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Abstract
Objectives  To explore the extent to which unsafe locations are concentrated to micro-
places within the city of Malmö, Sweden, and whether there is a temporal stability in these 
micro-places over time.
Methods  Information on unsafe locations is obtained from an open-ended item across 
three waves of a random sample community survey. Reported unsafe locations are geo-
coded as polygon, polyline, and point features and merged with a 200 by 200-m grid-cell 
network using both unadjusted and weighted counts.
Results  The results suggest that unsafe locations are concentrated to a small share of grid-
cells using different metrics. There are also signs of spatial clustering and a temporal sta-
bility of unsafe locations over time.
Conclusions  As unsafe locations are concentrated to a small share of micro-places the 
results have important implications for both theory and practice. However, further research 
exploring unsafety and fear of crime at micro-places is highly warranted.

Keywords  Law of crime concentration · Unsafe locations · Fear of crime · Micro-place · 
Hot spot

Introduction

As stated by Farrell (2015: 233), “[c]rime has a tendency to concentrate in time, space and 
other dimensions along which it occurs.” This proposition is supported by a great deal of 
research showing that a fraction of the population is responsible for a majority of crime 
(e.g. Falk et al. 2014), a small proportion of victims are repeatedly victimized (e.g. Lau-
ritsen & Quinet 1995), and a small number of facilities suffer a disproportionate amount 
of reported crime (e.g. Bowers 2014). Having been shown to apply to offenders, victims, 
and facilities, this Pareto principle has also been proposed to apply to places. In a widely 
cited paper, Sherman and colleagues (1989) showed that crime incidents are not randomly 
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distributed in space but are rather highly concentrated to micro-places, which they opera-
tionalized as addresses and street intersections. Similarly, Spelman and Eck (1989) argued 
that crime is in fact more concentrated to places than it is to offenders and victims. Drawing 
on these findings, Wilcox and Eck (2011) presented “the iron law of troublesome places”, 
suggesting that most places suffer no crime, some suffer modest amounts of crime, but that 
most crime is accounted for by a very small number of places. In the same vein, Weisburd 
(2015) introduced the “law of crime concentration”, which states that the majority of crime 
should be concentrated to a small proportion of micro-places1 within a city. More specifi-
cally, the law of crime concentration suggests that about a quarter of all reported crime in 
major cities should occur at between 0.8 and 1.6 percent of micro-places, while half of all 
crime should occur at between 4.2 and 6.0 percent of places.

A growing body of research continues to provide empirical support for this posited law 
of crime concentration (for an overview see Lee et  al. 2017), with supportive evidence 
now available from numerous cities across most continents, including North America (e.g. 
Weisburd 2015; Andresen et al. 2017), South America (e.g. Chainey et al. 2019), Europe 
(e.g. Favarin 2018; Stanković, 2021), Asia (e.g. Mazeika & Kumar 2017; Amemiya & 
Ohyama 2019), and Africa (e.g. Breetzke & Edelstein 2019; Umar et  al. 2021). Besides 
showing that crime is concentrated to a small proportion of micro-places, the existing 
knowledge base has also demonstrated that the concentration is even more marked when 
smaller units of analysis are employed as compared to larger units (e.g. Steenbeek & Weis-
burd 2016; Schnell et al. 2017), and that there is a temporal stability in the concentration of 
crime to micro-places over time (e.g. Weisburd et al. 2004; Wheeler et al. 2016). With few 
exceptions, the majority of criminological research has to date focused on the concentra-
tion of crime events. However, a few studies have also focused on other, arguably impor-
tant, criminologically relevant outcomes. These include, for instance, the spatial concentra-
tion of mental health calls for police service (Koziarski 2021), fatalities following opioid 
overdoses (Carter et al. 2019), and incidents of the police use of force (Sorg et al. 2021). 
However, one outcome that has received less attention in this line of research, despite being 
a recurrent topic in the field of environmental criminology, is the spatial dimension of the 
fear of crime.2

While it may seem obvious that fear of crime is dependent on the individual experienc-
ing it—which justifies the prominent focus on inter-individual differences found in much 
previous fear of crime research (for a review see Hale 1996 and Collins 2016)—the mere 
fact that fear of crime varies with geography (e.g. nationally, regionally, locally) suggests 
that spatial or environmental factors may be of significance for the explanation of fear 
of crime (see Pain 2000; Lorenc et  al. 2012). Although a number of high-quality multi-
level studies have provided important knowledge on neighborhood mechanisms and the 
(mediating) role of neighborhood structural characteristics, collective efficacy, and disor-
der on individual-level dimensions of fear of crime (e.g. Brunton-Smith and Sturgis 2011; 
Brunton-Smith et al. 2014; see also Markowitz et al. 2001), it has been stressed that “(…) 
the macro-level perspective misses the impact of site-specific, situational, or proximate 

1  While micro-places have been defined differently, Weisburd (2015: 142) draws on both theoretical and 
practical considerations to advocate an operationalization based on street segments, “(…) including both 
block faces between two intersections”.
2  Fear of crime is here used as an umbrella term covering multiple dimensions, including unsafety. How-
ever, there is considerable debate regarding the conceptualization of fear of crime, and its many dimensions 
(see inter alia Ferraro and LaGrange 1987; Hale 1996; Jackson 2005; Farrall et al. 2009; Gray et al. 2011).
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features” in the explanation of fear of crime (Nasar & Fisher 1993: 189). As such, there has 
been a growing interest in examining fear of crime as a context-specific phenomenon, and 
in terms of transitory mental states that are experienced as events during individuals’ eve-
ryday lives (Gabriel and Greve 2003; Solymosi et al. 2015). Here, emphasis is placed on 
the immediate environmental settings and on how exogenous factors influence individual 
experiences of fear of crime (e.g. Engström and Kronkvist 2021). More specifically, places 
are not in themselves fear inducing (see Pain 1997: 233), but serve as settings comprised 
of external triggers that may in turn activate individual experiences of fear of crime. Such 
exogeneous triggers might, for example, be places characterized by the presence of fewer 
people, poor lighting and disorder/incivilities (Lorenc et al. 2013; see also Jansson et al. 
2013; Sreetheran and van den Bosch 2014), or they may simply be dark or unfamiliar areas 
(see Brantingham and Brantingham 1995).

