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Abstract
Purpose We test current models of racial bias in policing, identify limitations, and propose 
a test of racial bias, that does not depend on unknown population contraband rate.
Methods We conceptualize police officer search decisions as a 2 (search/no search) by 2 
(contraband present/absent) table, with missing data (if the police did not search, the pres-
ence of contraband is unknown). We constrain the feasible problem space using properties 
of a 2 x 2 contingency table. Then we examine all possible feasible 2 x 2 tables to identify 
instances of racial differences in police officer hit and false alarm rates. To do this, we 
develop a new test of racial bias, the Overlapping Condition Test. We analyze state and 
county data across 25 United States police departments.
Results These departments have an observable racial difference in false alarm rate regard-
less of the true value of missing data (under every feasible 2 x 2 table there is a racial dif-
ference). This effect is found in 10 out of 14 state police departments and 9 out of 11 local 
departments across the United States. That is, for every feasible real world scenario police 
officers have lower false alarm rates for White drivers than Black drivers.
Conclusion We interpret this difference in false alarm rate as a threshold bias. That is, 
officers use different criteria for searching Black drivers than White drivers and this conclu-
sion is not qualified by the unknown contraband rate. Future directions should explore how 
police officers make the decision to search drivers and develop interventions to address the 
racial bias in search rate.

Keywords Racial bias · Policing · Mathematical modeling · Law · Signal detection theory

How Can We Assess Bias in Traffic Searches?

A body of research aims to determine if police officers are biased, without capturing the 
performance of police officers who search drivers. First, we explore the utility of the hit 
and false alarm rates from the 2 x 2 table in the analysis of bias in traffic searches. Then, 
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we explain the difficulty in modeling police officer searches without utilizing performance 
measures such as hit and false alarm rates. Finally, we explore definitions of bias in police 
search and explain some of the key debates in the literature using a common framework.

Data Reporting and the Police

In order to understand or model police officer bias from the available data we must under-
stand the nature of reporting policing data. Issues with policing data stem from the way 
in which these data are recorded. Police officers are not subject to the same mandatory 
data reporting practices that exist in other institutions (Goff and Kahn 2012; Groves and 
Cork 2009). Beyond data-reporting practices, police officers can engage in a wide variety 
of behaviors before their conduct needs to be formally recorded as a “stop” or a “search.” 
Police officers can engage in “pre-selection” tactics to improve the likelihood of recover-
ing contraband if they engage in a search. They can ask questions, poke their head inside 
the car, use a flashlight to look in the windows, and even engage in behaviors we would 
consider to be searches, but that do not rise to the occasion of a search under the United 
States Constitution’s Fourth Amendment (see Gross and Barnes 2002, for a full review). 
Finally, police officers often self report the race of the driver. This is problematic as a body 
of research suggests that police officers are mislabeling minority searches as White (Luh 
2022; Kocieniewski 1999; Gross and Barnes 2002). This distinction in what constitutes 
a search and how it is reported becomes even more convoluted at the level of pedestrian 
stops. Thus, we restrict our discussion to police officer searches of driver vehicles during 
traffic stops.

2 x 2 Contingency Table

We explore a new model of police search behavior that relies upon a 2 x 2 table of officer 
decisions and real world outcomes. Prior to interacting with the police, a driver makes the 
decision to either carry contraband, or not. When patrol officers encounter drivers in rou-
tine stops, they must determine whether they believe the driver has contraband and thus the 
officer can choose to either search or not search the car. As a result, there are four potential 
outcomes of this situation: 

1. The officer is correct, the driver they searched had contraband (hit)
2. The officer is wrong, the driver they searched did not have contraband (false alarm)
3. The officer is correct, the driver they did not search did not have contraband (correct 

rejection)
4. The officer is wrong, the driver they did not search had contraband (miss).

We can use a 2  x  2 contingency table to model police officer search decisions and out-
comes (see Table 1), where the columns represent the real world (contraband present v. 
absent) and the rows represent officer decision (search v. no search). In this table, the row 
sums correspond to the total proportion of drivers searched and not searched, and the col-
umn sums correspond to the proportion of drivers who had or did not have contraband. A 
police officer might have engaged in reporting bias, or even engaged in tactics prior to the 
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search, to increase their likelihood of recovering contraband, and this behavior, while note-
worthy, cannot be observed or studied with the available data.1

The four cells in the 2 x 2 table can also be expressed as joint probabilities (Table 1). 
These probabilities provide the structures necessary for understanding police officer per-
formance on the task of searching drivers and for deriving appropriate measures of bias.

Hit and False Alarm Rate

A common method of analyzing 2 x 2 tables is to consider the hit and false alarm rate. 
An important distinction must be drawn. The hit rate discussed in the context of the 2 x 2 
table is not the same as the “hit rate” as discussed in the policing literature. In particular, 
the 2 x 2 definition of hit rate is a measure of officer accuracy that is conditional upon the 
amount of contraband found. However, the “hit rate” discussed in the policing literature is 
the likelihood the officer will find contraband conditional upon their decision to search the 
driver, which we refer to as the positive predictive value (PPV).2

To calculate hit rate (a conditional probability based on the information in Table 1), we 
divide the joint probability that the driver possesses contraband and the officer searches by 
the probability that the driver possesses contraband

We calculate a police officer’s PPV, a different conditional probability using the informa-
tion in Table 1, by dividing the joint probability that the driver possesses contraband and 
the officer searches by the probability the officer searches

The numerators of these two equations are identical (the joint probability the driver pos-
sesses contraband and the officer searches). The distinction between these definitions is 

(1)HR =
p(S ∩ C)

p(C)
.

