Skip to main content
Log in

Flexible superhydrophobic fabric with electromagnetic interference shielding based on MXene and cellulose nanofibers

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Electromagnetic interference (EMI) shielding fabrics have a wide range of applications for human and equipment protection. However, it is a challenge for single electromagnetic shielding textiles to apply in the harsh practical environments. Herein, superhydrophobic electromagnetic shielding polyester fabric obtained through combining the conductive network of MXene, the rough microstructure of cellulose nanofibers (CNFs), and low surface energy polydimethylsiloxane modification. Its composition, morphology, water contact angle (WCA) and electromagnetic interference shielding effectiveness (EMI SE) were characterized. MXene nanosheets grew on the fabric surface and formed a perfect conductive network between different fabric. The continuous MXene conductive network provided the basis for electronic transmission, endowing the prepared fabric with high EMI SE (~ 34 dB). Meanwhile, with the synergistic effect of micro-nano roughness and low surface energy modification, the treated fabric demonstrated remarkable superhydrophobic properties and showed a superior WCA (~ 164.3°). Furthermore, the treated polyester fabric demonstrated high electromagnetic interference shielding performance with excellent stability and durability. This work provided a feasible method for fabricating superhydrophobic electromagnetic shielding fabric, which will have wide application prospect in the fields of electromagnetic shielding, human body protection and military affairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li, H. Yang, F. Fu, J.Y. Lee, Y.-X. Guo, J.S. Ho, P.-Y. Chen, Adv. Funct. Mater. 30, 1907451 (2020). https://doi.org/10.1002/adfm.201907451

    Article  CAS  Google Scholar 

  2. T. Zhang, D. Lv, R. Liu, D. Wang, T. Li, J. Xu, Y. Xie, J. Li, L. Wang, ACS Sustain. Chem. Eng. 9, 6574 (2021). https://doi.org/10.1021/acssuschemeng.0c09068

    Article  CAS  Google Scholar 

  3. X. Li, Y. Li, T. Guan, F. Xu, J. Sun, ACS Appl. Mater. INTERFACES. 10, 12042 (2018). https://doi.org/10.1021/acsami.8b01279

    Article  CAS  PubMed  Google Scholar 

  4. M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, DALTON Trans. 44, 9353 (2015). https://doi.org/10.1039/c5dt01247c

    Article  CAS  PubMed  Google Scholar 

  5. D. Zhang, Z. Liu, M. Zhang, X. Sun, Appl. Surf. Sci. 610, 155473 (2023). https://doi.org/10.1016/j.apsusc.2022.155473

    Article  CAS  Google Scholar 

  6. Z. Xie, Y. Cai, Y. Zhan, Y. Meng, Y. Li, Q. Xie, H. Xia, Chem. Eng. J. 435, 135118 (2022). https://doi.org/10.1016/j.cej.2022.135118

    Article  CAS  Google Scholar 

  7. Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang, S. Zhao, S. Yue, B. Li, W. He, J. Liu, J.W. Lyding, Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9

    Article  CAS  Google Scholar 

  8. S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, J. Mater. Chem. A 5, 31 (2017). https://doi.org/10.1039/c6ta07984a

    Article  CAS  Google Scholar 

  9. H. Liu, J. Huang, Z. Chen, G. Chen, K.-Q. Zhang, S.S. Al-Deyab, Y. Lai, Chem. Eng. J. 330, 26 (2017). https://doi.org/10.1016/j.cej.2017.07.114

    Article  CAS  Google Scholar 

  10. E.K. Sam, D.K. Sam, X. Lv, B. Liu, X. Xiao, S. Gong, W. Yu, J. Chen, J. Liu, Chem. Eng. J. 373, 531 (2019). https://doi.org/10.1016/j.cej.2019.05.077

    Article  CAS  Google Scholar 

  11. Q. Yang, J. Yang, L. Tang, H. Zhang, D. Wei, H. Shi, X. Wei, Y. Zhang, B. Su, Chem. Eng. J. 454, 140159 (2023). https://doi.org/10.1016/j.cej.2022.140159

    Article  CAS  Google Scholar 

  12. L. Feng, P. Wei, Q. Song, J. Zhang, Q. Fu, X. Jia, J. Yang, D. Shao, Y. Li, S. Wang, X. Qiang, H. Song, ACS Nano. 16, 17049 (2022). https://doi.org/10.1021/acsnano.2c07187

    Article  CAS  PubMed  Google Scholar 

  13. S. Roy, L. Zhai, L. Van Hai, J.W. Kim, J.H. Park, H.C. Kim, J. Kim, Cellulose. 25, 4871 (2018). https://doi.org/10.1007/s10570-018-1945-6

    Article  CAS  Google Scholar 

  14. X. Zhou, J. Liu, W. Liu, W. Steffen, H.-J. Butt, Adv. Mater. 34, 2107901 (2022). https://doi.org/10.1002/adma.202107901