While fear of crime has been extensively researched within criminology, it has also 
received a lot of attention in the field of (human) geography. Here, a number of studies 
have examined the spatial dimensions of fear of crime using mental mapping techniques 
and sketch maps (see Doran and Burgess 2012; Curtis 2012). These methods allow 
researchers to gather detailed geographical information on the spatial dimension of fear 
of crime, for instance by asking respondents to mark locations that they avoid due to fear 
or unsafety on a map. These maps may subsequently be analyzed using geographic infor-
mation systems that allow for the detailed study of the geographical dimension of fear of 
crime. Using such an approach, Doran and Lees (2005) demonstrated a spatial clustering of 
places within a central business district that respondents working in the area avoided due to 
fear of personal victimization. Using an online mapping tool, Jakobi and Pȍdör (2020: 6) 
gathered sketch maps that included almost four thousand polygons representing both safe 
and unsafe areas, with results showing “(…) significant spatial patterns with clearly identi-
fiable hotspots of unsafe and safe areas”. Using similar methods, a number of other studies 
have also been able to identify “hot spots” of fear and (un)safety (Curtis et al. 2014; Jakobi 
and Pȍdör 2020; Kohm 2009; Ogneva-Himmelberger et al. 2019; Pánek et al. 2019).

While these studies provide support for a spatial clustering of areas and locations that 
are perceived as unsafe by respondents, a number of limitations are worth highlighting. 
First, with few exceptions (e.g. Kohm 2009), most previous studies have not been based 
on random samples of respondents, which thus limits the external validity and generaliz-
ability of the findings. Second, these studies have generally not had an explicit focus on 
the concentration of unsafe locations, but have rather examined other research questions, 
for instance the spatial relationship between fear of crime, perceived safety, and reported 
crime rates (e.g. Ogneva-Himmelberger et al. 2019; Pánek et al. 2019). Consequently, less 
focus has been directed at the detailed examination of the extent to which fear of crime and 
perceived unsafety are concentrated to micro-places. Third and last, most previous studies 
have used cross-sectional research designs that do not allow for an examination of the con-
centration of unsafe locations over time. Given these limitations, the current study will be 
able to supplement the current state of knowledge by providing important insights into the 
concentration of unsafe locations.

Aim and Research Questions

The main aim of the current study is to examine the concentration of unsafe locations to 
micro-places within the city of Malmö, Sweden. This aim is concretized in two research 
questions:
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1.	 To what extent are unsafe locations concentrated to micro-places?
2.	 To what extent is there temporal stability in unsafe locations over time?

These research questions are examined using a dataset on perceived unsafe locations 
that has been geocoded from open-ended answers reported by a random sample of respond-
ents in three waves of a city-wide community survey.

The current study has two important implications. First, if unsafe locations are concen-
trated to a small proportion of micro-places, this has important theoretical implications 
since it would suggest that there is at least some intersubjectivity regarding why certain 
places are considered unsafe. This would also imply that there are some potential elements 
of the social, physical, or built environment that increase the probability that individuals 
will perceive a given location as unsafe. Secondly, if unsafe locations are concentrated to a 
small proportion of micro-places, this knowledge may be important for policy makers and 
practitioners as it may provide an insight into where resources should be directed in order 
to potentially decrease the number of unsafe locations. Moreover, if the concentration of 
unsafe locations is also stable over time, this could provide an even more powerful indica-
tion of where resources should be directed in order to increase perceptions of safety.

Data and Methods

Data on Unsafe Locations

Data on unsafe locations has been gathered from three waves of the Malmö Community 
Survey (MCS) conducted in 2012, 2015 and 2018. The MCS is a collaboration between the 
Malmö city offices, the local police agency, and the department of criminology at Malmö 
University, and could be seen as a local version of the Swedish Crime Survey (see Viberg 
2021). The MCS has an explicit focus on public safety by asking inhabitants about percep-
tions and experiences of crime, fear of crime and safety in relation to their own residential 
neighborhoods (for details see Ivert et  al. 2013). Each wave of the MCS is based on a 
stratified random sample of respondents aged 18 to 85 who reside in a neighborhood with 
at least 100 residents. Of the original 136 neighborhoods in Malmö—which together had 
between approximately 240,000 and 260,000 inhabitants aged 18 to 85 over the course of 
the years examined—residents from between 104 and 107 neighborhoods were included in 
each wave.3 About three and four percent of the population (i.e. 7733 to 9713 individuals) 
were sampled for each wave, although only about half of the sample returned the survey 
in the first wave and about 40 percent in the latter two. Compared to the population, the 
final sample contains an overrepresentation of women and of slightly older individuals (see 
Table 1).

The survey item of interest in this study is an open-ended question which participants 
have answered in their own words (hereafter referred to as Q18): “Is there any particular 
place in your neighborhood that you experience as uncomfortable or unsafe to visit/pass 
through? Please state which place you are referring to as carefully/close as possible.”4 

3  Three additional neighborhoods have been included over time as their populations have increased from 
below to above one hundred.
4  Despite the wording of Q18 includes both uncomfortable and unsafe, the outcome of this item will 
throughout this paper be referred to as simply unsafe locations. There is no reason to believe that reported 
locations would differ significantly if “uncomfortable” were to be excluded from the wording.
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Q18 is located as the final item in a battery of approximately fifteen questions relating to 
different dimensions of fear of crime (e.g., worry of criminal victimization, risk percep-
tions, feelings of safety, avoidance behaviors). Since the survey is by and large concerned 
with respondents’ perceptions of their residential neighborhood, they are throughout the 
survey instructed to think of “their neighborhood” as the area within a short walking dis-
tance (a couple of minutes) from their home.

As shown in Table 1, about half of the participants (n = 5519) provided some form of 
written response to this question, while the remainder left it blank. One possible explana-
tion for this rather large internal attrition is, of course, that participants were unable to 
think of any particular place in their neighborhood that felt unsafe and consequently left 
the question unanswered. An independent sample t-test comparing the participants who 
answered Q18 with the full sample supports this notion, since participants who felt unsafe 
walking alone late at night in their own neighborhood were more likely to provide an 
answer to Q18.

