Skip to main content
Log in

Fast production of silica aerogel using methyltrimethoxysilane by ambient drying process for superior chemical adsorption properties

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Nanoscale silica aerogels have a large surface area, low density, high porosity, and poor electrical and thermal conductivity. Sol–gel involves supercritical drying of wet silica gels to make silica aerogels that limit synthesis due to efficiency and costs. Ambient pressure drying utilizing methyltrimethoxysilane as a precursor is expected to increase commercially. The method produces silica aerogels with a very low bulk density and a high specific surface area of 0.083 g/cm3 and 787 m2/g, respectively, with an average pore diameter of 18.7 nm at a MeOH/MTMS molar ratio of 1::35. This aerogel has contact angle as high as 153° and exhibits remarkable chemical absorption (5–11 times) and recyclability for substances such as organic liquids and oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.S. Kistler, Coherent expanded aerogels. J. Phys. Chem. 36(1), 52–64 (1932). https://doi.org/10.1021/j150331a003

    Article  CAS  Google Scholar 

  2. J. Sharma, J. Sheikh, B.K. Behera, Aerogel composites and blankets with embedded fibrous material by ambient drying: Reviewing their production characteristics and potential applications. Dry. Technol. (2022). https://doi.org/10.1080/07373937.2022.2162918

    Article  Google Scholar 

  3. S. De Pooter, S. Latré, F. Desplentere, D. Seveno, Optimized synthesis of ambient pressure dried thermal insulating silica aerogel powder from non-ion exchanged water glass. J. Non Cryst. Solids 499, 217–226 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.028

    Article  CAS  Google Scholar 

  4. J.L. Gurav, A. Venkateswara Rao, D.Y. Nadargi, Study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogel dried at ambient pressure. J. Sol-Gel Sci. Technol. 50(3), 275–280 (2009). https://doi.org/10.1007/s10971-009-1938-x

    Article  CAS  Google Scholar 

  5. R. Mishra, B.K. Behera, M. Muller, M. Petru, Finite element modeling based thermodynamic simulation of aerogel embedded nonwoven thermal insulation material. Int. J. Therm. Sci. 164, 106898 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.106898

    Article  CAS  Google Scholar 

  6. A.A. Fernández-Marín, N. Jiménez, J.P. Groby, J. Sánchez-Dehesa, V. Romero-García, Aerogel-based metasurfaces for perfect acoustic energy absorption. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5109084

    Article  Google Scholar 

  7. S. Caponi et al., Acoustic attenuation in silica porous systems. J. Non Cryst. Solids 322(1–3), 29–34 (2003). https://doi.org/10.1016/S0022-3093(03)00167-4

    Article  CAS  Google Scholar 

  8. V. Gibiat, O. Lefeuvre, T. Woignier, J. Pelous, J. Phalippou, Acoustic properties and potential applications of silica aerogels. J. Non Cryst. Solids 186, 244–255 (1995). https://doi.org/10.1016/0022-3093(95)00049-6

    Article  CAS  Google Scholar 

  9. A. Parvathy Rao, A. Venkateswara Rao, Modifying the surface energy and hydrophobicity of the low-density silica aerogels through the use of combinations of surface-modification agents. J. Mater. Sci. 45(1), 51–63 (2010). https://doi.org/10.1007/s10853-009-3888-7

    Article  CAS  Google Scholar 

  10. Y. Pan et al., A fast synthesis of silica aerogel powders-based on water glass via ambient drying. J. Sol-Gel Sci. Technol. 82(2), 594–601 (2017). https://doi.org/10.1007/s10971-017-4312-4

    Article  CAS  Google Scholar 

  11. S. Alwin, X. Sahaya Shajan, Aerogels: promising nanostructured materials for energy conversion and storage applications. Mater. Renew. Sustain. Energy 9(2), 1–27 (2020). https://doi.org/10.1007/S40243-020-00168-4/FIGURES/17