(2)PPV =
p(S ∩ C)

p(S)
.

Table 1  Probabilities for the 2 x 2 contingency table

The bold values represents the cells containing data from publicly available policing databases. S refers to 
search; C refers to contraband; bar above S or C denotes negation

Contraband No contraband Total

Search p(S ∩ C) p(S ∩ C̄) p(S)
No search p(S̄ ∩ C) p(S̄ ∩ C̄) p(S̄) = 1− p(S)

Total p(C) p(C̄) = 1 − p(C) 1

1 In this paper we do not consider situations where traffic stops were not made.
2 This distinction can be further illustrated through an example. An officer with a 70% PPV will find con-
traband 70% of the time they search, while an officer with a 70% hit rate will have found contraband 70% 
of the time it was present. Some authors give a more careful definition of policing “hit rate” referring to it 
as a conditional hit rate (Shea 2022; Lundberg 2022) points out the incorrect use of chi-squared tests when 
comparing PPV for different groups.
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in the denominator (the probability an officer conducts a search or the probability a driver 
possesses contraband).

The other metric of analyzing the 2 x 2 table we will discuss is the false alarm rate, yet a 
different conditional probability. To calculate false alarm rate, we divide the probability of 
false alarms by the probability the driver does not possess contraband

What do these metrics mean? Police officer hit-rate tells us how good an officer is at detect-
ing contraband, when it exists. For instance, an officer with 90% hit rate will correctly 
identify 90% of drivers with contraband. False alarm rate represents how good an officer is 
at determining when contraband is not present, when it does not exist. An officer with 90% 
false alarm rate will incorrectly search 90% of drivers without contraband. In the context of 
policing, this represents the proportion of times an officer searched an innocent driver. It is 
important to recognize that a 90% hit rate does not automatically imply a 10% false alarm 
rate, because the two probabilities are logically independent. As a boundary condition, a 
perfect officer would have a hit rate of 100% and a false alarm rate of 0%. While these met-
rics are commonly used in other domains, such as the medical literature,3 they have yet to 
be considered in the policing literature.

Models of Search Behavior are Limited by the Data Available

While the hit and false alarm metrics assess officer bias, policing data sets have limited 
data. Policing data sets record if an officer made the decision to search and the outcome of 
those searches (see Table 1 where observed cells are denoted in yellow). If a police officer 
did not search the driver, we do not have data on whether or not the driver was/was not car-
rying contraband. This lack of data for non-searches has been referred to as the denomina-
tor problem (Knox and Mummolo 2020b; Walker 2001), and it limits current approaches 
to studying bias in police officer searches (see Goff and Kahn 2012, for a full review). For 
example, the hit and false alarm rates cannot be computed without knowing the base rate of 
contraband in the population. Knox and Mummolo have gone into great detail explaining 
limitations of studying racial bias without knowing the population base rate in the context 
of the causal inference literature (Knox et  al. 2020; Knox and Mummolo 2020b, 2020). 
Our approach focuses on all feasible 2 x 2 tables, but the limitations are analogous.

We Can Still Use the 2 x 2 Table

Despite these limitations, we recognize that we only need to know one additional value to 
completely solve the 2 x 2 table. We denote the number of misses (i.e., times the police 
officer did not search but missed contraband) as x. Then, using the constraints imposed by 
the table: all entries sum to the total number of traffic stops and each entry in a row/column 

(3)FA =
p(S ∩ C̄)

p(C̄)
.

3 Hit and false alarm rate are also known in the medical testing literature as sensitivity and specificity, 
respectively (Lalkhen and McCluskey 2008). Sensitivity refers to how “good” a diagnostic test is at identi-
fying an unhealthy person, while specificity refers to how “good” a diagnostic test is at identifying a healthy 
person (the complement of the false alarm rate). In the context of policing that would be equivalent to how 
well an officer can detect the presence (sensitivity) or absence (specificity) of contraband.
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sums to the row/column total, we define all feasible values of x. This approach of consider-
ing all such scenarios is in the spirit of the causal inference approach using potential out-
comes taken by Knox et al. (2020).

While we are not able to estimate the x-value in actual data sets without making addi-
tional assumptions or using additional data to enable estimation, its range can be con-
strained with only one assumption. The number of times an officer missed contraband 
when it was present (the x-value) can only be so large without the officer’s false alarm rate 
exceeding their hit rate. This would imply that the officer performs worse than chance, 
which we assume is not the case.

In particular, we assert that police officers’ hit rates should be at least as good as their 
false alarm rates4 (e.g., we assume HR = p(S|C) ≥ p(S|C̄) = FA). Surely, the police are 
searching more cars with contraband than cars without contraband. Psychologically, this 
assumption is supported by the idea that at the point officers make the decision to search 
(and it is formally recorded), police officers are hoping to find contraband, so it seems 
implausible that they would systematically perform worse than chance. Data reporting bias 
will likely be in favor of omitting false alarms (thus decreasing the false alarm rate). More-
over, we are currently discussing behavior in the aggregate, and individual officer might 
perform worse than chance, but police officers as a whole are performing at least as good 
as chance. With this assumption and the properties of the 2 x 2 table, we observe an upper 
bound on x.