In a first step, all answers were screened out that did not relate to unsafety (e.g. “no”, 
“not that I know of”, etc.), and answers relating to unsafety but not to a specific location 
(e.g. reasons for unsafety in general such as darkness or youths, or non-specific locations 
such as parks or squares in general) were excluded. Following this procedure, a total of 

Table 1   Participant characteristics and differences between the full sample, participants answering Q18, 
and participants with geocoded answers, using independent sample t-tests

Unsafe late at night is a dichotomous variable showing whether participants reported feeling unsafe when 
walking alone late at night in the own neighborhood
*p < .05 **p < .01
a Data from Statistics Sweden (www.​scb.​se)

Population 18–85a Full sample Participants 
answering Q18

Participants 
with geocoded 
answers

2012 (n) 240,334 4195 1808 805
Age (mean) 44.6 49.7 48.1** 45.4**
Gender (female) 50.9% 54.2% 57.5%** 63.1%**
Unsafe late at night – 16.3% 22.2%** 30.7%**
2015 (n) 249,692 3,107 1609 696
Age (mean) 44.8 51.3 49.3** 45.5**
Gender (female) 50.7% 53.9% 58.7%** 66.2%**
Unsafe late at night – 14.6% 19.6%** 29.9%**
2018 (n) 260,731 3845 2102 958
Age (mean) 45.0 52.2 51.7* 48.8**
Gender (female) 50.5% 53.8% 57.3%** 60.9%**
Unsafe late at night – 18.7% 24.0%** 32.7%**
Total (n) 11,147 5,519 2459
Age (mean) 51.0 49.8** 46.8**
Gender (female) 54.0% 57.8%** 63.1%**
Unsafe late at night 16.7% 22.1%** 31.2%**

http://www.scb.se
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4598 unsafe locations provided by 3121 participants remained.5 In a second step, all eli-
gible unsafe locations were assessed regarding whether they included enough information 
to be reliably identified, and 919 (i.e. 20%) did not. These include, for instance, cases in 
which respondents had written my basement or the street. Since the only available infor-
mation on participants’ residence is the neighborhood from which they are sampled, such 
locations could not be identified. Further, 51 additional “locations” were excluded as they 
referred to very large geographical units (all or large parts of the city). In the final step, 
all locations were categorized based on their functional (e.g. park, street, square) and geo-
graphical location (e.g. park X, street Y, square Z).

Geocoding Unsafe Locations as Geographical Features

The screening of the open-ended answers resulted in 3628 unsafe locations (1305 unique 
unsafe locations) that were eligible for geocoding, reported by 2459 participants. Com-
pared to the full sample, these participants were slightly younger, more likely to be female, 
and more likely to have reported feeling unsafe when walking alone late at night in their 
own neighborhood (see Table 1). In order to analyze the geographical dimension of the 
reported locations, they were categorized on the basis of their size and characteristics as 
either polygon, polyline, or point features (see Table  2). A total of 1126 reported loca-
tions distributed across 205 unique locations were considered larger spatial units and con-
sequently geocoded as polygons. These include four broad categories of functional loca-
tions including parks/green areas, neighborhoods/blocks, cemeteries, and industrial areas/
construction sites/harbors. Furthermore, respondents reported 1037 streets/street segments 
and foot/bicycle paths as unsafe, corresponding to 495 unique locations, which were intui-
tively considered polylines. Finally, a total of 1465 reported locations, corresponding to 
605 unique locations, were geocoded as point features due to their relatively small areal 
extent. These locations were classified in 16 different categories, of which the majority 
were categorized as squares, stores/shopping malls, and preschools/schools.

All polygons and polylines were primarily geocoded using reference data from either 
Malmö City Offices or The Swedish Mapping, Cadastral and Land Registration Authority. 
For instance, a specific park/green area reported as being unsafe was geocoded as the cor-
responding polygon feature provided in the reference data. Similarly, since the majority of 
streets and paths were named by the respondents, this allowed for quite simple matching. 
However, in some cases the reference data did not include a corresponding geographical 
feature, for which reason some were drawn manually using Open Street Map as the refer-
ence. Unlike the geocoding procedure for polygons and polylines, locations categorized as 
point features were geocoded manually by retrieving their geographical coordinates from 
an online mapping service.

Finally, each geographical feature received a count value corresponding to the number 
of times that the specific location had been reported as unsafe by participants. Table 2 pro-
vides an overview of the unsafe geographical features included in the subsequent analyses.

5  The number of locations exceeds the number of answers since a single participant may report several 
locations.
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Units of Analysis: Grid‑Cells as Micro‑Places

In order to merge the various and overlapping unsafe geographical features into a joint unit 
of analysis, a 200 by 200-m grid-cell network with cell centroids within Malmö’s admin-
istrative city limits was applied to the city.6 A grid-cell size of 200-m have been employed 

Table 2   Descriptives for unsafe geographical features

Reported locations represent the number of times a specific location has been reported by participants, 
while unique locations represent the number of unique geographical features these locations correspond to 
(i.e. taking into account that several participants may report the same location). The reason that the labels 
“Park/green area” and “Industrial area/construction site/harbor” are applied to both polygons and points is 
that, in these cases, points refer to a specific location within, for instance, a park
a Percentages may not total 100 due to rounding

Functional location Reported 
locations n 
(%)a

Unique 
locations n 
(%)a

Shape size km/km2

Mean (sd) Median Range

Polygons (total) 1126 (100) 205 (100) 0.22 (0.40) 0.05 0.00–2.31
Park/green area 849 (75.4) 115 (56.1) 0.11 (0.27) 0.02 0.00–1.86
Neighborhood/block 227 (20.2) 78 (38.0) 0.39 (0.51) 0.24 0.00–2.31
Cemetery 38 (3.4) 7 (3.4) 0.15 (0.14) 0.08 0.02–0.39
Industrial area/ construction site/harbor 12 (1.1) 5 (2.4) 0.14 (0.12) 0.07 0.03–0.32
Polylines (total) 1037 (100) 495 (100) 0.88 (1.43) 0.45 0.03–13.51
Street/street segment 702 (67.7) 331 (66.9) 0.99 (1.62) 0.48 0.03–13.51
Foot/bicycle path 335 (32.3) 164 (33.1) 0.66 (0.86) 0.43 0.04–6.20
Points (total) 1465 (100) 605 (100) – – –
Square 451 (30.8) 42 (6.9) – – –
Store/shopping mall 171 (11.7) 60 (9.9) – – –
Preschool/school 129 (8.8) 64 (10.6) – – –
Pedestrian overpass/underpass 107 (7.3) 53 (8.8) – – –
Intersection/cul-de-sac 103 (7.0) 68 (11.2) – – –
Bus stop/train station 87 (5.9) 39 (6.4) – – –
Parking lot/garage 79 (5.4) 55 (9.1) – – –
Playground 77 (5.3) 53 (8.8) – – –
Health care/other public service office 57 (3.9) 23 (3.8) – – –
Sports and leisure facility/ground 53 (3.6) 34 (5.6) – – –
Restaurant/fast food/café 40 (2.7) 29 (4.8) – – –
Address/residence 33 (2.3) 32 (5.3) – – –
Other 31 (2.1) 22 (3.6) – – –
Religious/cultural institution 23 (1.6) 12 (2.0) – – –
Park/green area 17 (1.2) 12 (2.0) – – –
Industrial area/ construction site/harbor 7 (0.5) 7 (1.2) – – –
Total 3628 1305