    Article  Google Scholar 

  12. Q. Wang et al., Synthesis, characterization, and adsorption properties of silica aerogels crosslinked with diisocyanate under ambient drying. J. Mater. Sci. 51(20), 9472–9483 (2016). https://doi.org/10.1007/s10853-016-0191-2

    Article  CAS  Google Scholar 

  13. L. Durães, T. Matias, R. Patrício, A. Portugal, Silica based aerogel-like materials obtained by quick microwave drying. Materwiss. Werksttech. 44(5), 380–385 (2013). https://doi.org/10.1002/mawe.201300140

    Article  CAS  Google Scholar 

  14. Z.T. Mazraeh-shahi, A.M. Shoushtari, A.R. Bahramian, M. Abdouss, Synthesis, structure and thermal protective behavior of silica aerogel/PET nonwoven fiber composite. Fibers Polym. 15(10), 2154–2159 (2014). https://doi.org/10.1007/s12221-014-2154-z

    Article  CAS  Google Scholar 

  15. J. Shen et al., Carbon aerogel films synthesized at ambient conditions. J. Sol-Gel Sci. Technol. 31(1–3), 209–213 (2004). https://doi.org/10.1023/B:JSST.0000047989.39431.d5

    Article  CAS  Google Scholar 

  16. U.K.H. Bangi, I.K. Jung, C.S. Park, S. Baek, H.H. Park, Optically transparent silica aerogels based on sodium silicate by a two step sol-gel process and ambient pressure drying. Solid State Sci. 18, 50–57 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.12.016

    Article  CAS  Google Scholar 

  17. I. Smirnova, S. Suttiruengwong, W. Arlt, Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J. Non Cryst. Solids 350, 54–60 (2004). https://doi.org/10.1016/J.JNONCRYSOL.2004.06.031

    Article  CAS  Google Scholar 

  18. C.A. García-González, M. Alnaief, I. Smirnova, Polysaccharide-based aerogels—Promising biodegradable carriers for drug delivery systems. Carbohydr. Polym. 86(4), 1425–1438 (2011). https://doi.org/10.1016/J.CARBPOL.2011.06.066

    Article  Google Scholar 

  19. M.V. Khedkar, S.B. Somvanshi, A.V. Humbe, K.M. Jadhav, Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. J. Non Cryst. Solids 511, 140–146 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.02.004

    Article  CAS  Google Scholar 

  20. S. Yun, H. Luo, Y. Gao, Ambient-pressure drying synthesis of large resorcinol-formaldehyde- reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J. Mater. Chem. A 2(35), 14542–14549 (2014). https://doi.org/10.1039/c4ta02195a

    Article  CAS  Google Scholar 

  21. M. Guglielmi, Sol-gel science. Mater. Chem. Phys. 26(2), 211–212 (1990). https://doi.org/10.1016/0254-0584(90)90039-d

    Article  Google Scholar 

  22. A.C. Pierre, M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102(11), 4243–4266 (2002). https://doi.org/10.1021/cr0101306

  23. S. Yue, X. Li, H. Yu, Z. Tong, Z. Liu, Preparation of high-strength silica aerogels by two-step surface modification via ambient pressure drying. J. Porous Mater. 28(3), 651–659 (2021). https://doi.org/10.1007/s10934-020-00990-1

    Article  CAS  Google Scholar 

  24. A.V.P.V. Rao, A.V.P.V. Rao, G.M. Pajonk, Hydrophobic and physical properties of the two step processed ambient pressure dried silica aerogels with various exchanging solvents. J. Sol-Gel Sci. Technol. 36(3), 285–292 (2005). https://doi.org/10.1007/s10971-005-4662-1

    Article  CAS  Google Scholar 

  25. C. Yao, X. Dong, G. Gao, F. Sha, D. Xu, Microstructure and adsorption properties of MTMS / TEOS co-precursor silica aerogels dried at ambient pressure. J. Non Cryst. Solids (2021). https://doi.org/10.1016/J.JNONCRYSOL.2021.120778

