved in the process of such summation in the sense that, if the initial tomographic-probability
distribution looks like the convex sum of the product of two distributions, the reduced distribution is also
the convex sum of the product of two probability distributions. The result obtained can be formulated
as the following reduction criterion of separability.

The necessary condition of separability of a bipartite-system state is the separability property of
the reduced state tomogram. Fulfilling the Bell inequalities for reduced state tomogram is a necessary
condition of separability of the quantum state under study. One can give a recipe for studying the
separability of a given state of a bipartite system. The first step is to obtain the state tomogram. Then
one has to reduce this tomogram by summing over all such events to get the “tomogram” of two qubits.
Then one checks the fulfillment of the Bell inequality for the reduced tomogram obtained. If it is violated,
the initial state is entangled.

15. Conclusions

To conclude, we summarize the main results of our work.
We have shown that the qudit states can be mapped onto probability distributions which are the

points on the simplex. The probability distributions can be considered as vectors. The stochastic and
bistochastic matrices can be constructed using these vectors as columns of the matrices. Both stochas-
tic and bistochastic matrices form semigroups. The invertible map of probability distributions onto
bistochastic matrix was used to construct the star-product of the probability distributions. For qudit
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tomograms, we have introduced the notion of qubit portrait. We have shown that the necessary con-
dition of separability of a bipartite qudit state is the separability of its qubit portrait. The violation
of the Bell inequality for the qubit portrait of the bipartite-system state (both for qudit states and for
continuous variables) means that the system state is entangled. Examples of entangled qubit–qutrit state
and two–qutrit state were considered using the method of constructing the qubit portrait of the states.
The method can be generalized for multiqudit systems.
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