6  While much previous research has operationalized micro-places as street segments (e.g. Andresen et al. 2017; 
Chainey et al. 2019; see also Weisburd 2015), a number of European studies of crime concentration have used 
grid-cells (e.g. Hardyns et al. 2019; Stanković 2021). One argument is that the gridiron street-network pattern 
found in many American cities is not as common in European cities, and that the use of street segments would 
therefore lead to considerable differences in the size of the units of analysis (see Hardyns et al. 2019).
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in similar previous research in a European context (e.g., Hardyns et al. 2019; Stanković, 
2021), and corresponds to roughly twice the median (172  m) and mean (228  m) length 
of inner-city blocks in Malmö, similar to the operationalization of “behavioral settings” 
by Caplan et al. (2011). The grid includes a total of 4031 cells, which also represent the 
operationalization of micro-places in the current study. However, to minimize the risk for 
overestimating the concentration of unsafe locations to micro-places due to the inclusion of 
grid-cells that were not relevant to the purposes of the study, a significant proportion of the 
cells have been excluded. These include all cells within the Malmö industrial harbor area, 
cells that were more than 400 m from the administrative border of a neighborhood included 
in the most recent wave of the MCS, and cells located in an agricultural fields or expanses 
of water.7 The exclusion of these cells resulted in a final sample of 2921 grid-cells. To test 
the robustness of the results in the current study, all analyses have also been conducted 
using smaller (100 by 100-m) and larger (400 by 400-m) grid-cells.

Main Outcome: Unsafe Count Value

In the next step, all polygons, polylines and points were merged with the grid-cell network 
allowing for a calculation of a summative count value of the number of times a specific 
geographical feature was reported by respondents for each grid-cell. As such, each grid-
cell received a count value for all geographical features that the specific grid-cell inter-
sected. These count values constitute the study’s main outcome measure and have been 
calculated using two different methods.

In the first approach, each cell intersecting a given geographical feature received an 
unadjusted count value corresponding to the number of times that the specific location (i.e. 
geographical feature) was reported by respondents. As such, the total sum of unadjusted 
counts in the grid-cell network is 23,291 which is several times the original sum of counts 
(i.e. 3628). This is because the count for a given geographical feature is provided to mul-
tiple grid-cells. However, this approach may exaggerate the impact of large geographical 
features and potentially bias the dataset. Therefore, the second approach utilized a weighted 
count value where the unadjusted count was divided by the number of grid-cells that are 
intersected by the specific geographical feature (as such the weighted count value is not 
a count in the formal sense). Using this approach thus reduced the impact of larger (or 
longer) geographical features that intersected several grid-cells. Consequently, the total 
sum of weighted counts in the grid-cell network sums to the original sum of counts (i.e. 
3628). Although the two different approaches do not affect the prevalence of unsafe loca-
tions, they do of course impact estimates of the concentration of unsafe locations to micro-
places. Results for both unadjusted and weighted count values are therefore consistently 
reported throughout the results section. (A further elaboration and visualization of the two 
different methods is provided in Appendix A.)

7  The harbour area has almost no registered residents and is by and large inaccessible to most inhabitants 
of Malmö. Only including cells within a 400-m radius of a neighborhood included in the MCS was deemed 
appropriate since participants were instructed to think of locations within a couple of minutes walking dis-
tance of their home (for gait-speed references see Bohannon and Andrews 2011).
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Analytical Approach

To answer the first research question, three different metrics are reported to describe the 
concentration of unsafe locations to micro-places. First, the results presentation reports 
the proportion of grid-cells that account for 25 and 50 percent of the total unadjusted and 
weighted counts across all included grid-cells (see Weisburd 2015). Second, it reports 
the proportion of grid-cells that account for 25 and 50 percent of the total unadjusted and 
weighted counts when the analysis is restricted to non-zero grid-cells (see Levin et  al. 
2017). Third, since both of these first two methods rest on a counterfactual assumption 
of uniformity, which may risk overestimating the concentration of crime (for details see 
Chalfin et  al. 2021)—and reasonably also of unsafe locations—an alternative metric is 
also included. Inspired by the marginal crime concentration (MCC) metric (Chalfin et al. 
2021), a second simulated dataset was created for each year (2012, 2015 and 2018 respec-
tively), and thereafter merged to form a “total” dataset, which will function as a simulated 
counterfactual. This includes a total of 1126 simulated polygons (i.e. random points located 
within the grid-cell network, with a buffer matched to correspond with the areal extent 
of a counterpart polygon in the observed data), 1037 simulated polylines (i.e. randomly 
selected streets and street-segments, excluding those shorter than the shortest street/street 
segment in the observed data (i.e. 30 m)), and 1465 simulated random points, for all three 
years combined. All features received a count value of one (1) which provides a total sum 
of 3628, equaling that of the observed data. The simulated unsafe geographical features 
were thereafter merged with the grid-cell network, with each grid-cell being assigned both 
an unadjusted and a weighted simulated count value following the same procedure as for 
the observed data. A base map illustrating the two datasets prior to merging with the grid-
cells is provided in Fig. 1.

The spatial concentration of unsafe locations relative to the simulated counterfactual is 
calculated on the basis of the marginal crime concentration metric as proposed by Chalfin 
et al. (2021):

Here (Eq. 1), mcc is the marginal crime concentration, which in this study represents the 
marginal concentration of unsafe locations, where k represents the proportion of grid-cells 
accounting for e.g. 25 and 50 percent of the sum of counts at time t. The mcck

t
 is contingent 

on the difference between cck∗
t

 , which in the current case is the observed concentration of 
unsafe count values, and the cck

t
 , i.e. the expected concentration of unsafe count values 

under randomization. As different simulations might provide slightly different results, the 
cc

k

t
 is in fact the mean concentration across ten different simulations. In the results section, 

the mcck
t
 is reported in absolute values but also as an expected-over-observed ratio, that is 

cc
k

t
 divided by cck∗

t
 . The absolute values denote the additional proportion of micro-places 

required by the simulated data to account for any given k compared to the observed data, 
while the latter provides a ratio of the extent to which the observed data show a concentra-
tion relative to the expected level of concentration under randomization (for elaborations 
see Chalfin et al. 2021).