To derive the upper bound on x, we return to the definitions of hit and false alarm rate 
(see Eqs.  1 and 3). We express the joint probability in each cell in Table  2 in terms of 
numerical values. The equation for hit rate is

The equation for false alarm rate is

We then constrain the hit rate to be greater than or equal to the false alarm rate and some 
simple algebra yields

The rightmost term is the PPV (Eq. 2), so the upper bound is the product of the comple-
ment of the search rate and the PPV.

(4)HR =
a

a + x
.

(5)FA =
b

b + (S̄ − x)
.

(6)x ≤ S̄
a

a + b
.

Table 2  Convenient labels for the cells of the 2 x 2 table

Contraband No Contraband Total

Search a b S
No search x S̄ − x S̄

Total C C̄ T

4 This assumption is analogous to setting the sensitivity parameter in Signal Detection Theory to 0.
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We can identify all feasible 2 x 2 tables using the upper bound on x. This approach can 
be applied to policing data directly. For example, we use data from the county of Dur-
ham, North Carolina from December 2001–2015 (a total of 326,024 traffic stops). These 
data were collected by the Durham police department and made accessible by the Stanford 
Open Policing Consortium (Pierson et  al. 2020).5 In Table 3, we see the current known 
values for these data.

Using these known values, we calculate this upper bound on the possible x-values. In 
particular, the x-value is constrained by Eq. 6:

Originally, the unconstrained x ranged from x ∈ [0, 304318] , but now x ∈ [0, 78960] ; this 
constraint on x reduced the possible values to 25% of the original possibilities.6

Defining Racial Bias

A 2 x 2 Definition of Bias

To understand racial differences in officer performance, we need to examine multiple 2 x 2 
contingency tables like the one shown in Table 1. For example, considering only two races, 
White and Black/African American, we would have one 2 x 2 for the White drivers and 
one 2 x 2 for the Black drivers. Racial bias would then be defined by measures that exam-
ine differences across two or more 2 x 2 contingency tables. This definition of racial bias is 
distinct from the bias metrics that can be computed within a single 2 x 2. Thus, we define 
“racial bias” as racial difference between metrics of performance. The two metrics we will 
compare across 2 x 2 tables are hit and false alarm rates.

To compare these hit and false alarm rates across race, we need to know the missing 
x-values in each 2 x 2 table, yet this is not possible with currently available data. We pro-
pose an alternative. We examine all feasible x-values for both White and Black drivers and 
compute the resulting differences between the metrics across the two sets of feasible 2 x 2 
tables. Continuing with the example of Durham, North Carolina, we observe two 2  x  2 
tables, one for White and one for Black drivers (see Table 4 below).7

(7)
x ≤304318 ∗

5632

16074 + 5632

x ≤78960.

Table 3  Estimating the 2 x 2 table in Durham NC

Contraband No contraband Total

Search 5632 16074 21706
No Search x 304318 − x 304318
Total 5632 + x 16074 + (304318 − x) 326024

7 The total Durham data contains drivers of all races. We dropped drivers whose race was categorized as 
Asian/Pacific Islander, Hispanic, or other due to low sample size.

5 The interested reader can access these open source data at https:// openp olici ng. stanf ord. edu/ data/.
6 Because a partial stop is not possible, we round all decimals down to the nearest integer (i.e., apply a 
floor function) for purposes of reporting values for the 2 x 2 table in this manuscript.

https://openpolicing.stanford.edu/data/
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Using Eq. 6 we know the feasible xblack ∈ [0, 45212] and the feasible xwhite ∈ [0, 25512] . 
We can compute the difference in hit rate for Black and White drivers for each combina-
tion of x-values. A useful tool for visualizing how the hit rate differs for White and Black 
drivers is a three dimensional surface resulting from placing the feasible x-values for White 
drivers on one axis, the feasible x-values for Black drivers on another axis, and the differ-
ence between the hit rates corresponding to those two x-values on the z-axis. This creates a 
three-dimensional surface with points above the plane z = 0 representing a higher hit rate 
for White drivers and points below the plane z = 0 representing a hit rate that is higher 
for Black drivers. As seen in the left panel of Fig. 1,8 there are combinations of feasible 
x-values that show higher hit rates for White drivers and higher hit rates for Black drivers. 
Given that the feasible tables can produce differences in hit rates between the two races on 

Table 4  Durham NC 2 x 2 table by race

Black drivers

Contraband No contraband Total

Search 4203 11179 15382
No Search x 165469 − x 165469
Total 4203 + x 176648 − x 180851

White drivers

Contraband No contraband Total

Search 957 2565 3522
No Search x 93893 − x 93893
Total 957 + x 96458 − x 97415

Fig. 1  Durham NC Data (Table 4): Racial difference in hit rate (left) and false alarm rate (right) for all pos-
sible combinations of x-values

8 For this plot and future plots, two of the axes are the feasible x-values for White and Black drivers and 
they each have different ranges.
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either side of 0, we cannot make claims about the pattern in the real world without more 
data or making more assumptions. But what about officer false alarm rates?

We can also use the feasible x-value to examine racial differences in false alarm rates. 
Using the same constraint on the x-values, we plotted the racial difference in false alarm 
rate as a three-dimensional surface (the right panel in Fig. 1). Surprisingly, for any com-
bination of x-values we observe the false alarm rate for Black drivers is greater than the 
false alarm rate for White drivers (i.e., the feasible surface is below the plane z = 0 ). This 
means that for all feasible real-world scenarios, the false alarm rate for Black drivers (FAB ) 
is higher than that for White drivers (FAW ). While we do not know the actual values of x 
for White and Black drivers, we can see that for all feasible values the racial difference 
is always in the same direction. This racial difference is staggering and requires further 
investigation.

