Skip to main content
Log in

Preparation of Al2O3-SiO2 aerogel by ambient pressure drying for thermal insulation application

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Al2O3-SiO2 aerogel (ASA) was prepared by convenient ambient pressure drying using inexpensive AlCl3·H2O as precursor, and silicon was deposited during the aging of aluminum gel. To explore the influence of Chloride ion on the property of ASA, ion exchange technology was used to remove the Chloride ion in the aluminum sol. ASA exhibits a low thermal conductivity of 0.029 W m−1 K−1 at room temperature, and the specific surface area of Cl-free ASA after heat-treated at 1200 °C is 95.2 m2/g, which is higher than that of the chlorine-containing aerogel (11.4 m2/g), showing enhanced thermal stability of ASA. Analysis of XRD and XPS indicate that the removal of chloride ions makes it more difficult for ASA to establish Al–O–Si groups during the aging process, so the γ-Al2O3 and cristobalite phase do not transform to mullite phase at 1200 °C. Due to the better thermal stability of ASA, it has great potential for high-temperature applications in the fields of insulation, thermal protection materials, and building external wall thermal insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Zu, J. Shen, L. Zou et al., Chem. Mater. 25(23), 4757–4764 (2013). https://doi.org/10.1021/cm402900y

    Article  CAS  Google Scholar 

  2. G. Zu, J. Shen, X. Wei et al., J. Non-Cryst. Solids. 357(15), 2903–2906 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.03.031

    Article  CAS  Google Scholar 

  3. M. Shen, X. Jiang, M. Zhang et al., J. Sol-Gel Sci. Technol. 93(2), 281–290 (2019). https://doi.org/10.1007/s10971-019-05204-y

    Article  CAS  Google Scholar 

  4. H. Jia, S. Liu, Z. Mao et al., Ceram. Int. 47(1), 1466–1471 (2021). https://doi.org/10.1016/j.ceramint.2020.08.206

    Article  CAS  Google Scholar 

  5. J.J. Liao, P.Z. Gao, L. Xu et al., J. Adv. Ceram. 7(4), 307–316 (2018). https://doi.org/10.1007/s40145-018-0280-6

    Article  CAS  Google Scholar 

  6. M.E. Ghica, C.M.R. Almeida, M. Fonseca et al., Polymers (Basel). (2020). https://doi.org/10.3390/polym12061278

    Article  PubMed  PubMed Central  Google Scholar 

  7. X. Zhang, F. Wang, L. Dou et al., ACS Nano 14(11), 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423

    Article  CAS  PubMed  Google Scholar 

  8. C. Li, Z. Gong, L. Ding et al., Micro Nano Lett. 13(9), 1240–1244 (2018). https://doi.org/10.1049/mnl.2018.5077

    Article  CAS  Google Scholar 

  9. B. Gao, J. Cao, C. Yao et al., Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.153044

    Article  Google Scholar 

  10. L.F. Posada, M.K. Carroll, A.M. Anderson et al., J. Supercrit Fluids (2019). https://doi.org/10.1016/j.supflu.2019.05.004

    Article  Google Scholar 

  11. L. Courthéoux, F. Popa, E. Gautron et al., J. Non-Cryst. Solids. 350, 113–119 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.06.051

    Article  CAS  Google Scholar 

  12. Y. Funahashi, Y. Xin, K. Kato et al., J. Adv. Ceram. 11(4), 523–531 (2022). https://doi.org/10.1007/s40145-021-0552-4

    Article  CAS  Google Scholar 

  13. B.E. Yoldas, Am. Ceram. Soc. Bull. 54(3), 289–290 (1975)

    CAS  Google Scholar 

  14. J.F. Poco, J.H. Satcher, L.W. Hrubesh, J. Non-Cryst. Solids. 285(1–3), 57–63 (2001). https://doi.org/10.1016/s0022-3093(01)00432-x

    Article  CAS  Google Scholar 

  15. T.F. Baumann, A.E. Gash, S.C. Chinn et al., Chem. Mater. 17(2), 395–401 (2004). https://doi.org/10.1021/cm048800m

    Article  CAS  Google Scholar 

  16. J. Zhu, S. Guo, X. Li, RSC Adv. 5(125), 103656–103661 (2015). https://doi.org/10.1039/c5ra20392a

    Article  CAS  Google Scholar 

  17. X. Zhang, R. Zhang, S. Jin et al., J. Sol-Gel Sci. Technol. 87(2), 486–495 (2018). https://doi.org/10.1007/s10971-018-4679-x