While the analyses above consider the concentration of unadjusted and weighted counts 
to grid-cells, they do not answer the question of how these are spatially distributed across 
the study area. Therefore, choropleth maps have been produced that visualize the spa-
tial distribution of the grid-cells that account for a quarter and half of the unadjusted and 
weighted counts. To provide a richer image that accounts for the full data set, i.e. not only 

(1)mcc
k

t
= cc

k

t
− cc

k∗
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Fig. 1   Illustration of polygon, polyline and point features in the observed A and simulated B dataset for all 
three years combined. Outer ring road is used as a visual reference
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the grid-cells that account for the top 25 and 50 percent of the counts, these two maps are 
complemented with density maps based on kernel density estimations (KDE).8 In addition, 
a Global Moran’s I is employed to examine spatial autocorrelation in the dataset, that is the 
extent to which grid-cells are surrounded by similarly high respectively low value grid-
cells (Chainey 2020; see also Ratcliffe 2011). The Global Moran’s I is produced using grid-
cells as units of analysis and unadjusted and weighted count values as measure of intensity. 
A first order queen contiguity is employed as spatial weight, with row standardization and 
significance testing using 999 random permutations.9 All maps include Malmö’s outer ring 
road as a visual reference and have been produced using ArcGIS 10.7, and Global Moran’s 
I statistics have been estimated using GeoDa 1.18.0 (see Anselin et al. 2006).

To answer the second research question, i.e. to examine the temporal stability of unsafe 
locations over time, a number of Spearman’s rank-order correlations have been calculated. 
Here, grid-cells are ranked based on their unadjusted and weighted counts for each year 
separately. The correlation coefficients thus signify the extent to which a high (or low) 
ranked grid-cell in 2012 is correlated with a high (or low) rank in 2015 and 2018.

Results

Tables 3 and 4 report the cumulative proportions of grid-cells that account for 25 and 
50 percent of the total sum of unadjusted and weighted counts for both the observed 
and simulated datasets. In addition, the tables report absolute values of the MCC and an 
expected-over-observed (E/O) ratio. The full relationship between the cumulative pro-
portion of grid-cells and the sum of counts for both the observed and simulated datasets 
are also illustrated by Lorenz curves in Appendix B.

Looking at the cumulative proportion of grid-cells (Tables 3 and 4), the results sug-
gest that unsafe locations are indeed concentrated to micro-places within the city of 
Malmö. With only small variations across the survey waves, 2.3 percent of all included 
grid-cells account for 25 percent of the unadjusted counts of unsafe locations, while 7.5 
percent account for 50 percent for all three years combined. Focusing on the roughly 
60 percent of non-zero grid-cells, there is a slightly greater variation across the waves, 
but a total of 3.4 and 11.3 percent of the non-zero grid-cells account for a quarter and 
half of the total unadjusted count respectively for all three years combined. Turning to 
the weighted counts, the data suggest that unsafe locations are even more concentrated, 
with only 0.9 percent of grid-cells accounting for a quarter of the total sum of weighted 
counts for all three years combined, and 4.2 percent accounting for half of the weighted 
counts. Using non-zero grid-cells only, these proportions increase to 1.4 and 6.4 respec-
tively. The fact that the weighted counts appear to be more concentrated than the unad-
justed counts is expected, however, since smaller geographical features have a greater 

8  The density maps utilize grid-cell centroids (i.e. point features) as the input unit of analysis and unad-
justed and weighted count values as the measure of intensity. The cell-size is set to 200 m, with a search 
bandwidth of 300 m. A five-class natural breaks (Jenks) classification is used in the final visualization (for 
further reading on KDE, see Chainey 2013 and Chainey 2020).
9  As this specific analysis requires that each grid-cell has at least one neighboring grid-cell, with a recom-
mendation on eight with a skewed distribution (Esri n.d.), this specific analysis is based on a slightly differ-
ent dataset with marginally more included grid-cells (N = 2961). It should also be noted that this analysis is 
sensitive to zero-inflation, which is the case in the current study, why these results should be considered as 
a complement to the choropleth and density maps.
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impact when using the weighted compared to the unadjusted counts, which inherently 
leads to a greater likelihood of concentration.

While these initial results suggest that unsafe locations are highly concentrated to 
a small proportion of grid-cells, these results are relative to an assumption of an equal 
distribution of counts across grid-cells (i.e. uniformity). However, Tables 3 and 4 also 
present the share of grid-cells that account for 25 and 50 percent of the unadjusted and 
weighted counts from the simulated dataset.

Using the simulated dataset as a counterfactual, the absolute MCC values suggest that 
the simulated dataset would require an additional 11.0 percentage points of grid-cells to 
explain a quarter of the unadjusted counts, and an additional 8.3 percentage points for 
the weighted counts, compared to the observed data for all three years combined. An 

Table 3   Proportion of grid-cells accounting for 25 percent of unadjusted and weighted counts for observed 
and simulated datasets, and marginal crime concentration (MCC)

Diff difference; sd standard deviation
a Standard deviations are based on means from ten simulated trials

Grid-cells 
(N = 2921)

Non-zero grid-cells 
(N = 1933)

Simulated grid-cells 
(N = 2921)

MCC25

% % % (sda) Diff % E/O ratio

Unadjusted counts
2012 2.09 4.08 9.32 (0.43) 7.23 4.46
2015 2.09 5.00 8.67 (0.44) 6.58 4.15
2018 2.23 3.97 10.48 (0.34) 8.26 4.71
Total 2.26 3.41 13.25 (0.26) 10.99 5.87
Weighted counts
2012 0.82 1.61 5.49 (0.15) 4.67 6.68
2015 0.48 1.15 4.91 (0.16) 4.43 10.24
2018 1.20 2.14 6.06 (0.16) 4.86 5.06
Total 0.92 1.40 9.25 (0.13) 8.33 10.01

Table 4   Proportion of grid-cells accounting for 50 percent of unadjusted and weighted counts for observed 
and simulated datasets, and marginal crime concentration (MCC)

Diff difference; sd standard deviation
a Standard deviations are based on means from ten simulated trials

Grid-cells 
(N = 2921)

Non-zero grid-cells 
(N = 1933)

Simulated grid-cells 
(N = 2921)