The Overlapping Condition Test

The three-dimensional surfaces (Fig. 1) demonstrate that for any combination of feasible 
x-values, FAB  >  FAW . However, producing three-dimensional plots is time consuming 
and can be difficult to interpret for those with limited mathematical knowledge. We have 
developed a simple method to test for racial bias in false alarm rate by checking one point: 
the case when the FAB is minimized and the FAW is maximized. This is a test of the first 
possible point of overlap. If min(FAB) ≤ max(FAW ) , then there exists at least one pair of 
x-values such that racial bias is not present.

The minimum FAB occurs when xB = 0 . Substituting xB = 0 into Eq 5. we obtain the 
minimum false alarm rate

The maximum hit rate for White drivers serves as an upper bound on FAW.

We substitute the upper bound for xW from Eq. 6 in for xW and simple algebra yields,

That is, the highest false alarm rate will occur when FAW = p(SW ).
Therefore, the test of the overlapping condition is a police department has some combi-

nation of x-values that yield no racial bias when,

The overlapping condition test states: If max( FAW ) ≥ min( FAB) then there exists some 
combination of xW and xB such that FAB ≤ FAW . That is, there exists at least one pair of 
x-values where there is no racial bias. A department passes the overlapping condition test 
when there is some combination of x-values that overlap and they fail the test when there 

(8)min( FAB) =
bB

S̄B + bB
.

(9)max( FAW ) =
bW

S̄W − xW + bW
=

aW

aW + xW
.

(10)max( FAW ) =
SW

SW + S̄W
.

(11)max( FAW ) =
SW

SW + S̄W
≥

bB

S̄B + bB
= min( FAB).
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is no overlap (i.e., are racially biased for all feasible 2 x 2 tables).9 In other words, this test 
adjudicates whether or not a given department’s data gives rise to racial bias under all rates 
of contraband.

We represent the overlapping condition test graphically (see Fig. 2). We plot feasible 
false alarm rates for Black drivers on the vertical axis and feasible false alarm rates for and 
White drivers on the horizontal axis. When these values are equal, the feasible space will 
overlap the identity line. Points above the identity line indicate higher false alarm rates for 
Black drivers and points below the identity line, higher false alarm rates for White drivers. 
The further the rectangle is from the identity line the greater the difference in false alarm 
rate by race. The point of the rectangle plot defined by the overlapping condition test on 
 FAW and  FAB is the bottom right corner (closest to the identity line). This corner will be 
the first to cross the identity line when there are combinations of feasible x-values that 
yield no-bias. Figure 2 provides a quick visual representation of the overlapping condition 
test.

As shown in Fig. 2, the bottom right corner does not overlap the identity line: Durham, 
NC fails the overlapping condition test. That is, for combinations of feasible values of x 
for White and Black drivers there is no overlap in the false alarm rate for White and Black 

Fig. 2  Durham, NC data (Table 4): graphical representation of the overlapping condition Test

9 In a sense this “worst case scenario” is like a null hypothesis test, where in states that fail the overlapping 
condition test we reject the null hypothesis that there is no bias, but in states that pass the overlapping con-
dition test we do not have enough evidence to reject the null that there is no bias. We are not performing a 
test of significance, but we include this intuition to help the reader.
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drivers. We will utilize this analytical tool to further understand the nature of racial bias in 
Durham.

Examining if Reasons for Stop and Search Moderates the False Alarm 
Finding

Police officers in Durham, NC fail the overlapping condition test. However, it is possible 
that officers may exhibit different false alarm rates under different reasons for a stop or a 
search due to a difference in the reason they conducted a search. Work by Baumgartner 
et  al. (2018) suggests that investigatory stops show greater discrimination because offic-
ers have more power to discriminate with their greater discretion (this was found using the 
PPV metric of analyzing racial bias). Thus, in the following analysis we utilize the overlap-
ping condition test to examine if the reason for a stop or search moderates the racial differ-
ence in false alarm rate.

Reason for Stop

In Durham, police officers recorded 10 different reasons why they stopped drivers, from 
legitimate traffic violations such as stop light/stop sign violations to pretextual reasons 
such as “other movement violation.” We disaggregated the data by stop reason, creating 
a separate 2  x  2 table for each reason, and observed that Durham fails the overlapping 

Fig. 3  Durham, NC data: overlapping condition test for stop reason
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condition test for all stop reasons except investigatory stops. Figure 3 represents this find-
ing graphically.

As shown in Fig.  3, only the investigatory stop rectangle overlaps the identity line. 
This means that the reason for stop does not attenuate the racial bias in false alarm rate 
except for stops for “investigations.” Investigatory stops pass the overlapping condition test 
because some combinations of feasible x-values yields no bias. This suggests that without 
further information we cannot make strong claims about a lack of racial bias in investiga-
tory stops because we do not know the true false alarm rate value.10

Fig. 4  Durham, NC data: overlapping condition test for search reason

10 As mentioned elsewhere in this paper, these results are contingent upon stops that did occur and does not 
address the space of stops that could have happened but did not occur.
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Reason for Search

We also use the overlapping condition test to examine if the reason for search moderates 
the racial difference in false alarm rate in Durham. We are unable to make separate 2 x 2 
tables in the same way we have previously because there is no “no search” for a particu-
lar search reason. We do not have data on the number of times an officer could have, but 
decided not to, search for a specific reason. To work around this, we assume that every per-
son could have been searched for every reason. We set the total amount of no searches for a 
given reason equal to the total amount of no-searches. The upper bound (Eq. 6) is the num-
ber of no searches multiplied by the proportion of searches that yielded a hit. By assuming 
the number of no-searches as the largest possible value we will create the largest possible 
feasible region for x, a conservative test of our condition. As shown in Fig. 4, according to 
the overlapping condition test there is racial bias in false alarm rate for all such reasons.11 
Overall, these results suggest that whatever is driving racial bias in police officer searches 
it is pervasive across different reasons for stop and search.