    Article  CAS  Google Scholar 

  18. X. Wu, G. Shao, S. Cui et al., Ceram. Int. 42(1), 874–882 (2016). https://doi.org/10.1016/j.ceramint.2015.09.012

    Article  CAS  Google Scholar 

  19. X. Ji, Q. Zhou, G. Qiu et al., J. Non-Cryst. Solids. 471, 160–168 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.038

    Article  CAS  Google Scholar 

  20. Y. Zhong, Y. Kong, J. Zhang et al., J. Porous Mater. 21(5), 653–658 (2014). https://doi.org/10.1007/s10934-014-9811-x

    Article  CAS  Google Scholar 

  21. X. Li, H. He, L. Ren, J. Porous Mater. 24(3), 679–683 (2016)

    Article  Google Scholar 

  22. S.M. Jones, J. Sol-Gel Sci. Technol. 40(2–3), 351–357 (2006)

    Article  CAS  Google Scholar 

  23. P.H. Dunlap, B.M. Steinetz, D.M. Curry et al., J. Spacecr. Rocket. 40(4), 570–583 (2003)

    Article  Google Scholar 

  24. C. Zhao, F. Chen, S. Dong et al., J. Appl. Polym. Sci. (2022). https://doi.org/10.1002/app.52385

    Article  Google Scholar 

  25. S. Dhomne, A.M. Mahalle, J. Mater. Res. Technol. 8(1), 1532–1537 (2019). https://doi.org/10.1016/j.jmrt.2018.08.002

    Article  CAS  Google Scholar 

  26. N. Jeyakumar, A.C.A. Kayambu, R. Ramasubbu et al., Energ. Source. Part. A. 41(7), 854–865 (2019). https://doi.org/10.1080/15567036.2018.1520364

    Article  CAS  Google Scholar 

  27. S. Wen, H. Ren, J. Zhu et al., J. Porous Mater. 26(4), 1027–1034 (2018). https://doi.org/10.1007/s10934-018-0700-6

    Article  CAS  Google Scholar 

  28. J. Yang, Q. Wang, T. Wang et al., J. Porous Mater. 24(4), 889–897 (2016). https://doi.org/10.1007/s10934-016-0328-3

    Article  CAS  Google Scholar 

  29. R. Zhang, C. Ye, B. Wang, J. Porous Mater. 25(1), 171–178 (2018). https://doi.org/10.1007/s10934-017-0430-1

    Article  CAS  Google Scholar 

  30. H. Li, Y. Chen, P. Wang et al., Ceram. Int. 44(3), 3484–3487 (2018). https://doi.org/10.1016/j.ceramint.2017.11.064

    Article  CAS  Google Scholar 

  31. Z. Shi, H. Gao, X. Wang et al., Microporous Mesoporous Mater. 259, 26–32 (2018). https://doi.org/10.1016/j.micromeso.2017.09.025

    Article  CAS  Google Scholar 

  32. X. Wu, Y. Zhong, Y. Kong et al., J. Porous Mater. 22(5), 1235–1243 (2015). https://doi.org/10.1007/s10934-015-0001-2

    Article  CAS  Google Scholar 

  33. Y. Zhong, G. Shao, X. Wu et al., Rsc Adv. 9(40), 22942–22949 (2019). https://doi.org/10.1039/c9ra03227d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. F.I. Hurwitz, M. Gallagher, T.C. Olin et al., Int. J. Appl. Glas. Sci. 5(3), 276–286 (2014). https://doi.org/10.1111/ijag.12070

    Article  CAS  Google Scholar 

  35. N.S. Nesterov, A.S. Shalygin, V.P. Pakharukova et al., J. Supercrit. Fluids. 149, 110–119 (2019). https://doi.org/10.1016/j.supflu.2019.03.014

    Article  CAS  Google Scholar 

  36. F. Peng, Y. Jiang, J. Feng et al., Chem. Eng. J. 411, 10 (2021)

    Article  Google Scholar 

  37. K. Sridhar, R. Rustum et al., J. Mater. Res. 8(12), 3163–3167 (1993)

    Article  Google Scholar 

  38. X. Wu, G. Shao, X. Shen et al., Rsc Adv. 6(7), 5611–5620 (2016). https://doi.org/10.1039/c5ra19764c

    Article  CAS  Google Scholar 

  39. R. Castellani, A. Poulesquen, F. Goettmann et al., Colloids Surf., A 430, 39–45 (2013). https://doi.org/10.1016/j.colsurfa.2013.03.056