MCC50

% % % (sda) Diff % E/O ratio

Unadjusted counts
2012 6.88 13.45 23.14 (0.92) 16.26 3.36
2015 6.20 14.82 21.87 (0.79) 15.68 3.53
2018 7.87 14.03 26.02 (0.68) 18.14 3.30
Total 7.50 11.33 31.35 (0.43) 23.85 4.18
Weighted counts
2012 3.25 6.36 14.21 (0.24) 10.96 4.37
2015 2.74 6.55 12.65 (0.22) 9.91 4.62
2018 4.76 8.48 16.04 (0.27) 11.28 3.37
Total 4.21 6.36 23.51 (0.20) 19.30 5.58



203Journal of Quantitative Criminology (2024) 40:191–213	

1 3

alternative interpretation is that unsafe locations are between six (unadjusted MCC25 E/O 
ratio: 5.9) and ten times (weighted MCC25 E/O ratio: 10.0) as concentrated to grid-cells 
in the observed data as compared to what would be expected under simulation. Similar 
results are found when considering half of the counts, which are between four (unadjusted 
MCC50 E/O ratio: 4.2) and six times (weighted MCC50 E/O ratio: 5.6) as concentrated in 
the observed data compared to the simulated counterfactual. It should be noted that the 
standard deviations for the simulated dataset presented in Tables 3 and 4 show that there 
are very small variations in simulated concentrations between the ten trials.

While the results thus far confirm that unsafe locations are substantially concentrated 
to a small proportion of grid-cells, Fig. 2 provides an illustration of the spatial clustering 
of these grid-cells. The figure includes four maps that represent grid-cells that together 
account for a quarter and half of the unadjusted (A) and weighted counts (B) for all three 
years combined, and also a more detailed account of the full dataset in the form of two den-
sity maps that represent each count (C and D).

Fig. 2   Spatial distribution of grid-cells accounting for a quarter and half of unadjusted A and weighted 
counts B, and density maps (kernel density estimations) for unadjusted C and weighted counts D, for all 
three years combined. Outer ring road is used as a visual reference
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A visual inspection of the unadjusted counts (A) in Fig. 2 reveals that, with few excep-
tions, the grid-cells appear to be spatially clustered. This pattern is also evident in the 
density map (C), which also provides a more fine-grained visualization of the spatial con-
centration of the unadjusted count values across the full dataset. The test of spatial autocor-
relation in the full dataset (i.e., not only top 25 and 50% of grid-cells) confirms this obser-
vation by showing that grid-cells with similar unadjusted counts are significantly clustered 
as compared to spatial randomness (Moran’s I = 0.65; z = 63.7, pseudo p < 0.001). How-
ever, the spatial clustering observed is not surprising given the structure of the data. For 
the unadjusted counts, polygons and polylines (e.g. parks and streets) reported as unsafe by 
numerous participants will be prominent and thus signify a spatial clustering as a result of 
the original geographical feature. In other words, a park covering for instance 10 grid-cells, 
with an unadjusted count of e.g. 30, will inevitably signify a clustering of grid-cells. This 
is because each of the 10 grid-cells that intersects the original polygon feature receives a 
count of 30, which by default will be contingent or adjacent. Thus, when we turn to the 
weighted counts (B) in Fig. 2—where larger polygons and polylines have less impact—the 
spatial concentration is not as visually striking. However, there remains a significant spatial 
clustering in the data (Moran’s I = 0.30; z = 31.1, pseudo p < 0.001), which becomes clearer 
in the density map (D).

To answer the study’s second research question, that is whether there is temporal sta-
bility in unsafe locations over time, Table 5 presents a number of Spearman’s rank-order 
correlations for the unadjusted and weighted counts respectively. Here, the focus is shifted 
from the grid-cells accounting for 25 and 50 percent of the unadjusted and weighted 
counts, and instead focuses on the full range of counts. However, the lower half of the 
matrix reports the coefficients from the case in which all grid-cells (N = 2921) are included, 
while the upper half reports the same coefficients when the focus is directed only at non-
zero grid-cells, across all three years (N = 1933).

The results point to relatively strong correlations when all grid-cells are included, and 
the focus is directed at the unadjusted counts. Although the relationship becomes some-
what weaker when the focus is directed at the non-zero grid-cells, the correlations remain 
both significant and moderately strong. A similar pattern is also found for the weighted 
counts, but with generally somewhat weaker correlation coefficients. A noteworthy but per-
haps not very surprising result is that the correlations are generally stronger between con-
tiguous survey waves. In other words, the correlations between grid-cell counts for 2012 
and 2015 are generally stronger across all analyses than for 2012 and 2018. This may imply 
that there is a transition in unsafe locations over time with some “new” unsafe locations 
emerging (and others potentially disappearing).

Table 5   Spearman’s rank-order 
correlations for unadjusted and 
weighted counts across years

All correlations are significant at p < .001. Values below the diagonal 
of the matrix are based on all grid-cells (N = 2921) while values above 
the diagonal are based on non-zero grid-cells (N = 1933)

Unadjusted counts Weighted counts

2012 2015 2018 2012 2015 2018

2012 1.000 .688 .585 1.000 .558 .437
2015 .741 1.000 .629 .673 1.000 .504
2018 .717 .724 1.000 .642 .661 1.000



205Journal of Quantitative Criminology (2024) 40:191–213	

1 3

Alternative Grid‑Cell Size

Given the somewhat arbitrary choice of using 200 by 200-m grid-cells as the unit of analy-
sis, the data have been restructured and the main analyses replicated using 100 by 100-m 
(N = 9743) and 400 by 400-m (N = 898) grid-cells. The use of different scales represents an 
important sensitivity analysis given the nature of documented issues relating to the Modifi-
able Areal Unit Problem (MAUP), since different scales may affect the results (e.g. Gerell 
2017). However, using differently sized units of analysis does not alter the general inter-
pretation of the findings, but rather confirms a strong concentration of unsafe locations to 
(both larger and smaller) micro-places. However, as expected given findings from previous 
research (see Steenbeek & Weisburd 2016; Schnell et al. 2017), the degree of concentra-
tion increases slightly with smaller units of analysis, and diminishes somewhat with the 
employment of larger, although these differences are generally negligible.

Nor does the use of differently sized units of analysis affect the interpretation of whether 
there is temporal stability in unsafe locations over time. In fact, the results verify that there 
is temporal stability in unsafe locations across waves, as suggested in the main analysis, 
but also show that these patterns appear to be slightly stronger when using larger units of 
analysis. (A full account of the analyses using alternative grid-cell sizes is available in the 
online supplementary appendix).