Analysis of 98 Million Traffic Stops Across 14 States

To examine the generalizability of these results, we analyzed data from 14 state police 
departments from the years 1999–2017, which amounted to approximately 98 million traf-
fic stops.12 We included all state patrols with search data available through the Stanford 
Open Policing database (Pierson et  al. 2020) in our analyses. The results are presented 
below (see Supplemental Materials for full extent of our analyses).

We observe that in the aggregate these police departments fail the overlapping condition 
test. False alarm rates for White drivers do not overlap false alarm rates for Black drivers 
max( FAW ) = .027 < min( FAB) = .034 . However, as shown in Fig. 5, there is heterogene-
ity in the degree of racial bias observed in different states. We observe that 10 of our 14 
states fail the overlapping condition test (these rectangles do not intersect the identity line), 
while four states (California, Texas, South Carolina, and Massachusetts) pass the overlap-
ping condition test.13

We expect variation in the degree of racial bias between different states. Different 
departments have different policies for searching drivers, resulting in different patterns of 
the hit and false alarm rates. Moreover, different departments have different data reporting 
standards, further influencing the hit and false alarm rates (Department of Justice 2009). 

11 One might assume that police officers engaging in plain view searches (coded observation here) would 
not show bias in false alarm rate because the contraband is visible. Instead, we observe a racial bias in false 
alarm rate for this search reason. These feasible false alarm rates are admittedly low, however they are even 
lower for White drivers than Black drivers. We speculate this is related to the effect observed in Eberhardt 
et al. (2004), whereby officers are more likely to misidentify an object as contraband when interacting with 
a Black driver. This would explain the higher false alarm rate for Black drivers in this context.
12 Selection criteria for our analyses was State Patrol Data that included information about the search (and 
its respective outcome). There are other states that have data from different agencies (e.g., NYPD versus 
New York State Police). To keep the type of department consistent, we focused on State Police data. More-
over, not all departments had data available during the entirety of this time period.
13 Additional research can (and should) estimate whether the actual x-value falls in that corner where the 
box overlaps. This is especially important because the region of overlap is relatively small compared to the 
area of feasible values (see Texas for example).
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Future work should examine the differences in these department policies to determine what 
separates states with little racial bias from states with great racial bias in false alarm rates. 
For states that have further local municipal department data available, we conducted the 
same analysis and the same pattern of results held. That is, 9 out of 11 municipalities failed 
the Overlapping Condition test (see Supplemental materials).

A Psychological Analysis of Trade‑offs

Now that we have described the general pattern of the data at the state and local level, we 
consider potential explanations for this behavior. In an ideal world, officers would maxi-
mize their hit rate and minimize their false alarm rate simultaneously. However, it is not 
possible to satisfy a perfect hit and false alarm rate simultaneously; officers must either pick 
a metric (i.e., hit or false alarm rate) to optimize, or engage in a trade-off between these 
metrics (see, e.g., Green and Swets 1966). A police officer motivated to find contraband 

Fig. 5  US state patrol data: overlapping condition test for 14 US states



 Journal of Quantitative Criminology

1 3

every time it is present (i.e., maximize hits) should search every single person. An officer 
motivated to never search an innocent person (i.e., minimize false alarms), should never 
search. We do not observe either of these patterns in our data. This suggests that police 
officers are optimizing a different objective function, possibly one that relies on a trade-off 
between hit and false alarm rates.

Signal detection theory (Green and Swets 1966) proposes one set of assumptions that 
leads to a trade-off model that imposes a decision threshold on the standard likelihood 
ratio. This decision threshold can be related to the probability of contraband, as well as 
utility terms corresponding to each of the four cells of the 2 x 2 table: For a rigorous con-
struction of this model see Green and Swets (1966), Coombs et al. (1970) and Macmillan 
and Creelman (2005).

Police departments that fail the overlapping condition test have a false alarm rate bias. 
According to signal detection theory, we can describe this bias through a threshold param-
eter � . Specifically, a failure of the overlapping test can be modeled through a difference in 
the value the likelihood ratio must exceed before an officer searches a driver, such that it is 
easier for a police officer’s likelihood ratio to exceed the threshold � for a Black driver than 
the corresponding � for a White driver, for any value of x. This means that a police officer 
needs less evidence to search a Black driver than a White driver.

We are not the first to consider a threshold measure as a way to model biased policing. 
Notably, Simoiu et al. (2017) developed a threshold test, later improved in Pierson et al. 
(2018), to examine police officer performance independent of the problems posed by infra-
marginality. Our model differs from their approach. Their approach requires a statistical 
model with parameter estimates defined over the 2 x 2 with an unobserved row, whereas 
our approach examines all feasible scenarios for the unobserved data. We are using math-
ematical constraints to study the feasible space over the unobserved data, but our model 
is currently limited in its ability to capture heterogeneity across officers and departments 
in a statistical framework. Simoiu et al. (2017) and subsequent models of police bias have 
implemented heterogeneity in officers and precincts through a random effects model in a 
Bayesian context.