    Article  Google Scholar 

  26. Y. Zhang et al., Rapid synthesis of dual-mesoporous silica aerogel with excellent adsorption capacity and ultra-low thermal conductivity. J. Non Cryst. Solids 555, 120547 (2021). https://doi.org/10.1016/J.JNONCRYSOL.2020.120547

    Article  CAS  Google Scholar 

  27. J. Ren et al., Transparent, robust, and machinable hybrid silica aerogel with a ‘rigid-flexible’ combined structure for thermal insulation, oil/water separation, and self-cleaning. J. Colloid Interface Sci. 623, 1101–1110 (2022). https://doi.org/10.1016/J.JCIS.2022.05.100

    Article  CAS  Google Scholar 

  28. Z.H. Zhang et al., Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation. J. Mater. Sci. Technol. 114, 131–142 (2022). https://doi.org/10.1016/J.JMST.2021.11.012

    Article  CAS  Google Scholar 

  29. Y.X. Qu et al., Facile synthesis of mechanically flexible and super-hydrophobic silicone aerogels with tunable pore structure for efficient oil-water separation. Mater. Today Chem. (2022). https://doi.org/10.1016/J.MTCHEM.2022.101068

    Article  Google Scholar 

  30. J. He et al., Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard Mater. 346, 199–207 (2018). https://doi.org/10.1016/J.JHAZMAT.2017.12.045

    Article  CAS  PubMed  Google Scholar 

  31. M. Yang, Z. Chen, T. Liu, Q. Wu, L. Yang, Ultralight and robustly compressible silica aerogel enhanced by AC/C sponge with high oil/water separation. J. Porous Mater. 29, 523–530 (2022). https://doi.org/10.1007/s10934-021-01172-3

    Article  CAS  Google Scholar 

  32. S. Sert Çok, F. Koç, N. Gi̇zli̇, Lightweight and highly hydrophobic silica aerogels dried in ambient pressure for an efficient oil/organic solvent adsorption. J. Hazard Mater. (2021). https://doi.org/10.1016/J.JHAZMAT.2020.124858

    Article  PubMed  Google Scholar 

  33. M. Namvar, M. Mahinroosta, A. Allahverdi, K. Mohammadzadeh, Preparation of monolithic amorphous silica aerogel through promising valorization of silicomanganese slag. J. Non Cryst. Solids 586, 121561 (2022). https://doi.org/10.1016/J.JNONCRYSOL.2022.121561

    Article  CAS  Google Scholar 

  34. M. Shen, X. Jiang, M. Zhang, M. Guo, Synthesis of SiO2–Al2O3 composite aerogel from fly ash: a low-cost and facile approach. J. Sol-Gel Sci. Technol. 93(2), 281–290 (2020). https://doi.org/10.1007/S10971-019-05204-Y/TABLES/4

    Article  CAS  Google Scholar 

  35. S. Wen, J. Zhu, Q. Yin, Y. Bi, H. Ren, L. Zhang, Fabrication of infrared opacifiers loaded Al2O3 aerogel-SiO2 fiber mat composites with high thermal resistance. Int. J. Nanosci. (2020). https://doi.org/10.1142/S0219581X19500212

    Article  Google Scholar 

  36. S. Wen, H. Ren, J. Zhu, Y. Bi, L. Zhang, Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance. J. Porous Mater. 26(4), 1027–1034 (2019). https://doi.org/10.1007/S10934-018-0700-6/FIGURES/6

    Article  CAS  Google Scholar 

  37. L. Yan, H. Ren, J. Zhu, Y. Bi, L. Zhang, One-step eco-friendly fabrication of classically monolithic silica aerogels via water solvent system and ambient pressure drying. J. Porous Mater. 26(3), 785–791 (2019). https://doi.org/10.1007/S10934-018-0674-4/FIGURES/7