Discussion

Spatial Concentration of Unsafe Locations and Future Directions

A large body of research has to date examined the spatial concentration of crime to micro-
places finding support for the law of crime concentration (e.g., Breetzke and Edelstein 
2019; Chainey et al. 2019; Favarin 2018; Mazeika and Kumar 2017; Weisburd 2015). A 
few recent studies have also examined the spatial concentration of other important and 
criminologically relevant outcomes including mental health calls for police service (Kozi-
arski 2021), fatalities following opioid overdoses (Carter et al. 2019), and incidents of the 
police use of force (Sorg et al. 2021). The current study adds an additional criminologically 
relevant outcome to the current state of research. Using rather unique georeferenced survey 
data from a community survey on places perceived as unsafe by city inhabitants the cur-
rent study set out to explore the spatial concentration of unsafe locations. Summarizing the 
main findings, three important conclusions may be drawn. First, there seems to be quite 
substantial evidence that unsafe locations are concentrated to a small proportion of micro-
places, operationalized as 200 by 200-m grid-cells, in Malmö. More specifically, a narrow 
bandwidth of grid-cell proportions accounts for a substantial proportion of unsafe locations 
when either unadjusted or weighted counts are employed. But how should these results be 
interpreted?

Given the lack of research on the concentration of unsafe locations, the only viable 
point of reference is that relating to crime concentrations. As such, the resulting band-
widths from the current study are quite similar to those provided by Weisburd (2015) for 
crime concentrations on street segments in five larger American cities (i.e. 25% of crime 
within 0.8–1.6% of micro-places; 50% of crime within 4.2–6.0% of micro-places). Simi-
larly, using the results of Chalfin et al. (2021) as a reference (i.e. all crimes at micro-places 
across three American cities), the expected-over-observed ratios noted in the present study 
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lie either in the same ballpark, or within a lower range, for both a quarter (25% = 7.9–17.0) 
and half of the counts (50% = 4.9–9.5). Thus, although arguably focusing on a completely 
different outcome, the results from the current study on unsafe locations are quite similar to 
those reported in previous research on crime concentrations. At the same time, researchers 
with access to geographical data on unsafe locations should be encouraged to replicate the 
current study and further examine the spatial concentration of unsafe locations at micro-
geographic units of analysis.

A second important insight from the current study is that the results suggest evidence 
that grid-cells with high (and low) count values are significantly clustered in space. While 
this is expected for the unadjusted counts, given the nature of the unsafe geographical fea-
tures prior to aggregating the grid-cells, spatial clustering is also evident for the weighted 
counts. As such, and in accordance with other studies on unsafe locations (e.g. Curtis et al. 
2014; Doran and Lees 2005; Jakobi and Pȍdör 2020; Kohm 2009; Ogneva-Himmelberger 
et al. 2019; Pánek et al. 2019), this indicates that there are a number of unsafe locations 
within the city of Malmö that are reported by numerous respondents and that might con-
sequently be considered to constitute pockets or “hot spots” of unsafety. However, more 
refined spatial analyses could provide further insights into the spatial clustering of unsafe 
locations, which should also be encouraged in future research.

A third important finding is that there seems to be, at least to some extent, a tempo-
ral stability in (un)safe locations. In other words, there is a correlation between grid-cells 
having high and low-ranked count values respectively in 2012, and their having high and 
low-ranked count values in 2015, and similarly between 2015 and 2018. These findings 
corroborate previous research on crime showing a temporal stability in micro-places with 
high (and low) crime counts over time (e.g. Weisburd et al. 2004; Wheeler et  al. 2016). 
With additional data covering a longer period of time than the current three waves of the 
MCS, it would be both feasible and interesting to study the trajectories of unsafe locations 
over time.

In summary, the current study has two important implications that deserve to be empha-
sized. First, since unsafe locations are concentrated to a small proportion of micro-places, 
this supports the idea that there are some features linked to particular locations that lead 
to them being perceived as unsafe, not only by different participants cross-sectionally, but 
also over time. Second, the results from the present study may also be important from a 
practitioner’s point of view. Since the results indicate that unsafe locations are concentrated 
in space, this suggests that efforts to reduce levels of perceived unsafety might be focused 
on a small number of locations. Perhaps hot spot strategies aimed at reducing the preva-
lence of unsafe locations will become an important topic in the future, with a potential to 
create safer urban spaces.

However, knowing where people experience unsafety does not necessarily answer to 
why these locations are perceived as unsafe. Without such an understanding it is difficult 
to develop knowledge-based interventions. In a next step, a highly important task is to fur-
ther examine why perceptions of unsafe locations cluster to certain micro-places. What is 
it about these places that make people perceive them as unsafe? Is it characteristics of the 
built environment, the ambient population at these locations, or any other social and/or 
physical cues? Reflecting upon the results from the present study it is reasonable to assume 
that there are both mutual and distinct explanations to why different types of locations are 
perceived as unsafe. For instance, a large share of all reported unsafe geographical fea-
tures represents parks and green areas. Previous research on urban green spaces and fear 
of crime, or feelings of unsafety, has showed that both social and physical characteristics—
including the presence (or absence) of other individuals, unmaintained vegetation and 
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shrubs, and poor lighting and darkness—may act as fear inducing elements (see Jansson 
et al. 2013; Sreetheran and van den Bosch 2014). These characteristics may of course be 
more general exogenous triggers of fear of crime stretching beyond parks and green areas. 
For instance, a large share of all reported locations in the present data—not only those 
relating to green spaces—are in fact discussed in relation to a temporal dimension, that is 
only considered unsafe during “evenings”, “nights”, or “after dark”.10 One may also ques-
tion the extent to which there is an agreement between unsafe locations and reported crime 
rates. While some studies have supported the notion that neighborhood crime rates affect 
individual-level fear of crime (e.g., Brunton-Smith and Sturgis 2011), studies focusing on 
unsafe locations as unit of analysis shows rather mixed findings. Jakobi and Pȍdör (2020) 
found quite inconsistent relationships between places reported as unsafe by respondents 
and reported crime rates with some unsafe places also having high crime rates, while oth-
ers having no or only a few reported crime events (see also Ogneva-Himmelberger et al. 
2019; Pánek et al. 2019).

However, since the aim of the current study has been descriptive, focusing on the where, 
there is more room for more careful examinations of why these locations are consistently 
reported as unsafe. Although the present study shows that certain functional locations (e.g. 
parks, streets and squares) are recurrently reported as unsafe, another important question 
to consider is what characterizes the particular geographical locations that are recurrently 
reported as unsafe (e.g. park X, street Y and square Z).