    Article  CAS  Google Scholar 

  15. J. Li, X. Han, W. Li, L. Yang, X. Li, L. Wang, Prog Mater. Sci. 133, 101064 (2023). https://doi.org/10.1016/j.pmatsci.2022.101064

    Article  Google Scholar 

  16. S. Roy, K.-L. Goh, C. Verma, B. Dasgupta Ghosh, K. Sharma, P.K. Maji, ACS Sustain. Chem. Eng. 10, 4694 (2022). https://doi.org/10.1021/acssuschemeng.2c00206

    Article  CAS  Google Scholar 

  17. Y. Tan, J. Yang, Y. Li, X. Li, Q. Wu, Y. Fan, F. Yu, J. Cui, L. Chen, D. Wang, X. Deng, Adv. Mater. 34, 2202167 (2022). https://doi.org/10.1002/adma.202202167

    Article  CAS  Google Scholar 

  18. J. Yao, L. Zhang, F. Yang, Z. Jiao, X. Tao, Z. Yao, Y. Zheng, J. Zhou, Chem. Eng. J. 446, 136945 (2022). https://doi.org/10.1016/j.cej.2022.136945

    Article  CAS  Google Scholar 

  19. L. Zou, C. Lan, S. Zhang, X. Zheng, Z. Xu, C. Li, L. Yang, F. Ruan, S.C. Tan, Nano-Micro Lett. 13, 190 (2021). https://doi.org/10.1007/s40820-021-00709-0

    Article  CAS  Google Scholar 

  20. S. Xuan, H. Yin, G. Li, Z. Zhang, Y. Jiao, Z. Liao, J. Li, S. Liu, Y. Wang, C. Tang, W. Wu, G. Li, K. Yin, ACS Nano. 17, 21749 (2023). https://doi.org/10.1021/acsnano.3c07385

    Article  CAS  PubMed  Google Scholar 

  21. Y. Xiao, F. Liu, H. Shi, L. Hou, G. Qin, C. Yuan, X.W. David, Lou, Adv. Mater. 8, 2301772 (2023). https://doi.org/10.1002/adma.202301772

    Article  CAS  Google Scholar 

  22. X. Ni, C. Li, Y. Lei, Y. Shao, Y. Zhu, B. You, ACS Appl. Mater. Interfaces. 13, 57864 (2021). https://doi.org/10.1021/acsami.1c15239

    Article  CAS  PubMed  Google Scholar 

  23. T. Wang, W. Wang, H. Feng, T. Sun, C. Ma, L. Cao, X. Qin, Y. Lei, J. Piao, C. Feng, Q. Cheng, S. Chen, Chem. Eng. J. 446, 137077 (2022). https://doi.org/10.1016/j.cej.2022.137077

    Article  CAS  Google Scholar 

  24. J. Luo, L. Huo, L. Wang, X. Huang, J. Li, Z. Guo, Q. Gao, M. Hu, H. Xue, J. Gao, Chem. Eng. J. 391, 123537 (2020). https://doi.org/10.1016/j.cej.2022.136945

    Article  CAS  Google Scholar 

  25. Y.-N. Gao, Y. Wang, T.-N. Yue, Y.-X. Weng, M. Wang, J. COLLOID INTERFACE Sci. 582, 112 (2021). https://doi.org/10.1016/j.jcis.2020.08.037

    Article  CAS  PubMed  Google Scholar 

  26. H. He, Y. Qin, Z. Zhu, Q. Jiang, S. Ouyang, Y. Wan, X. Qu, J. Xu, Z. Yu, Nano-Micro Lett. 15, 226 (2023). https://doi.org/10.1007/s40820-023-01200-8

    Article  CAS  Google Scholar 

  27. M. Shekhirev, J. Busa, C.E. Shuck, A. Torres, S. Bagheri, A. Sinitskii, Y. Gogotsi, ACS Nano. 16, 13695 (2022). https://doi.org/10.1021/acsnano.2c04506

    Article  CAS  PubMed  Google Scholar 

  28. J. Zou, J. Wu, Y. Wang, F. Deng, J. Jiang, Y. Zhang, S. Liu, N. Li, H. Zhang, J. Yu, T. Zhai, H.N. Alshareef, Chem. Soc. Rev. 51, 2972 (2022). https://doi.org/10.1039/d0cs01487g

    Article  CAS  PubMed  Google Scholar 

  29. M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Ceram. Int. 47, 17234 (2021). https://doi.org/10.1016/j.ceramint.2021.03.034

    Article  CAS  Google Scholar 

  30. M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao, J. Yuan, Chem. Eng. J. 359, 1265 (2019). https://doi.org/10.1016/j.cej.2018.11.051

