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Abstract
Purpose Crime data analysis has gained significant interest due to its peculiarities. One 
key characteristic of property crimes is the uncertainty surrounding their exact temporal 
location, often limited to a time window.
Methods This study introduces a spatio-temporal logistic regression model that addresses 
the challenges posed by temporal uncertainty in crime data analysis. Inspired by the aoris-
tic method, our Bayesian approach allows for the inclusion of temporal uncertainty in the 
model.
Results To demonstrate the effectiveness of our proposed model, we apply it to both 
simulated datasets and a dataset of residential burglaries recorded in Valencia, Spain. We 
compare our proposal with a complete cases model, which excludes temporally-uncertain 
events, and also with alternative models that rely on imputation procedures. Our model 
exhibits superior performance in terms of recovering the true underlying crime risk.
Conclusions The proposed modeling framework effectively handles interval-censored 
temporal observations while incorporating covariate and space–time effects. This flexible 
model can be implemented to analyze crime data with uncertainty in temporal locations, 
providing valuable insights for crime prevention and law enforcement strategies.

Keywords Bayesian statistics · Censored data · Crime data · Data imputation · Spatio-
temporal models · Temporal uncertainty

Introduction

The use of advanced statistical techniques for crime analysis has experienced significant 
growth in the last decade. In particular, it is of special interest to analyze the distribution of 
crime in space and time and also to study the presence of space–time interaction. For this 
reason, different modeling approaches have been developed and adapted to find environ-
mental factors that are associated with a higher risk of crime, as well as to predict crimes in 
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the short-term and the mid-term. Among others, different versions of self-exciting models 
(Mohler et al. 2011; Zhuang and Mateu 2019), spatial models with a non-linear structure 
(Briz-Redón et  al. 2022b), and Bayesian univariate/multivariate spatio-temporal mod-
els (Chung and Kim 2019; Law et al. 2014; Li et al. 2014; Quick et al. 2018) have been 
proposed.

Crime data often presents singular characteristics that can complicate the analysis, 
which, in turn, leads to the development of new methodologies. For instance, it is well 
acknowledged that crime figures are usually underestimated, or even biased (Buil-Gil et al. 
2021, 2022). Besides, in the context of spatial, temporal, or spatio-temporal crime datasets, 
both the spatial and the temporal accuracy are often a matter of concern. Problems with 
spatial accuracy usually refer to the impossibility of identifying the spatial unit in which 
the event has occurred (considering, for example, an administrative division of the study 
area). In particular, if the spatial location of the event is available in the form of textual 
information (representing the human-readable address of the location), it is common to 
have geocoding errors or events that fail to be geocoded. This type of problem has been 
discussed previously, to establish minimally acceptable geocoding rates (Andresen et  al. 
2020; Briz-Redón et  al. 2020; Ratcliffe 2004). Regarding the issues related to temporal 
accuracy, it is also usual that for some crime events, we do not observe their temporal loca-
tion with the desired accuracy (minute, hour, date, etc.). Indeed, this situation takes place 
in most events if we are dealing with certain types of crime such as property theft (Ashby 
and Bowers 2013). In this case, what we have is a lower and an upper bound of the tempo-
ral location of the event, that is, a temporal interval or window for each of the events. This 
kind of temporal observation is usually referred to as interval-censored.

The existence of interval-censored event times is a well-known issue in the field of 
quantitative criminology. Even though it may not have received enough attention, there are 
different strategies to deal with interval-censored event times in criminal records. The sim-
plest approach is to choose an appropriate time unit that eliminates temporal uncertainty. 
For example, if the existing uncertainty is at the day level, we can operate at the week 
level. Although in some cases this approach allows us to eliminate the temporal uncertainty 
from most (or all) observations, setting the temporal resolution of the analysis based on the 
uncertainty surrounding the observations is not desirable. For example, it might happen 
that for some datasets there is no uncertainty at the month level, however, performing a 
spatio-temporal analysis considering months as the temporal unit may be too coarse to be 
useful from a practical point of view.

Another way to deal with uncertainty is to perform the imputation of event times, a 
common strategy that can be performed in several ways. One possibility is to assign to 
these events the temporal unit (hour, date, etc.) that lies just at the midpoint of the uncer-
tainty time window reported, or a random temporal unit within the window. Considering 
the initial or the final temporal location of the time window is another option, but these 
two approaches are typically biased (Ashby and Bowers 2013). However, these imputation-
based methods are usually outperformed by the one called the aoristic method, as shown 
by Ashby and Bowers (2013).

The aoristic method, which has been explored and proposed mainly by criminologist J. 
Ratcliffe (Ratcliffe and McCullagh 1998; Ratcliffe 2000, 2002), consists of assigning the 
same weight to each time unit included in the interval that delimits the temporal uncer-
tainty about the crime event. Hence, when one uses the aoristic approach, temporally-
uncertain events do not receive a single imputation value, but a probability score for each 
of the temporal units within which the event is located. Specifically, all the temporal units 
receive the same score or weight, so that they add up to 1. For this reason, the aoristic 
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method does not entirely correspond to an imputation method. Nevertheless, by following 
the aoristic procedure, one can, for instance, deduce the temporal distribution of a set of 
crimes by adding both the number of temporally-certain events and the fractions of tempo-
rally-uncertain events corresponding to each date within the period. Even though the aoris-
tic approach allows carrying out some exploratory analyses of crime datasets including 
interval-censored temporal observations, this may not be sufficient depending on the pur-
pose of the analysis. In particular, if we are interested in describing the temporal or spatio-
temporal distribution of a set of crimes that present temporal uncertainty, it is often helpful 
to introduce covariate information that contributes to the understanding of the crime under 
analysis. Thus, to be able to explain a pattern of crime events while handling extra infor-
mation in the form of covariates, it is advisable to explicitly model the temporal uncer-
tainty that the observations present. This goes beyond the classical aoristic method, which 
aims at allowing an exploratory analysis of the data while taking into account the existence 
of interval-censored observations.

Indeed, model-based approaches can also be followed to deal with interval-censored 
observations. For instance, the von Mises distribution or Dirichlet processes, which are 
typically used for the analysis of circular data, have been recently proposed for the analysis 
of aoristic data (Mulder 2019). Furthermore, one way to deal with the temporal uncer-
tainty of the observations is to include all of them in a single model and assume a certain 
probability distribution on the exact temporal location of these observations. This leads, in 
general, to models that handle missing data under the Bayesian framework. Indeed, Reich 
and Porter (2015) adopted a Bayesian modeling framework for clustering criminal events 
which, among other features, enabled them to deal with interval-censored event times. 
Besides, the model proposed by these authors allowed them to link events that share the 
same modus operandi or offender (in case this information is available).