    Article  CAS  Google Scholar 

  38. J. Zhu, H. Ren, Y. Bi, Facile fabrication of machinable low-density moisture-resistant silica aerogels. J. Porous Mater. 26(2), 399–407 (2019). https://doi.org/10.1007/S10934-018-0617-0/FIGURES/7

    Article  CAS  Google Scholar 

  39. J. Zhu, H. Ren, Y. Bi, Opacified graphene-doped silica aerogels with controllable thermal conductivity. J. Porous Mater. 25(6), 1697–1705 (2018). https://doi.org/10.1007/S10934-018-0583-6/SCHEMES/2

    Article  CAS  Google Scholar 

  40. M. Firoozmandan, J. Moghaddas, N. Yasrebi, Performance of water glass-based silica aerogel for adsorption of phenol from aqueous solution. J. Sol-Gel Sci. Technol. 79(1), 67–75 (2016). https://doi.org/10.1007/s10971-016-4007-2

    Article  CAS  Google Scholar 

  41. X. Xu et al., Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: catalyst-free synthesis and its application in energy storage devices. Adv. Funct. Mater. 25(21), 3193–3202 (2015). https://doi.org/10.1002/adfm.201500538

    Article  CAS  Google Scholar 

  42. S. Iswar et al., Dense and strong, but superinsulating silica aerogel. Acta Mater. 213, 116959 (2021). https://doi.org/10.1016/J.ACTAMAT.2021.116959

    Article  CAS  Google Scholar 

  43. N.D. Hegde, A. Venkateswara Rao, Physical properties of methyltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol-gel process. J. Mater. Sci. 42(16), 6965–6971 (2007). https://doi.org/10.1007/s10853-006-1409-5

    Article  CAS  Google Scholar 

  44. R.B. Torres, J.P. Vareda, A. Lamy-Mendes, L. Durães, Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels. J. Supercrit. Fluids 147, 81–89 (2019). https://doi.org/10.1016/j.supflu.2019.02.010

    Article  CAS  Google Scholar 

  45. L.W. Hrubesh, P.R. Coronado, J.H. Satcher, Solvent removal from water with hydrophobic aerogels. J. Non Cryst. Solids 285(1–3), 328–332 (2001). https://doi.org/10.1016/S0022-3093(01)00475-6

    Article  CAS  Google Scholar 

  46. T. Katakabe, T. Kaneko, M. Watanabe, T. Fukushima, T. Aida, Electric double-layer capacitors using ‘Bucky Gels’ consisting of an ionic liquid and carbon nanotubes. J. Electrochem. Soc. 152(10), A1913 (2005). https://doi.org/10.1149/1.2001187

    Article  CAS  Google Scholar 

  47. X. Guo et al., Facile synthesis of flexible methylsilsesquioxane aerogels with surface modifications for sound-absorbance, fast dye adsorption and oil/water separation. Molecules (2018). https://doi.org/10.3390/MOLECULES23040945

    Article  PubMed  PubMed Central  Google Scholar 

  48. J. Ding et al., Flexible and super hydrophobic polymethylsilsesquioxane based silica aerogel for organic solvent adsorption via ambient pressure drying technique. Powder Technol. 373, 716–726 (2020). https://doi.org/10.1016/J.POWTEC.2020.07.024

    Article  CAS  Google Scholar 

  49. J. Wang, H. Wang, Facile synthesis of flexible mesoporous aerogel with superhydrophobicity for efficient removal of layered and emulsified oil from water. J. Colloid Interface Sci. 530, 372–382 (2018). https://doi.org/10.1016/J.JCIS.2018.07.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JS: conceptualisation, main draft writing, experimental. SS: editing, figures, and tables. BKB: supervision.

Corresponding author

Correspondence to Jaya Sharma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J., Shukla, S. & Behera, B.K. Fast production of silica aerogel using methyltrimethoxysilane by ambient drying process for superior chemical adsorption properties. J Porous Mater 30, 1663–1673 (2023). https://doi.org/10.1007/s10934-023-01455-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01455-x

Keywords

Navigation