    Article  CAS  Google Scholar 

  31. Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang, V. Nicolosi, ACS NANO. 15, 1465 (2021). https://doi.org/10.1021/acsnano.0c08830

    Article  CAS  PubMed  Google Scholar 

  32. X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang, Z. Deng, L. Li, H.-B. Zhang, Z.-Z. Yu, NANO-MICRO Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9

    Article  CAS  Google Scholar 

  33. Y. Li, K. Wu, M. Zhang, X. Yang, W. Feng, P. Wang, K. Li, Y. Zhan, Z. Zhou, Ceram. Int. 48, 37032 (2022). https://doi.org/10.1016/j.ceramint.2022.08.275

    Article  CAS  Google Scholar 

  34. X. Zheng, J. Tang, L. Cheng, H. Yang, L. Zou, C. Li, J. ALLOYS Compd. 934 (2023). https://doi.org/10.1016/j.jallcom.2022.167964

  35. L. Liu, Z. Ma, M. Zhu, L. Liu, J. Dai, Y. Shi, J. Gao, T. Dinh, N. Thanh, L.-C. Tang, P. Song, J. Mater. Sci. Technol. 132, 59 (2023). https://doi.org/10.1016/j.cej.2018.11.051

    Article  CAS  Google Scholar 

  36. Q.-F. Guan, H.-B. Yang, Z.-M. Han, Z.-C. Ling, C.-H. Yin, K.-P. Yang, Y.-X. Zhao, S.-H. Yu, ACS NANO. 15, 7889 (2021). https://doi.org/10.1021/acsnano.1c01247

    Article  CAS  PubMed  Google Scholar 

  37. K. Bhole, N.D. Shivakumar, S.S. Chauhan, S. Tonannavar, Polym. Compos. 43, 977 (2022). https://doi.org/10.1002/pc.26427

    Article  CAS  Google Scholar 

  38. S. Qian, G. Liu, M. Yan, C. Wu, ACS Appl. NANO Mater. 5, 9771 (2022). https://doi.org/10.1021/acsanm.2c01983

    Article  CAS  Google Scholar 

  39. Y. Chen, P. Poetschke, J. Pionteck, B. Voit, H. Qi, ACS Appl. Mater. INTERFACES. 12, 22088 (2020). https://doi.org/10.1021/acsami.9b23052

    Article  CAS  PubMed  Google Scholar 

  40. Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang, C. Liu, A. Wei, X. Xiang, L. Wei, J. Gu, ACS NANO. 14, 8368 (2020). https://doi.org/10.1021/acsnano.0c02401

    Article  CAS  PubMed  Google Scholar 

  41. S.W. Han, K.-D. Kim, H.O. Seo, I.H. Kim, C.S. Jeon, J.E. An, J.H. Kim, S. Uhm, Y.D. Kim, Macromol. Mater. Eng. 302, 1700218 (2017). https://doi.org/10.1002/mame.201700218

    Article  CAS  Google Scholar 

  42. S. Gao, K. Nakane, A. Ohgoshi, T. Isaji, M. Ozawa, Text. Res. J. 88, 1803 (2018). https://doi.org/10.1177/0040517517712093

    Article  CAS  Google Scholar 

  43. G. Hayase, K. Nonomura, G. Hasegawa, K. Kanamori, K. Nakanishi, Chem. Mater. 27, 3 (2015). https://doi.org/10.1021/cm503993n

    Article  CAS  Google Scholar 

  44. Y. Cao, Q. Deng, Z. Liu, D. Shen, T. Wang, Q. Huang, S. Du, N. Jiang, C.-T. Lin, J. Yu, RSC Adv. 7, 20494 (2017). https://doi.org/10.1039/c7ra00184c

    Article  CAS  Google Scholar 

  45. G. Jia, A. Zheng, X. Wang, L. Zhang, L. Li, C. Li, Y. Zhang, L. Cao, Sens. ACTUATORS B-Chem. 346, 130507 (2021). https://doi.org/10.1016/j.snb.2021.130507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff and postgraduate students at Shanghai University of Engineering Science for their assistance in carrying out the superhydrophobic material study.

Funding

This work was supported by Shanghai Natural Science Foundation (21ZR1426200) and National Natural Science Foundation of China (51703123). This research was also supported by Shanghai Engineering Research Center for Clean Production of Textile Chemistry (19DZ2253200).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Conceptualization, methodology, investigation, validation, formal analysis, data curation and first draft of the manuscript was performed by Jun Li and Lihui Xu. The supervision was done by Hong Pan, Yong Shen and Liming Wang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lihui Xu.

Ethics declarations

Ethical approval

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, L., Pan, H. et al. Flexible superhydrophobic fabric with electromagnetic interference shielding based on MXene and cellulose nanofibers. J Porous Mater 31, 945–957 (2024). https://doi.org/10.1007/s10934-024-01571-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-024-01571-2

Navigation