In this paper, a model-based approach is followed to analyze a burglary dataset recorded 
in Valencia, Spain, which, as is common with residential burglaries, includes a large pro-
portion of temporally-uncertain events. Specifically, a spatio-temporal logistic regression 
is proposed to model burglary risk in space and time. The model is estimated within a 
Bayesian framework, allowing the inclusion of temporally-uncertain events. The aoris-
tic approach is imitated when introducing this uncertainty into the model. Therefore, the 
objective of the paper is twofold. First, to describe a modeling framework to estimate bur-
glary risk in space and time, while accounting for events with temporal uncertainty. Sec-
ond, to highlight the suitability of including this kind of crime event in the analysis to get 
more reliable parameter estimates and attempt to recuperate the underlying spatio-temporal 
distribution of crime. Specifically, we show by fitting the model to several simulated data-
sets that the proposed modeling framework can outperform other competing alternatives 
that rely on imputation procedures.

The paper is structured as follows. “Data” section contains a description of the data 
used for the analysis, emphasizing the presence of temporal uncertainty in the events. 
“Methodology” section describes the modeling framework proposed for the estimation of 
burglary risk in space and time, under the presence of interval-censored temporal observa-
tions. Then, “Results” section starts with a simulation study to assess the performance of 
the proposed model under different scenarios, and compare it against several competing 
models. The second part of “Results” section is devoted to describing the results obtained 
for the burglary dataset mentioned above. Finally, “Discussion and Conclusions” section 
includes a discussion and some concluding remarks.
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Data

Study Settings

The case study has been conducted in the city of Valencia, the third most populated city in 
Spain, with a population size of around 800,000 inhabitants. Specifically, the urban core of 
the city has been considered for the analysis, excluding some peripheral districts that only 
represent 5% of the population. Besides, to investigate the spatial distribution of burglaries 
across the city, the boroughs of Valencia have been considered for analysis. There are 70 
boroughs in the study area delimited for the research.

Burglary Data

A dataset provided by the Spanish National Police containing information about 2626 bur-
glaries recorded in the city of Valencia from 1 January 2016 to 31 December 2017 has 
been used for the analysis. As far as we know, this dataset is exhaustive, in the sense that it 
contains all the burglaries registered in Valencia by the Spanish National Police during this 
period, with no missing data due to problems of geolocation. This dataset has already been 
analyzed by Briz-Redón et al. (2022a) to study the near-repeat phenomenon. In this data-
set, the geographical coordinates are available for each of the events, allowing the analysis 
to be conducted at any desired spatial scale. In contrast, the temporal location of some of 
the events presents a certain degree of uncertainty. Particularly, the exact date of occur-
rence of the burglary is known for only the 60.9% of the cases. Further comments on the 
temporal uncertainty of the data are provided in the following Subsection.

Event Time Uncertainty

One important feature of the dataset under study is the presence of interval-censored event 
times. Specifically, for each burglary, there is a from date and a to date variable that allow 
delimiting the temporal location of the event, based on the information available about the 
burglary (the from date represents the last date on the calendar on which the owners can be 
sure that the home has not yet been burgled, whereas the "to date" is the date on which the 
owners, the Police, or any citizen has ascertained that the burglary has been committed). 
Although the original variables including dates are in a YYYY-MM-DD format, they have 
been transformed into numeric values to ease their use, assigning a value of 1 to 1 Janu-
ary 2016, which represents the start of the study period. In the remainder of the paper, the 
dates would be considered as numeric values, unless otherwise stated.

Thus, while there is no spatial uncertainty in the data since the coordinates of each 
dwelling that has been burgled during the period under study are available (of course, for 
the burglaries that have been notified to the Police), event time uncertainty cannot be over-
looked. In a previous study by Briz-Redón et al. (2022a), the temporal uncertainty issue 
was resolved through the midpoint date imputation method. A preliminary analysis con-
ducted in the context of that study focused on the near-repeat phenomenon, allowed us to 
conclude that the imputation method (midpoint date or aoristic date) did not have a strong 
impact on the results. Therefore, the midpoint date method was preferred over the aoristic 
given its computational convenience.

In the present paper, the aim is to deal with interval-censored events explicitly, without 
direct imputation of missing event dates, as will be shown in the subsequent Section.
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Methodology

Case–Control Study Design

In order to follow a logistic modeling framework (which will be described in “Logistic 
Regression Model” section), a binary response variable indicating the presence or absence of 
a burglary event is needed. Therefore, the spatio-temporal locations (with event time uncer-
tainty) of the burglaries available, denoted by {xi, t

from

i
, tevent
i

, tto
i
}2626
i=1

 , are treated as the cases/
events, where xi are the geographical coordinates corresponding to event i, and tfrom

i
 , tevent

i
 , and 

tto
i

 represent, respectively, the from date, the date at which the event actually occurred, and the 
to date. For events with no temporal uncertainty, it holds tfrom = tevent = tto . For temporally-
uncertain events, we have tfrom < tto and a missing value for tevent . In other words, we only 
know that tevent ∈ [tfrom, tto].

To generate the controls (the spatio-temporal locations where no burglary has occurred), 
the point pattern formed by the locations of all the dwellings in the study area is taken into 
account. Specifically, this pattern consists of 28,682 locations within the city, which include 
382,539 dwelling units (this corresponds to the dwellings registered in Valencia in 2016). A 
total of 13,130 control locations were sampled with replacement, setting the probability of 
selection to be proportional to the number of dwellings in the location. Hence, the number of 
controls was chosen to be five times the number of cases, so a 5:1 ratio of controls to cases 
was used. The literature suggests that a 4:1 case–control ratio is generally sufficient to carry 
out a case-control study design (Gail et al. 1976; Hong and Park 2012). The choice of this 
ratio will affect probability estimates derived from the logistic regression model, so this should 
be taken into account when performing binary (event/no event) predictions that depend on a 
cutoff probability. Each of these control locations was assigned a random date from 1 January 
2016 to 31 December 2017. No temporal uncertainty has been assumed for the control data, 
so tfrom = tevent = tto for all these space–time locations. Figure 1a displays the spatial locations 
of the cases and controls considered for the analysis over the study area. Figure 1b, c show the 
density of cases and controls over the city of Valencia, respectively, obtained through kernel 
density estimation (KDE) techniques, which allow us to appreciate that the distributions of 
crime events and dwelling locations are notably different.