Current Models of Racial Bias in the Literature

Considering all feasible real world scenarios leads to new approaches to analyze racial bias 
in policing such as the overlapping condition test. We can also use the approach of con-
sidering all feasible real world scenarios to highlight debates surrounding current models 
of racial bias in policing. Current measures of bias in the policing literature focus on the 
observed row of the 2 x 2 table involving searches. This is both a consequence of the data 
available to researchers (Knox and Mummolo 2020b; Goff and Kahn 2012) and Bayes The-
orem. We first briefly review the prominent methods and then consider how the analysis of 
all feasible 2 x 2 tables provides new insight into their limitations.

The Benchmark Test

The benchmark test uses the racial difference in search rates to assess discrimination. 
Scholars using the benchmark test define discrimination as police officers searching Black 
and White drivers at different rates (i.e., pB(S) ≠ pW (S) ), and by implication, no racial bias 
exists if the two population search rates are equal. However, equal search rates might miss 
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a serious racial bias caused by an underlying difference in base rates of contraband, a phe-
nomenon referred to as statistical discrimination (Knowles et al. 2001; Becker 1971).

There have been notable advancements in the Benchmark test that include examining 
the probability of being searched as a function of the driver’s race and other characteristics 
observable by the police officer in a logistic regression framework where these character-
istics could be treated as control variables, or correlates. When race has no explanatory 
power, then no discrimination is present (Smith et al. 2004; Fagan and Davies 2001; Gel-
man et al. 2007; Engel and Calnon 2004). Due to the difficulty in identifying all observ-
able characteristics this model has been adapted to consider propensity scores to match 
Black and White drivers on key observable characteristics, such as location (Ridgeway 
2006). Another special case of the benchmark test is the “veil of darkness test” (Grogger 
and Ridgeway 2006; Pierson et al. 2020), which assumes that if police officers are not rely-
ing on race for their search decisions, then the proportion of drivers stopped that are Black 
should not change between light and dark hours (relatively easy vs. hard conditions to 
determine race). Ultimately, the Benchmark test can serve as a first approximation of racial 
bias, but in order to understand the full scope of police officer search decisions, researchers 
must also consider metrics that incorporate officer accuracy.

The Outcome Test

Some scholars recognized the limitations of the benchmark test and designed a different 
test that would begin to address concerns about police officer accuracy, the outcome test 
(Knowles et al. 2001; Ayres 2002; Baumgartner et al. 2018). In their paper, Knowles et al. 
(2001) developed a model of racial bias that differentiates between statistical discrimina-
tion (Arrow 1971) and a taste for discrimination (Becker 1971). In the KPT framework, 
officers have a taste for discrimination when the utility for searching a Black driver differs 
from that of searching a White driver. According to Knowles et al. (2001), police officers 
demonstrate statistical discrimination when Black and White drivers are searched at dif-
ferent rates and the observable characteristics of the drivers are identical. The KPT model 
recognizes the need for equal rates of contraband, but instead hinges on the key assumption 
that police officers and criminals will reach an equilibrium whereby the rates of contraband 
in the population should be equal for White and Black drivers. Other scholars have drawn 
attention to issues of monolithic police behavior and rational decision making with this 
model that question the possibility of an equilibrium (Anwar and Fang 2006; Engel 2008; 
Engel and Calnon 2004; Persico and Todd 2006, 2008; Engel and Tillyer 2008; Manski 
2006).

The outcome test defines discrimination as police officers having different “hit rates” for 
White and Black drivers. Recall the “hit rate” they are describing is the PPV (Eq. 2) value 
on the 2 x 2 table. This formulation of the outcome test is related to the overlapping condi-
tion test, except instead of examining false alarm rates, the metric of interest is the PPV. 
The outcome test defines discrimination as when

The outcome test relies on the conditional probability p(C|S) computed with the entries 
from the single observed row of the 2 x 2 table. An equivalent computational approach for 
this conditional probability uses Bayes theorem and requires the complete 2 x 2 table. The 
posterior probability p(C|S) can be computed through the standard odds form of Bayesian 

(12)
pB(S ∩ C)

pB(S)
≠

pW (S ∩ C)

pW (S)
.
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updating, where the likelihood ratio (i.e., hit rate divided by false alarm rate) is multiplied 
by the contraband odds in the population. Thus, the outcome test is equivalent to the dif-
ference between the posterior probability for White and Black drivers. Any critique (or 
positive attribute) of the outcome test also applies to this particular Bayesian formulation 
of posterior probability.

The Problem of Inframarginality

The outcome test and its derivative methods neglect any confounding reason why a police 
officer would be more accurate when searching one race than others. Most importantly, 
these tests neglect the base rates of contraband that exist between Black and White drivers 
that might drive differences in accuracy. This problem is commonly known as the problem 
of inframarginality (Ayres 2002). This limitation has been discussed at length in the litera-
ture (Ayres 2002; Anwar and Fang 2006; Pierson et al. 2018; Knox and Mummolo 2020b).