Limitations

While the MCS is based on a random sample, a response rate ranging between 40 and 50 
percent across the three waves is problematic with regard to representativeness, generaliz-
ability and the external validity of the data. In addition, the analysis of the participants who 
answered Q18 revealed a bias with regard to which individuals’ perceptions of unsafe loca-
tions are reflected in the current study, as compared to the sample as a whole. In addition, 
legitimate criticism could also be directed at what Q18 actually captures. For instance, the 
item does no mention crime, which consequently allows participants to report locations as 
being perceived as unsafe as a result of a range of different concerns (see Gray et al. 2011; 
Ferraro and LaGrange 1987), e.g. fear of traffic-related accidents (Jakobi and Pȍdör 2020). 
However, given the context of the question—i.e. its inclusion in a neighborhood survey 
on (fear of) crime—the significance of crime is by and large implicitly communicated to 
survey participants. However, future research should consider including additional items 
capturing information on why specific locations are perceived as unsafe or uncomfortable 
to visit/pass though. Such information may assist to sort out any irrelevant answers (e.g., 
unsafety not relating to crime) but also provide more detailed information on unsafe loca-
tions relating to specific crime types.

A further limitation relating to Q18 is that it asks about locations in the participants’ 
own neighborhood, which may have limited the number of unsafe locations reported. As 
such, the data may miss locations outside of the participants’ own neighborhoods that they 
may encounter during their everyday lives and also perceive as being unsafe to visit/pass 

10  Although participants were not asked to state any reasons for unsafety at the reported locations the open-
ended character of Q18 allowed for such elaborations which consequently led to a lot of answers including 
reasons for unsafety at particular locations.
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through. On the other hand, this may in fact strengthen the findings from the present study, 
since there appear to be strong concentrations of unsafe locations despite participants being 
asked to think about their own neighborhood only.

Another important limitation relates to the use of an open-ended question to chart geo-
graphical locations more generally. A considerable number of the answers to Q18 were not 
geocoded, since participants either gave answers that did not relate to unsafety or described 
general characteristics of locations that they avoided or perceived as being unsafe, e.g. 
“dark parks”, “crowded squares”, or “desolate streets”. Further, a substantial number of 
locations could not be geocoded because participants did not provide enough informa-
tion about the location (although instructed do so). For instance, although “the adjacent 
park” or “the street outside my house” are both viable locations, these could not be geo-
coded given the lack of more precise information. The use of an open-ended question to 
geocode locations also involves two other important issues. First, screening such answers 
for eligibility for geocoding, and then subsequently geocoding the answers, are both time-
consuming tasks. Second, and perhaps more importantly, interpreting open-ended answers 
presents issues with regard to geographical reliability. In the context of this approach, the 
researcher who codes the data functions as an intermediator between participants’ subjec-
tive conceptualizations of a given location and the operationalized geographical feature 
representing that specific location. For instance, participants may have a well-defined loca-
tion in mind, which they refer to by name, but their subjective views need not necessarily 
correspond to the actual area as defined by administrative geographical boundaries (i.e. 
geographical reference data). Although the two are probably similar, there are also likely to 
be discrepancies between them.

Given these issues relating to the use of an open-ended question to survey perceptions 
of unsafety at locations, future research should consider other viable alternatives. These 
include, for instance, sketch maps on which participants may mark locations that they per-
ceive as unsafe—either as points, polylines or polygons (e.g. Jakobi and Pȍdör 2020). Such 
an approach would be beneficial as it would nullify many of the issues presented above. 
However, while a sketch map could quite easily be integrated into an online version of a 
questionnaire (e.g. the MCS), it would be more problematic in relation to a paper-and-
pen version of the same survey. Therefore, future research is encouraged to elaborate on 
alternative methods and instruments to continue the development of both reliable and valid 
information on the geography of unsafe locations.

Conclusion

This study demonstrates that unsafe locations are concentrated to a small proportion of 
micro-places in the city of Malmö. Furthermore, these seem to be spatially clustered, sug-
gesting that unsafe locations are not randomly distributed across urban space. In addition, 
the study provides empirical support for the proposition that there is temporal stability in 
unsafe locations, suggesting that a number of locations are consistently reported as unsafe 
over time. In sum, the study’s results have important implications for both theory and prac-
tice. However, since the study is subject to a number of limitations, future research should 
be encouraged to continue to explore the spatial dimensions of unsafe locations and, by 
extension, different dimensions of the fear of crime at places.
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Appendix A

Using hypothetical outcome data, Fig. 3 exemplifies the two methods used to merge counts 
from polygons, polylines and points, to grid-cells. Here we have a polygon (park) that was 
reported as unsafe by 21 participants, and which intersects with 7 cells, a polyline (bicycle 
path) reported by 14 participants, which intersects with 4 cells, and a point (intersection) 
reported by 4 participants (points are by default located in a single cell). Using this exam-
ple, the total count of unsafe locations is thus 39. In the next step, each grid-cell receives 
the sum of all geographical features intersecting with that specific grid-cell, reported as 
values in Fig. 3. For the unadjusted count value, each of the 7 cells that intersect with the 
polygon (park) receives a value of 21, each of the 4 cells intersecting with the polyline 
(bicycle path) receives a value of 14, and the cell that intersects with the point feature 
receives a value of 4. The total count value of the grid-cells in this example thus sums to 
207.

The main difference when calculating the weighted count values is that each cell that 
intersects with the polygon (park) receives a value of 3, which corresponds to the number 
of participants reporting that location divided by the number of grid-cells intersected by 
the geographical feature (twenty-one divided by three). Using the same logic, each cell that 
intersects with the polyline (bicycle path) thus receives a weighted count value of 3.5. The 
count value for the point feature, however, remains the same, since points are by default 
located in a single grid-cell. Unlike the unadjusted counts, the total sum of the weighted 
counts in the grid-cell network thus sums to the original sum of counts (i.e. 39).

Fig. 3   Illustration of two methods of merging counts of unsafe locations from geographical features to grid-
cells
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Appendix B

See Fig. 4.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10940-​022-​09565-6.

Fig. 4   Lorenz curves for the unadjusted and weighted cumulative percentages of 200 by 200-m grid-cells 
(N = 2921) that account for different proportions of the unadjusted and weighted counts in the observed and 
simulated datasets

https://doi.org/10.1007/s10940-022-09565-6
https://doi.org/10.1007/s10940-022-09565-6
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