Logistic Regression Model

If {xi, t
from

i
, tevent
i

, tto
i
}15756
i=1

 denotes the complete set of spatio-temporal locations considered for 
the analysis, let yi be a binary variable indicating if each location represents a case (presence 
of a burglary event) or a control (absence of a burglary event). As usual, we set yi = 1 if i is a 
case, and 0 otherwise. In order to model the risk of burglary for each spatio-temporal location 
within the study window, a logistic regression modeling framework is a natural choice. Under 
the logistic model, the occurrence of a burglary event at spatio-temporal location i is described 
through a Bernoulli random variable Yi ∼ Ber(�i) , where �i represents the probability that a 
burglary is actually observed at location i, according to its characteristics. In this paper, we 
attempt to explain this parameter in terms of several fixed and random (spatial and temporal) 
effects, leading to the following expression:

(1)logit(�i) = log

(
�i

1 − �i

)
= � + �DoW(i) + �w(i) + �w(i) + ub(i) + vb(i)
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where each term is defined as follows. First, � is the global parameter of the logistic regres-
sion model, which is usually referred to as the intercept of the model. Second, �DoW(i) rep-
resents the effect of the day of the week corresponding to event i (denoted by DoW(i)) on 
logit(�i) . We note that Monday is taken as the reference level of this variable, so six �DoW 
parameters are actually estimated, one for each of the remaining days of the week. A vague 
Gaussian prior, N(0,  1000), is assigned to � and the �DoW’s. The rest of the parameters 
involved in the model represent spatial and temporal random effects, which are outlined in 
the following lines.

The temporally-structured week effect, �w ( w = 1, ..., 104 ), is specified through a sec-
ond-order random walk �w|�w−1, �w−2 ∼ N(2�w−1 + �w−2, �

2
�
) , where �2

�
 is the variance 

component, whereas an independent and identically distributed Gaussian prior is chosen 
for the temporally-unstructured week effect, �w ∼ N(0, �2

�
) ( w = 1, ..., 104 ). The variance 

components, �2
�
 and �2

�
 , are assigned a Gamma-distributed prior, Ga(1, 0.5), where 1 and 

0.5 correspond to the shape and rate parameters of the Gamma distribution. We note that 
the choice of a Gamma-distributed prior for these parameters is rather arbitrary since other 
distributions could be considered as well. The choice of a second-order random walk for 
the temporally-structured week effect, �w , allows accounting for temporally-correlated 
effects in burglary risk that are not explained by day-of-the-week variations. More specifi-
cally, the definition chosen for the term �w enables us to model the risk of burglary in week 
w on the assumption that it depends on the risk estimated in the previous two weeks while 

Burglary
Control

Location of burglaries and controls

(a)

0.0000
0.0001
0.0002
0.0003

KDE

Density of burglaries

(b)

0.00000
0.00025
0.00050
0.00075
0.00100

KDE

Density of controls

(c)

Fig. 1  Location within the study area of the burglaries and controls considered for the analysis (a) and ker-
nel density estimation (KDE) values corresponding to the pattern of burglaries (b) and controls (c)
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giving more weight to the risk estimated in the immediately preceding week. Meanwhile, 
the temporally-unstructured week effect, �w , allows capturing weekly variations in burglary 
risk that are unrelated to what happened in previous weeks.

Regarding the spatial random effects, the Besag–York–Molliè (BYM) model has been 
employed (Besag et  al. 1991), under which the conditional distribution of the spatially-
structured effect on a borough b, ub ( b = 1, ..., 70 ), is

where Nb is the number of neighbors for area b, wbb̃ is the (b, b̃) element of the row-
normalized neighborhood matrix ( wbb̃ = 1∕Nb if boroughs b and b̃ share a geographical 
boundary, and 0 otherwise), and �2

u
 represents the variance of this random effect. The 

spatially-unstructured effect over the areas, denoted by vb ( b = 1, ..., 70 ), follows a Gauss-
ian distribution, vb ∼ N(0, �2

v
) , where �2

v
 is the variance of the effect. It was assumed a 

Gamma-distributed prior, Ga(1, 0.01), for both �2
u
 and �2

v
 , where again we are using the 

shape-rate parameterization of the Gamma distribution. The spatially-structured random 
effects allow borrowing strength from nearby locations (boroughs), leading to more reli-
able burglary risk estimates across space. Indeed, by defining ub in this way we model the 
burglary risk in borough b under the assumption that it depends on the average risk of bur-
glary in the boroughs that are contiguous to b. On the other hand, the spatially-unstructured 
effect, vb , enables us to detect those boroughs that exhibit a behavior that is different from 
that of their neighbors.

At this point, it should be noted that the choice of the structure formed by the boroughs 
of Valencia to measure the spatial variation of burglary risk is to some extent arbitrary. In 
this case, the choice of an administrative unit is convenient because it would allow practi-
tioners to design surveillance strategies in a simple way. Moreover, from a computational 
point of view, it is also advantageous, since there are not so many spatial units in the study 
area (there are 70 boroughs in total). In any case, the type of modeling framework pro-
posed could be adapted to other types of partitions, regular or irregular, more or less fine, 
of the study area under consideration.

Dealing with the Temporal Uncertainty

The logistic regression model represented by (1) implicitly assumes that the day of the 
week (DoW) and the week within the year are known exactly for each event/control loca-
tion, i. Then, DoW(i) and w(i) are two known values and the corresponding fixed and ran-
dom effects can be estimated. If the exact date of occurrence of event i is unknown, DoW(i) 
is unknown, while w(i) is also unknown unless the from date and the to date belong to the 
same week of the calendar. In this scenario, one possibility is to discard all the events with 
an unknown date for the analysis. This avoids dealing with missing data and corresponds 
to a complete case analysis (considering only the data records with no missing values). 
Removing all these observations from the analysis leads to a reduction in both precision 
and power, which is undesired.

Hence, to include all these temporally-uncertain events within the modeling framework, 
one can treat each missing date as a random variable, as usually done in the context of 
Bayesian statistics to deal with missing data. Specifically, following the aoristic approach, 
a uniform prior is assigned to each date, considering the information provided by the from 

ub|ub̃≠b ∼ N

( n∑

b̃≠b=1

wbb̃ub̃,
𝜎2
u

Nb

)
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date and to date variables available, that is, tevent
i

∼ U(t
from

i
− 0.5, tto

i
+ 0.5) . Then, in each 

iteration of the Markov Chain Monte Carlo (MCMC) process, a numeric date is sampled 
according to this distribution, which is rounded (to the nearest integer) to allow the com-
putation of DoW(i) and w(i), and hence the consideration of all the data available in the 
estimation of the fixed and random effects of the model. For known dates, since tto = tfrom , 
all the sampled values for tevent

i
 coincide with the exact (known) date. Moreover, note that 

subtracting and adding 0.5, respectively, to tfrom
i

 and tto
i

 is necessary to avoid reducing the 
weight of the extremes of the interval corresponding to each interval-censored event in 
the prior distribution. Specifically, if we do not subtract 0.5 to tfrom

i
 , we would only assign 

to tfrom
i

 the sampled values that lie in the ]tfrom
i

, t
from

i
+ 0.5[ interval, which has length 0.5, 

whereas we would assign to tfrom
i

+ 1 (or any other integer number within the interval, 
except for tto

i
 ) the sampled values that lie in the ]tfrom

i
+ 0.5, t

from

i
+ 1.5[ interval, which has 

length 1 (the same argument can be applied to justify that we need to add 0.5 to tto
i

).
Thus, by treating tevent

i
 as a random variable, no data is discarded for the analysis. In the 

remainder of the paper, this model is called the full model. In addition, we can also com-
pute the posterior distribution p(tevent

i
= t|D) for t ∈ {t

from

i
, t

from

i
+ 1, ..., tto

i
− 1, tto

i
} (where D 

stands for the dataset used to fit the model), to estimate the probability that a temporally-
uncertain event has occurred in each of the dates within the associated temporal interval 
delimited by the Police.