    Article  CAS  Google Scholar 

  40. I.A. Rahman, P. Vejayakumaran, C.S. Sipaut et al., Ceram. Int. 32(6), 691–699 (2006). https://doi.org/10.1016/j.ceramint.2005.05.004

    Article  CAS  Google Scholar 

  41. S.S. Prakash, C.J. Brinker, A.J. Hurd et al., Nature 374(6521), 439–443 (1995)

    Article  CAS  Google Scholar 

  42. K. Kanamori, M. Aizawa, K. Nakanishi et al., Adv. Mater. 19(12), 1589–1593 (2007)

    Article  CAS  Google Scholar 

  43. V. Paunovic, S. Mitchell, R. Verel et al., Phys. Chem. C. 124(1), 722–773 (2020). https://doi.org/10.1021/acs.jpcc.9b09984

    Article  CAS  Google Scholar 

  44. M. Sakhalkar, R.P. Choudhury, V. Bhakthavatsalam et al., J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128936

    Article  Google Scholar 

  45. Y. Bi, H. Ren, L. He et al., Mater. Lett. 139, 205–207 (2015). https://doi.org/10.1016/j.matlet.2014.10.091

    Article  CAS  Google Scholar 

  46. H. Chen, X. Sui, C. Zhou et al., J. Ceram. Soc. Jpn. 124(4), 442–447 (2016). https://doi.org/10.2109/jcersj2.15184

    Article  CAS  Google Scholar 

  47. A.N. Mitropoulos, F.J. Burpo, C.K. Nguyen et al., Materials (Basel). (2019). https://doi.org/10.3390/ma12060894

    Article  PubMed  PubMed Central  Google Scholar 

  48. F.D. Sun, Z.J. Hu, J.N. Li et al., Ceram. Int. 40(8), 11787–11793 (2014). https://doi.org/10.1016/j.ceramint.2014.04.008

    Article  CAS  Google Scholar 

  49. Y. Wang, Z. Chen, S. Yu et al., Compos. Part. B-Eng. 129, 180–186 (2017). https://doi.org/10.1016/j.compositesb.2017.07.068

    Article  CAS  Google Scholar 

  50. Z.C. Hu, S.H. Meng, J.P. Li et al., Compos Part A-Appl S. (2020). https://doi.org/10.1016/j.compositesa.2020.105799

    Article  Google Scholar 

  51. J. Li, J. Rui, Y. Li et al., Int. J. Appl. Ceram. Tec. (2023). https://doi.org/10.1111/ijac.14356

    Article  Google Scholar 

  52. X.L. Lan, H.R. Zhao, B.X. Zhang et al., Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.130727

    Article  Google Scholar 

  53. Q. Tian, N. Wu, B. Wang et al., Mater. Lett. 239, 109–112 (2019). https://doi.org/10.1016/j.matlet.2018.12.077

    Article  CAS  Google Scholar 

  54. B. Tang, Y. Wang, L. Hu et al., J. Eng. Fiber. Fabr. (2019). https://doi.org/10.1177/1558925019884691

    Article  Google Scholar 

  55. P. Pazhamalai, K. Krishnamoorthy, S. Sahoo et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123886

    Article  Google Scholar 

  56. L. Ding, J. Liao, Y. Zhang, Coll. Surfaces A Physicochem. Eng. Aspects. (2021). https://doi.org/10.1016/j.colsurfa.2020.125980

    Article  Google Scholar 

  57. Y.L. Liu, T.T. Yang, L. Zhu et al., Fusion Eng. Des. (2022). https://doi.org/10.1016/j.fusengdes.2022.113134

    Article  Google Scholar 

  58. H. Yu, Z. Tong, S. Yue et al., J. Eur. Ceram. Soc. 41(1), 580–589 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding supports from National Natural Science Foundation of China (Grant. No.: 51972222).

Author information

Authors and Affiliations

Authors

Contributions

WZ: Conceptualization, Experimentalize, Data curation, Writing – original draft. YJ: Data curation. YP: Validation. XL: Supervision. HJ: Supervision Review & Editing.

Corresponding author

Correspondence to Huiming Ji.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Ji, Y., Pang, Y. et al. Preparation of Al2O3-SiO2 aerogel by ambient pressure drying for thermal insulation application. J Porous Mater 30, 1753–1761 (2023). https://doi.org/10.1007/s10934-023-01457-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01457-9

Keywords

Navigation