Another way to think about this limitation is that it underscores the need to consider 
all four cells of the 2 x 2 table. We need to examine the instance where officers did not 
search because those who were guilty and not searched (i.e., misses) represent an impor-
tant component of the situation. It is not sufficient to consider the accuracy of searches that 
occurred if we want to know how accurate an officer is when they search drivers in general. 
We also need to know how well an officer performs when they conclude a person does 
not have contraband so does not initiate a search. The underlying rates of contraband are 
directly relevant to understanding the true nature of police officer bias, and claims of cau-
sality cannot be made without the full information in the 2 x 2 table (see, Knox and Mum-
molo 2020, 2020b; Knox et al. 2020, for a review of these limitations).

Insights from the Full 2 x 2 Table

We combine some of these common debates in the literature, such as the inframarginality 
problem and the influence of base contraband rates, under one common framework if we 
consider all feasible scenarios. Using three-dimensional graphs we demonstrate that dif-
ferent values of contraband lead to different conclusions of bias. Consider the following 
hypothetical data set:

Table 5  Example data: Benchmark test

Black Drivers

Contraband No contraband Total

Search 40 5 45
No search x 55 − x 55
Total 40 + x 60 − x 100

White drivers

Contraband No contraband Total

Search 4 23 27
No search x 73 − x 73
Total 4 + x 96 − x 100
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For these data, the benchmark test would state that we are observing racial bias, 
pB(S) = .45 ≠ .27 = pW (S) , and that police officers are searching more Black drivers than 
White drivers. On the other hand, the outcome test (Eq. 12) suggests an anti-white bias. 
That is, police are more accurate when searching Black drivers PPVB = .89 > .15 = PPVW

.
So which test is correct? Should we say that police officers are searching more Black 

drivers than White drivers, so they are racially biased? Or, are officers unbiased because 
they find more contraband in Black drivers who were searched than White drivers who 
were searched?

If we examine the racial difference surface (Fig. 6) generated by considering all feasi-
ble x-values ( xblack ∈ [0, 48] and xwhite ∈ [0, 10] ), we observe a subset of stops where the 
hit rate for Black drivers is less than the hit rate for White drivers and a subset of stops 
where the false alarm rate for Black drivers exceeds that for White drivers. In other words, 
the outcome test (under its basic assumptions) cannot work around the problem of infra-
marginality; while it gives a more nuanced definition of bias than the benchmark test, the 
outcome test fails to capture potential key patterns in the data across different contraband 
rates.14

Discussion

Economists, psychologists, sociologist, lawyers, and computer scientists have expressed 
growing interest and concern for racial bias in police searches. Researchers typically frame 
the issue of police search bias as a decision problem. The application of decision theory 

Fig. 6  Hypothetical data in Table 5: Racial difference in hit rate (left) and false alarm rate (right) for all 
possible combinations of x-values

14 If we apply the outcome test to the data from Durham, North Carolina we observe a PPVB = .273 which 
is almost identical to the PPVW = .272 . The outcome test would still conclude a racial bias in the data, 
which is consistent with the racial bias we observe in the false alarm rate using the Overlapping Condi-
tion Test. Notably, the benchmark test would have also picked up the discrepancy of higher search rates for 
Black drivers ( pB(S) = .085 ) than White drivers ( pW (S) = .038).
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takes different forms from game theoretic decisions (Knowles et al. 2001), to causal infer-
ences (Knox and Mummolo 2020b), and even distributions of signal and noise akin to 
signal detection theory (Pierson et al. 2018). Despite these different applications of deci-
sion theory, researchers have argued for a common framework to study racial bias in traffic 
stop data (Knox and Mummolo 2020b; Goff and Kahn 2012). While there are different 
approaches to modeling bias from policing data, a growing body of work continues to find 
that police officers exhibit racial bias against Black drivers. Several models interpret this 
bias in terms of police officers setting different thresholds for search(Simoiu et al. 2017; 
Pierson et al. 2018). Yet we still do not understand the psychology of how police officers 
set their thresholds.

How do the Police Set a Threshold?

One method of exploring how police set thresholds is to consider an ideal (unbiased) deci-
sion maker and the potential limitations that prevent an officer from achieving such a feat. 
In order to search without bias, police officers must consider the base rates of contraband 
in the population of White and Black drivers and search accordingly. This is no easy task. 
A body of research has shown that people ignore, or under weight, base rates when other 
stereotype-consistent information is present (Tversky and Kahneman 1974). That is, when 
estimating the likelihood that a person has contraband, the stereotype of the black crimi-
nal (Eberhardt et  al. 2004; Entman 1992) may overpower base rate information. This is 
especially likely for police officers who make these split-second decisions. Importantly, 
this psychological description of the challenges of searching does not excuse the racial dis-
crepancies in police officer search behavior, but rather offers researchers an opportunity to 
provide new interventions that account for this psychology.

While an ideal decision maker provides a first approximation, we need to define the 
officer’s objective function. Scholars have argued that the goal of an officer is to maximize 
hits (Knowles et al. 2001), or minimize crime (Dominitz and Knowles 2006), or do some-
thing else altogether (Durlauf 2006). Carefully modeling officer thresholds will not only 
advance conclusions derived from these modeling techniques, but also advance methods 
where the key debate centers around the police officer’s objective function. Recent math-
ematical results (e.g., Kleinberg et al. 2017) suggest important constraints on permissible 
solutions to tradeoffs over multiple objectives (i.e., permissible in the sense of not creating 
inconsistencies with desired properties such as calibration of predicted hit and false alarm 
rates). This is a promising area of research that can be combined with the present model of 
examining the feasible space of 2 x 2 tables.