The logistic regression models described in previous lines have been coded in the NIM-
BLE system for Bayesian inference (de Valpine et al. 2017), based on MCMC procedures. 
The technical details regarding the MCMC process that was implemented for the different 
models fitted are provided in “Results” section. The R codes developed for fitting the mod-
els described in the paper are available in the repository https:// github. com/ albri zre/ Aoris 
ticLo gistic.

Model Criticism

In Bayesian analysis, model assessment and comparison are typically performed through 
some well-known goodness-of-fit measures such as the Deviance Information Criterion 
(DIC) introduced by Spiegelhalter et al. (2002), or the Watanabe–Akaike Information Cri-
terion (WAIC) proposed by Watanabe and Opper (2010). However, these metrics are only 
useful to compare models with the same likelihood function, so the complete cases model 
and the full model described above cannot be compared in terms of these metrics (the like-
lihood functions differ since each model is fitted to a different dataset).

Therefore, a different strategy is needed. One possibility is to perform model criticism 
through the analysis of the distribution of the point estimates of the �i’s, denoted by �̂�i
’s, each of which has been computed as the mean of the posterior distribution p(�i|D) . 
Specifically, we first compare the distribution of the �̂�i ’s across models and location types 
(case vs. control). This enables us to appreciate if each model can discriminate between 
cases and controls and if we can find any remarkable difference. Second, considering the 
full model, it is examined if the distributions of the �̂�i ’s corresponding to certain and tem-
porally-uncertain events differ.

In addition, it is also of interest to study the quality of the models as classification 
tools. For goodness-of-fit purposes, we can employ the in-sample predictive capability 
of a model. In this study, the F1 score and the Matthews correlation coefficient (MCC) 
have been chosen for evaluating the in-sample predictive quality of the models. Other 

https://github.com/albrizre/AoristicLogistic
https://github.com/albrizre/AoristicLogistic
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well-known metrics, such as accuracy, have been discarded for the analysis because they 
are unreliable for imbalanced datasets such as ours (because the proportion of controls is 
much higher than the proportion of cases). Indeed, they tend to provide an over-optimistic 
estimation of the classifier ability on the majority class (Chicco and Jurman 2020), which 
in our case corresponds to the class of controls. First, the F1 score is defined as follows:

where TP is the number of true positives (the model predicts a burglary and a burglary 
has actually occurred), FP is the number of false positives (the model predicts a burglary 
but no burglary has actually occurred), and FN the number of false negatives (the model 
does not predict a burglary but a burglary has actually occurred). The F1 score (Chinchor 
and Sundheim 1993) ranges from 0 (worst value) to 1 (best value, which indicates that the 
model classifies all the observations correctly).

On the other hand, the MCC (Matthews 1975) ranges from − 1 (worst value) to 1 (best 
value, which again indicates that the model classifies all the observations correctly) and is 
defined as follows:

where TP, FP, and FN represent the same as in the definition of the F1 score, and TN is 
the number of true negatives (the model does not predict a burglary and no burglary has 
occurred).

In order to label an observation as a positive or a negative, a cutoff probability, c ∈ [0, 1] , 
needs to be used as a threshold. Then, if �̂�i > c the observation is classified as a positive 
(we predict a burglary), whereas if �̂�i ≤ c , the observation is classified as a negative (we 
predict no burglary). If we were working with a balanced dataset (with the same number of 
cases as controls), c = 0.5 would be the natural choice. However, the datasets under analy-
sis are imbalanced in favor of controls (by construction, they present a 5:1 ratio of controls 
to cases). Hence, lower values of c are more suitable, otherwise, most of the observations 
will be classified as negatives and the classification would be far from optimal. For this rea-
son, an analysis of the F1 score and the MCC as a function of c is performed.

The formula for both the F1 score and the MCC provides a point estimate of the predic-
tive quality of the model. Following the approach proposed by Gilardi et al. (2022) for the 
analysis of the balanced accuracy of a model, we have also estimated the distribution of 
these two metrics. Specifically, the sampled values from the posterior distribution p(�i|D) 
can be used to simulate the F1 score and MCC values and therefore derive the distribution 
of the two, which allows a more complete comparison of the predictive ability of the mod-
els fitted.

Software

The R programming language (R Core Team 2021) has been used for the analysis. In par-
ticular, the R packages ggplot2 (Wickham 2016), lubridate (Grolemund and Wickham 
2011), nimble (de Valpine et  al. 2017), rgdal (Bivand et  al. 2019), rgeos (Bivand and 
Rundel 2020), spatstat (Baddeley et al. 2015), and spdep (Bivand et al. 2008) have been 
used.

F1 =
2TP

2TP + FP + FN

MCC =
TP ⋅ TN − FP ⋅ FN

√
(TP + FP) ⋅ (TP + FN) ⋅ (TN + FP) ⋅ (TN + FN)

,
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Results

A Simulation Study

Before proceeding to the analysis of the dataset of residential burglaries in Valencia, 
a simulation study is carried out to test the suitability of the proposed model under cer-
tain assumptions about the data. In addition, we compare the proposed model with other 
competing alternatives: the complete cases model (where temporally-uncertain events are 
discarded), the midpoint model (where each temporally-uncertain event is assigned to the 
midpoint date of its associated temporal window), and the random model (where each tem-
porally-uncertain event is assigned to a random date within its associated temporal win-
dow). The objective is then twofold: to study whether the full model is able to deal with 
this kind of temporal uncertainty and recover the true baseline risk, and to compare the 
results provided by this model against those yielded by the complete cases model, the mid-
point model, and the random model.

Simulation of Cases and Controls

In order to be able to simulate data that resemble the real burglary dataset from Valencia 
that has motivated the present study under varying levels of temporal uncertainty, we start 
by considering the set of controls that has also been used for the real data analysis and 
transform these records into a set of cases and controls through a data-generating process 
based on the logistic regression model. In particular, depending on the characteristics of 
record i (the values of the variables available for record i), we simulate a Bernoulli random 
variable, Yi , where the probability of generating a crime event, �i , obeys the following rule:

Therefore, according to the characteristics of record i, we simulate a Bernoulli random var-
iable with probability �i , which yields a 1 (case) with probability �i and a 0 (control) with 
probability 1 − �i . Specifically, we assume that the probability of simulating a case or con-
trol only depends on the day of the week associated with record i. We need to specify some 
values for the �DoW parameters in order to be able to simulate the data. If �1 represents the 
effect for Mondays, �2 for Tuesdays, and so on, we consider the following choice of values 
for the �DoW’s: {�1, �2, �3, �4, �5, �6, �7} = {1, 1, 1, 1, 2, 2, 2} . This implies assigning twice 
as much weight to Fridays, Saturdays, and Sundays in the specification of the data-generat-
ing process that gives rise to cases and controls. In particular, under this choice, the proba-
bility that a record whose associated day of the week is between Monday and Thursday 
yields a crime event is exp(−3+1)

1+exp(−3+1)
≈ 0.12 , whereas the same probability for a record whose 

associated day of the week is between Friday and Sunday is exp(−3+2)

1+exp(−3+2)
≈ 0.27 (we apply 

the inverse logit transformation to get these values). We note as well that because of how 
the cases and controls are generated, the spatio-temporal intensity of the cases is constant, 
that is, for the simulated datasets, crime risk does not depend on the temporal and/or spa-
tial location within the study window, but only on the day within the week, according to 
(2).

(2)
Yi ∼ Ber(�i)

logit(�i) = −3 + �DoW(i)
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Addition of the Temporal Uncertainty

Then, the temporal uncertainty is introduced for a proportion of the generated cases fol-
lowing different mechanisms that allow us to reflect that the presence of interval-censored 
observations may depend on certain factors and that it might be of varying magnitude. Spe-
cifically, we simulate five datasets of increasing levels of temporal uncertainty in which the 
probability that a case presents temporal uncertainty also depends on the day of the week. 
Hence, if pDoW denotes the probability that an event that actually occurs on day DoW of the 
week presents some temporal uncertainty ( p1 corresponds to such probability for Mondays, 
p2 for Tuesdays, and so on), we assume five different scenarios for the pDoW’s, which are 
summarized in Table 1. As stated above, from scenarios 0 to 4 we assume increasing levels 
of temporal uncertainty for the simulated cases. In particular, in scenario 0, we assume that 
there is no temporal uncertainty, so this scenario simply allows us to check that the data 
have been simulated correctly. In contrast, in scenario 1 we assume that there exists the 
same level of temporal uncertainty for all days within the week, whereas in scenarios 2, 3, 
and 4 we assume that the probability that an event presents temporal uncertainty is greater 
if the event has actually occurred from Friday to Sunday. We note that in scenarios 2 to 4 
we assume conditions of increasing complexity in terms of the variability of the pDoW ’s 
within the week, but also in terms of the average probability that a case presents temporal 
uncertainty.

Thus, in a second step, we implement the following procedure to generate the tempo-
rally-uncertain events and the temporal windows associated with these events:

• Given a case, i, of the simulated dataset, we sample from a Bernoulli random variable 
with probability pDoW(i) . If the simulated value is 0, no temporal uncertainty is intro-
duced for the corresponding case. If the simulated value is 1, we continue as follows.

• Assuming that the simulated value in the previous step is 1, the level of temporal uncer-
tainty in days for case i is obtained by sampling from an Exponential distribution of 
rate � = 0.2 , and by adding 1 to this sampled value (to ensure that the temporal uncer-
tainty is at least of 1 day, otherwise there would be no uncertainty). Specifically, if �i 
denotes the value simulated from the Exp(� = 0.2) distribution for case i rounded to the 
nearest integer, we consider that the width of the associated time window is 2(�i + 1).

• Finally, if ti represents the actual temporal location for case i, we compute tfrom
i

= ti − �i 
and tto

i
= ti + (2(�i + 1) − �i) , where �i is an integer number sampled from the set 

{0, ..., 2(�i + 1)}.

Thus, by following this procedure, we create a temporal window of width 2(�i + 1) around 
ti which is not necessarily symmetrical with respect to ti , as it happens with the real data. 

Table 1  Summary of the 
pDoW values (which denote 
the probability that an event 
that actually occurs on the day 
DoW of the week presents some 
temporal uncertainty) chosen for 
scenarios 0 to 4

Scenario p
1

p
2

p
3

p
4

p
5

p
6

p
7

0 0 0 0 0 0 0 0
1 0.4 0.4 0.4 0.4 0.4 0.4 0.4
2 0.3 0.3 0.3 0.3 0.5 0.5 0.5
3 0.2 0.2 0.2 0.2 0.6 0.6 0.6
4 0.4 0.4 0.4 0.4 0.8 0.8 0.8



 Journal of Quantitative Criminology

1 3

We also note that since the expected value of an Exp(�) distribution is 1
�
 , the average width 

(in days) of our simulated time windows is 1

0.2
+ 1 = 6.

Model Comparison

We fit the proposed full model, the complete cases model, the midpoint model, and the ran-
dom model to the five simulated datasets constructed as previously described. Specifically, 
for each of the models and datasets, the MCMC procedure consisted of 2 chains of length 
40,000, with a burn-in period of length 20,000, which resulted in 2000 sampled values per 
chain after applying a thinning of 10 (which means keeping every 10th value of the chain).

The comparison focuses on studying to what extent these models are able to recover 
the true values of the �DoW parameters used for the data-generating process. Hence, in all 
cases, we specify the logistic model as in (1), considering Mondays as the reference value 
for the days of the week. Therefore, since {�1, �2, �3, �4, �5, �6, �7} = {1, 1, 1, 1, 2, 2, 2} has 
been chosen for the data-generating process, we would expect the estimates of �DoW to be 
around 0 for Tuesday, Wednesday, and Thursday, and around 1 for Friday, Saturday, and 
Sunday. Figure 2 shows the day of the week effects estimated with the four models under 
comparison, considering the simulated datasets associated with scenarios 0 to 4. First, we 
notice that all models perform well under scenario 0 (the point estimates are very close to 
�DoW = 0 and �DoW = 1 , depending on the day of the week), as expected since the simu-
lated dataset corresponding to this scenario presents no temporal uncertainty. Then, from 
scenarios 1 to 4, we observe that the estimates of �DoW for Friday, Saturday, and Sunday 