Beyond tackling the officer’s objective function, we need more direct tests of the pro-
posed threshold models. For example, the threshold model used by Simoiu et al. (2017) is 
related to a class of models (see, e.g., Coombs et al. 1970) that imposes a particular con-
straint on the ROC curve (the trade-off curve between the hit rate and the false alarm rate) 
that differs from the pattern implied by signal detection theory. Evaluation of ROC curves 
at different levels of analysis (e.g., officer-level, department-level, state-level) could pro-
vide insight into underlying mechanisms involving thresholds.

Suggestions for Intervention

We found that police officers in the aggregate have a lower threshold for searching Black 
drivers than White drivers for all feasible real world scenarios in 10 out of 14 US states, 
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and 9 out of 11 local departments. We interpret this as a threshold difference, where police 
officers are more eager to identify an object as contraband when they are interacting with a 
Black driver as compared to a White driver. This suggests that we should design interven-
tions that move a police officer’s threshold for search such that they react less to small indi-
cations of signal. These interventions need not focus on the ability of an officer to detect 
contraband as this may adversely change the hit rate.15 Again, understanding the officer’s 
objective function is key, as an officer who never searches will effectively minimize their 
false alarm rates (reducing their racial bias to zero), but they may no longer meet other 
objectives if they do not engage in any searches. Future work must collaborate with police 
departments on their desired objective functions and how interventions might facilitate 
these objectives while simultaneously reducing bias.

The Importance of Studying False Alarm Rates

The current literature on racial differences in search rate (benchmark test) or PPV val-
ues (outcome test) has ignored an important aspect of traffic stops, the false alarm rate. 
The false alarm rate captures how frequently the police inconvenience an innocent person 
instead of targeting an appropriately guilty person (hit rate). The consequences of targeting 
innocent people have had serious lasting impacts on communities. The targeting of inno-
cent Black people in particular has led to decreased community trust in policing as well as 
several negative health outcomes (Del Toro et al. 2019; Legewie and Fagan 2019).

Different burdens of proof (e.g., probable cause versus reasonable suspicion) could con-
tribute to different false alarm rates and hit rates. Nevertheless, police officers should be 
equally wrong (or right) about searching citizens under the same burden of proof (i.e., rea-
son for stop/search). Our results suggest that police officers under the same conditions for 
stop and search incorrectly target more innocent Black drivers than innocent White drivers.

Limitations

Revisiting the Problem of Inframarginality

The overlapping condition test and other methods of considering all feasible scenarios are 
not immune to problems of inframarginality. With large samples at the state and county 
level, the observed data provide sufficient constraints on the feasible x-values to be able to 
apply the overlapping condition test on the false alarm rates across race. However, inter-
ventions will typically be at the individual officer level, and with smaller sample sizes at 
that level, the problem of inframarginality returns because the feasible values for false 
alarm rates will span more of the [0, 1] interval. Similar to hit rates in the present work, 
with smaller sample sizes at the officer level, one may not be able to make claims about 
bias (or lack thereof) without addressing the problem of inframarginality. Future work 
needs to develop estimation methods for the unknown parts of the 2 x 2 table in order to 
evaluate the success of officer-level interventions.

15 For such interventions, one might consider turning to the SDT literature for insights on how to change 
the threshold (false alarm rate) without affecting performance (hit rate).
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Reporting Bias

A developing area of research suggests that police officers systematically misre-
port driver race. In the case of Texas State Patrol officers, troopers mislabel minority 
searches as White drivers (Luh 2022). It is for this reason we exclude Hispanic drivers 
from our analysis, as they are 2.3 times more likely to be misreported as White when the 
search result in a false alarm (Luh 2022). While this reporting problem is indicative of 
its own form of bias, it does not change our conclusions of anti-Black bias. The misre-
porting of false alarm stops increases the numerator of the White false alarm fraction, 
making it less likely that we could conclude bias in all feasible scenarios. Despite this, 
of the 25 police departments we analyzed, 19 of them demonstrated racial bias in police 
search decisions. The few exceptions occur in four of the 14 states and two local munic-
ipalities (see the Supplemental materials) for extreme x pairs that yield small overlap in 
false alarm rates. That is, feasible x values for Whites near the upper bound where hit 
rates are near chance performance paired with feasible x values at the other extreme for 
Blacks where the Black hit rate exceeds 90%. These pairs of x’s are unlikely to occur in 
real data, but are in the subset of feasible 2 x 2 tables we consider. While reporting bias 
does not change our conclusions, it has serious implications for researchers building 
better predictive models of bias. Our work, and subsequent conclusions, are limited by 
our ability to detect and model these forms of reporting bias.

Conclusion

The present work establishes a method of examining threshold bias across feasible real 
world scenarios without additional estimation of unknown data and without further 
assumptions beyond the constraint on the relation between hit rate and false alarm rate. 
Using the Overlapping Condition Test we conclude that in the aggregate police officers 
demonstrate racial bias in their false alarm rates. This is indicated by higher false alarm 
rates for Black drivers across feasible values of the unobserved data. We interpret this 
false alarm difference as a difference in officer search criteria (i.e., threshold). These 
results are consistent with other models of racial bias in the literature that use different 
decision theory models to capture racial bias in policing. Consequently, interventions 
need to train officers on how to set thresholds for Black and White drivers to achieve 
equal false alarm rates. Importantly, for such interventions to be effective, future work 
should assess how officers set their search thresholds so that interventions designed to 
eliminate racial bias can target those processes.
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