Scenario 0 Scenario 1 Scenario 2 Scenario 3 Scenario 4
Tu

es
da

y
W

ed
ne

sd
ay

Th
ur

sd
ay

Fr
id

ay
Sa

tu
rd

ay
Su

nd
ay

Tu
es

da
y

W
ed

ne
sd

ay
Th

ur
sd

ay
Fr

id
ay

Sa
tu

rd
ay

Su
nd

ay
Tu

es
da

y
W

ed
ne

sd
ay

Th
ur

sd
ay

Fr
id

ay
Sa

tu
rd

ay
Su

nd
ay

Tu
es

da
y

W
ed

ne
sd

ay
Th

ur
sd

ay
Fr

id
ay

Sa
tu

rd
ay

Su
nd

ay
Tu

es
da

y
W

ed
ne

sd
ay

Th
ur

sd
ay

Fr
id

ay
Sa

tu
rd

ay
Su

nd
ay

−0.5

0.0

0.5

1.0

β D
o
W

Model Complete cases Full Midpoint Random

Simulation study
Day of the week effects

Fig. 2  Day of the week effect estimates yielded by the complete cases model, the full model, and the mid-
point model under the different scenarios studied. The dashed red lines located at �DoW = 0 and �DoW = 1 
correspond to the true underlying parameter values that should be recovered by the model ( �DoW = 0 for 
Monday, Tuesday, Wednesday, and Thursday; �DoW = 1 for Friday, Saturday, and Sunday)
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progressively decrease for the four competing models, even though some differences across 
models arise. In general, the proposed full model is the one that provides the estimates of 
�DoW for these days that stay closer to the true value �DoW = 1 . In addition to this, the com-
plete cases model performs better than the midpoint model and the random model in sce-
narios 2 and 3. In contrast, under scenario 4, which represents the most extreme one among 
the scenarios studied, the complete cases model provides worse estimates than these two 
imputation-based models. We also note that even though the estimates yielded by the full 
model become lower under a higher level of temporal uncertainty, the credible intervals 
obtained for Friday, Saturday, and Sunday do not contain 0 even for scenario 4, which 
would allow us to infer a positive association with a greater probability of a crime event 
for these days of the week. The midpoint model and the random model, however, present 
credible intervals under scenario 4 that contain 0, which might lead us to the erroneous 
conclusion that these days are unrelated to crime risk. Regarding the width of the credible 
intervals obtained, we can appreciate that having a greater proportion of interval-censored 
observations causes the credible intervals to widen slightly in the case of the full model. At 
the same time, the complete cases model tends to present a wider credible interval, which 
is a consequence of the fact that it discards a large portion of the available data, whereas 
the midpoint model and midpoint model usually yield a narrower credible interval. This is 
also something that we expected because these methods do not discard any of the observa-
tions and also because the imputation procedure eliminates the uncertainty surrounding the 
interval-censored observations, with the disadvantage of introducing a greater level of bias 
in the estimation.

In conclusion, the results obtained from this simulation study enable us to conclude that 
the full model performs better than other competing models for dealing with interval-cen-
sored crime events, while the complete cases model could outperform some imputation-
based models under moderate levels of temporal uncertainty. Despite this, the estimates 
provided by the full model under the presence of very high levels of temporal uncertainty 
are less reliable and might be biased. Anyhow, it is also worth noting that the simulation 

Table 2  Parameter estimates (Est.) yielded by the two models considered, along with the upper (Up.) and 
lower (Lo.) bound of the 95% credible intervals associated with each parameter

Each � parameter corresponds to the precision of the corresponding random effect, being defined as the 
inverse of its variance. For instance, �� = 1∕�2

�
 is the precision of the temporally-structured randomeffect

Complete cases model Full model

Parameter Est. Lo. Up. Parameter Est. Lo. Up.

� − 2.18 − 2.33 − 2.02 � − 1.74 − 1.88 − 1.60
�Tuesday − 0.04 − 0.25 0.15 �Tuesday − 0.16 − 0.35 0.03
�Wednesday 0.13 − 0.06 0.31 �Wednesday − 0.00 − 0.17 0.17
�Thursday − 0.03 − 0.24 0.16 �Thursday − 0.09 − 0.27 0.09
�Friday 0.01 − 0.19 0.21 �Friday 0.15 − 0.02 0.33
�Saturday − 0.07 − 0.27 0.14 �Saturday 0.17 − 0.01 0.35
�Sunday − 0.29 − 0.51 − 0.08 �Sunday − 0.04 − 0.23 0.14
�� 1365.67 383.35 3021.07 �� 375.73 127.99 909.31
�� 28.06 12.07 69.79 �� 54.19 16.50 222.21
�u 2.45 1.24 4.78 �u 2.11 1.16 3.55
�v 71.92 8.50 372.65 �v 185.21 14.55 1231.34
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study carried out is far from exhaustive. Adapting the simulation study to the characteris-
tics of a dataset of our interest, as we have done here, seems an advisable strategy.

Analysis of the Valencia Burglary Dataset

Complete Cases Analysis Versus Full Analysis

A major objective of the article is to compare the results derived from using the complete 
cases model (discarding temporally-uncertain events) and the full model, considering the 
burglary dataset recorded in Valencia during the years 2016 and 2017. Specifically, the 
goal is to check whether the complete cases model gives rise to biased estimates of the 
parameters and whether the full model can capture the real temporal distribution of the 
events. We will also compare the results provided by the full model with some exploratory 
data analyses based on the aoristic approach. As in the case of the models employed for 
conducting the simulation study, the MCMC procedure for the two models consisted of 2 
chains of length 40,000, with a burn-in period of length 20,000, and a thinning of 10. The 
convergence analysis was performed through the visual inspection of the density plots and 
the trace plots associated with the parameters of the model. The Supplementary Material 
of the paper contains these plots for the main parameters of the models (Supplementary 
Figures 1–4).

Thus, Table 2 summarizes the results in terms of the point and interval estimates of the 
parameters involved in the two models, allowing direct comparison. First, we note that the 
estimate of � is smaller for the complete cases model. This is a consequence of the fact 
that the dataset considered for fitting this model has a smaller proportion of cases than the 
one used for the full model, which makes the estimate of the baseline probability of event 
occurrence also lower. In any case, the � parameter has no major relevance in terms of 
interpretation.

It is of greater interest to analyze the effects of the days of the week, as represented 
by the �DoW parameters (which represent the variation in risk in comparison to Mondays, 
the reference level). In this case, the differences are notable and of great relevance from a 
practical point of view. As shown in Fig. 3, according to the complete cases model, crime 
risk is notably lower on Sundays, whereas the highest estimate of crime risk corresponds 
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Fig. 3  Day of the week effect estimates yielded by the complete cases model (a) and the full model (b). 
The dashed red line is located at the value �DoW = 0 , which represents the absence of an effect (Color figure 
online)
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to Wednesdays. In contrast, the full model yields Fridays and Saturdays as the two days 
with high burglary risk (even though the lower bound of the 95% credible interval asso-
ciated with �Friday is slightly below 0), while Sundays do not display low burglary risk. 
Therefore, the results differ markedly depending on the model considered. In fact, the 
differences between models can be understood if an aoristic analysis of the distribution 
of residential burglaries by day of the week is performed, as shown in Fig.  4. It can be 
observed how the fact of considering temporally-uncertain events in the analysis causes the 
proportion of crime to reach the highest values on the weekend, especially on Saturdays. In 
other words, this suggests that there is a higher proportion of temporally-uncertain events 
that cover (partially or totally) the weekend, possibly because on these days of the week 
part of the population stays in a second residence, or simply because of the changes in 
daily routines during the weekend, which could facilitate the action of burglars in certain 
time slots. This type of plausible assumption could be studied by considering an hour-level 
analysis, although it could also complicate the model estimation. In any case, the complete 
cases model entirely misses this type of information, which is recovered by the full model, 
despite the presence of interval-censored data. In the Supplementary Material of the paper 
(Supplementary Figures 5–6) we also provide a correlation analysis of the MCMC samples 
associated with the posterior distributions of the �DoW parameters. In general, we find mod-
erate positive associations, which suggests that the day of the week effects are correlated 
between them and hence that considering a multivariate prior distribution for these effects 
could be beneficial for increasing the convergence speed of the MCMC process.

Once the only fixed effect of the model (day of the week) has been analyzed, the esti-
mates of the temporal and spatial random effects given by both models are compared. 
First, Fig. 5 shows the estimates of the temporally-structured random effect, �w . Although 
the overall behavior of the temporal trend captured by this effect is similar for both mod-
els, certain differences arise. For instance, the complete cases model determines a peak 
in burglary risk at the beginning of the study period, which is not determined by the full 
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model. Besides, the full model detects a double peak in crime risk around weeks 70 to 90, 
whereas the complete cases model locates a single peak within that period. Finally, the 
peak detected around week 30 by both models is notably higher in the estimation provided 
by the full model. Indeed, the full model can detect more variability at the week level than 
the complete cases model. This can be guessed from Fig.  5, but also by comparing the 
estimates of the precision of the random effect �w . As shown in Table 2, the estimate of �� 
is notably smaller in the case of the full model, which confirms that the random effect �w 
captures more variability in the latter model, since �� = 1∕�2

�
.

The aoristic analysis of the distribution of residential burglaries by week allows us to 
verify, once again, that the full model adequately captures the temporal distribution of bur-
glaries. Thus, as shown in Fig. 6, the presence of temporally-uncertain events is notably 
higher in the summer months (July and August), when most residents enjoy holiday peri-
ods, increasing the likelihood that homes will be empty for days or even weeks. Besides, 
the aoristic analysis also reveals a peak in burglary counts during May 2017, which can 
be assumed to be the consequence of a separate process from the one corresponding to 
the summer peak. This peak in May 2017 is the only one detected by the complete cases 
model, since the proportion of temporally-uncertain events is quite low during this period, 
as shown in Fig.  6. Paradoxically, the complete cases model indicates that the summer 
period of 2017 is a low-risk period, but this is only the consequence of data underrepresen-
tation because of the presence of many temporally-uncertain events within these summer 
months.

Finally, Fig. 7 enables us to compare the spatial random effects estimates resulting from 
both models. In this case, the differences are slight, being more noticeable in some neigh-
bors located around the city center. In other words, these results suggest that the presence 
of temporally-uncertain events does not follow a markedly spatial pattern for the dataset 
analyzed. Indeed, as shown in Fig. 8a, the scatter plot of the spatial effect estimates yielded 
by the two models indicates that these are highly correlated (the value of the Pearson corre-
lation coefficient is 0.93 in this case). Nevertheless, as shown in Fig. 8b, accounting for the 
existence of interval-censored observations makes that the spatial effect estimates corre-
sponding to certain boroughs vary considerably in terms of their position within the set of 
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estimates. This has potential implications in practice if one is interested in prioritizing the 
establishment of preventive measures in the boroughs that present the greatest estimates.

Event Time Imputation

The main advantage of the proposed full model is that it allows the inclusion of temporally-
uncertain events in the analysis, following the aoristic approach. In this way, it avoids reduc-
ing the sample size (as occurs in the complete cases model) and prevents the potential error 
involved in imputing the time of the event. In addition, another advantage of the model is that 
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it makes it possible to perform the imputation of event times, based on the posterior probabil-
ity of each time unit (in our case, days) contained in the intervals that delimit the uncertainty 
existing for each event. Hence, Fig. 9 shows the values of p(tevent

i
= t|D) corresponding to a 

set of temporally-uncertain burglaries that occurred from 6 January 2016 to 28 January 2016. 
In each case, t varies from tfrom

i
 to tto

i
 , therefore some probability of occurrence is assigned 

to each time unit contained in the interval. The values of p(tevent
i

= t|D) are based on all the 
information contained in the model, in terms of the fixed and random effects considered. In 
particular, the temporal uncertainty is connected to the day of the week effect and to the tem-
poral random effect (the spatial random effect, on the other hand, is not influenced by the 
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temporal uncertainty). The values of p(tevent
i

= t|D) tend to be higher for the days of the week 
associated with higher risk, which are Friday and Saturday. This is clearly illustrated by some 
of the events shown in Fig. 9, which exhibit a temporal uncertainty of 2, 3, or 4 days, includ-
ing all or part of a weekend in the uncertainty window. For other events for which there is 
more uncertainty (the time window is wider), this effect is not as clear.

Therefore, the modeling approach described could be used as an imputation technique too, 
by simply considering the value argmaxt p(t

event
i

= t|D) . It would be necessary to have a data-
set in which the events have temporal uncertainty according to Police records and, at the same 
time, the exact temporal location of these events through an external source of information, to 
assess the quality of this imputation method.

Model Assessment

The first step to assess the quality of the models has been analyzing the distribution of the 
�̂�i’s, which are computed as the mean of the posterior distribution p(�i|D) . We recall that 
�i represents the probability that observation i is a burglary according to the spatio-temporal 
characteristics of this observation and the estimated parameters of the model. Thus, Fig. 10 
shows the distribution of the �̂�i ’s for both cases and controls, considering the complete cases 
(Fig. 10a) and the full model (Fig. 10b). It can be observed that both models can distinguish 
between cases and controls adequately. Indeed, while it is true that the two distributions over-
lap substantially, the average posterior probability of being a case is considerably greater 
among the cases rather than among the controls. At the same time, we note that the high level 
of overlap observed suggests that the ability of the model to classify observations into cases 
and controls is far from optimal, which suggests that including additional covariate or random 
effects would be convenient. Anyhow, predicting the occurrence or not of a crime event within 
a small spatio-temporal location is a really challenging task, so these results are not surprising. 
It can be also appreciated that the distribution of the �̂�i ’s covers larger values (for both cases 
and controls) in the case of the full model as a consequence of the greater proportion of cases 
in this model. This is something that has already been discussed when comparing the � param-
eters of the models and will be of importance again when evaluating the classification ability 
of the models, as will be shown later.

Furthermore, Fig.  11 compares the distribution of the �̂�i ’s estimated through the full 
model for temporally-uncertain and certain (at the date level) events. The distribution of 
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the �̂�i ’s corresponding to temporally-uncertain events presents a better behavior, in the 
sense that this distribution is more displaced towards larger estimates of �i . This analy-
sis allows us to verify that the temporally-uncertain observations have been adequately 
included in the model since they do not perform worse from the perspective of model fit 
than those that are not (in fact, they seem to perform better).

Regarding the classification ability of the model, Fig. 12 shows the distribution of the 
MCC, derived from the sampled values of the posterior distribution p(�i|D) . The cutoff 
probability, c, is varied from 0.05 to 0.35, in steps of size 0.05. Higher values of c are dis-
carded because the number of positive predictions becomes too low. This is a consequence 
of the fact that the dataset is imbalanced with few case observations (in comparison to the 
number of control observations), which causes model predictions to be less than 0.5. This 
is not an issue, we simply have to consider values of c lower than 0.5 (which would be the 
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events for the full model
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Fig. 12  Distribution of the MCC derived from the sampled values of the posterior distribution p(�i|D) , 
considering the complete cases model (a) and the full model (b). Several values of the cutoff probability, c, 
are tested and compared
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common threshold for a balanced dataset). Figure 12 provides us with two conclusions of 
interest. First, the optimal values of c are 0.15 and 0.20 for the complete cases and the full 
model, respectively (testing a finer partition of c values would allow us to more accurately 
approximate the optimal value of c in each case). The fact that the optimal value of c is 
larger in the case of the full model is something that we might already expect since the pro-
portion of cases is larger for the full dataset (this has been already discussed given the esti-
mates of the � parameter for each of the models). Second, and more importantly, Fig. 12 
enables us to appreciate that MCC values tend to be higher in the case of the full model. 
Specifically, considering the optimal c values, the MCC ranges from 0.114 to 0.141 (with 
95% credibility) in the case of the complete cases model (for c = 0.15 ), whereas it ranges 
from 0.147 to 0.168 (with 95% credibility) in the case of the full model (for c = 0.20 ). For 

these choices of c, the resulting confusion matrices are 
(

TP FP

FN TN

)
=

(
525 1910

1074 11141

)
 

and 
(

TP FP

FN TN

)
=

(
1189 3149

1435 9902

)
 for the complete cases and the full model, respec-

tively. Similarly, the full model also performs better in terms of the F1 score, as shown in 
Fig. 13. Specifically, the values of the F1 score are optimal for c = 0.15 , regardless of the 
model chosen. In the case of the complete cases model, the F1 score ranges from 0.228 to 
0.255 (with 95% credibility), while it ranges from 0.328 to 0.339 (with 95% credibility) in 
the case of the full model.

Discussion and Conclusions

In this paper, a logistic regression model has been proposed for the analysis of crime data 
in the presence of temporally-uncertain observations, which are abundant for certain types 
of crimes. The aoristic method, which allows exploratory analysis of the data in this con-
text, has been taken into account to incorporate such temporal uncertainty into the model. 
This is a natural approach considering the Bayesian treatment of missing data. The model 
implemented has allowed us to see how discarding temporally-uncertain observations in 
the analysis can lead to erroneous conclusions. Although this kind of modeling approach 
for dealing with interval-censored event observations has already been proposed in the 
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Fig. 13  Distribution of the F1 score derived from the sampled values of the posterior distribution p(�i|D) , 
considering the complete cases model (a) and the full model (b). Several values of the cutoff probability, c, 
are tested and compared
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literature (Reich and Porter 2015), this article has the novelty, to the best of the author’s 
knowledge, of following the aoristic approach in a modeling context, while performing a 
complete comparison of the model proposed with the complete cases counterpart, which 
would be a typical choice.

There is still room for improvement in the model proposed. Indeed, the model could be 
enhanced by adding covariate information and interaction terms. For instance, a spatio-
temporal interaction random effect or the interaction between the day of the week and the 
week within the year could be considered. The addition of such terms might lead to a more 
informative model, so the imputation of event times based on the posterior distribution 
of tevent

i
 could be more realistic. As a drawback, increasing the complexity of the model 

by the inclusion of these terms could complicate model estimation, especially if the size 
of the available crime dataset is not very large. In addition, instead of using the logistic 
regression model, we could adapt the ideas presented in this paper for dealing with the 
temporal uncertainty of the events to other modeling frameworks, such as point process 
models (Mohler et al. 2011; Shirota and Gelfand 2017). This kind of model would allow us 
to provide more accurate estimates of the risk of crime over space, or to account for tem-
poral self-exciting effects, which are typically observed in crime data. In addition to this, 
point process models could also allow us to recompute area-level time-varying crime risk 
estimates by accounting for the existence of interval-censored observations. Essentially, we 
could employ an approach similar to the one proposed in the paper, in which the temporal 
uncertainty around each interval-censored observation would be modeled, and then area-
level crime risk estimates would be obtained by averaging the estimates of the spatio-tem-
poral intensity of the process on a regular grid that covers the study window.

Another important aspect is that when discussing the results provided by the complete 
cases and the full model, it has been implicitly assumed that the aoristic analysis of the 
data gives a true picture of the temporal distribution of the data. However, as pointed out 
by Mulder (2019), the aoristic analysis might tend to overdisperse the temporal distribution 
of the events. Thus, by assigning the same weight to each temporal unit within the obser-
vation window, we might be assuming too much uncertainty (variability), even though it 
results in a natural approach if we have no prior knowledge about the true temporal loca-
tion of the event. The proposed model allows the inclusion of prior information about the 
events, in the standard way used in Bayesian inference. For instance, a specific prior dis-
tribution could be assigned to those events for which there might be some intuition (by the 
Police or the property owners themselves) about their actual temporal location, or some 
non-uniform distribution that might be closer to reality could be tested. In fact, future stud-
ies could make use of a truncated Normal distribution with the mean located at the mid-
point location, or even at a location closer to the start (or end) of the interval. This could 
reveal, in some cases, whether events tend to cluster temporally in the initial part of the 
time window, which could be explained in case the burglars have been watching the owners 
and took advantage of their departure from the home.

Finally, to better assess the potential of the full model for predicting the true temporal 
location of the temporally-uncertain events, a dataset including both the interval-censored 
temporal locations recorded by the Police (according to the information provided by the 
owners or other residents) and the actual (exact) temporal locations derived from other 
sources would be required. For instance, in the case study conducted by Ashby and Bowers 
(2013), closed-circuit television camera images were used to determine the exact temporal 
locations of the events under study. Unfortunately, this kind of dataset is really scarce.
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