Skip to main content
Log in

Highly sensitive detection of methyl parathion based on morning glory-like porous carbon nanosheets modified electrochemical sensor

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

In this work, we proposed a template-free synthesis strategy for the preparation of morning glory-like porous carbon nanosheets (MGPCS) with three-dimensional (3D) interconnected porous carbon structure, which was applied to modify the glassy carbon electrode (GCE) for the fabrication of methyl parathion (MP) electrochemical sensor (MGPCS/GCE). MGPCS was successfully prepared by a template-free synthesis strategy with sodium citrate as carbon source. Benefitting from the high-temperature thermal decomposition and acid treatment process, the sodium citrate-derived MGPCS sample presented 3D interconnected morning glory-like porous carbon structure with good electrical conductivity, which provided more efficient charge transfer channels. In particular, the morning glory-like surface morphology significantly increased the specific surface area and adsorption capacity of sensing electrode. Under the optimal conditions, the fabricated MGPCS/GCE sensor showed highly sensitive MP detection property with low limit of detection of 10.7 nM (Linear MP concentration: 0.1–15 µM). Moreover, the fabricated sensor presented good reproducibility, repeatability, stability, and selectivity. The good practical performance of the MGPCS/GCE sensor was confirmed by detecting the MP amount in apple juice and peach juice samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.M. Aloizou, V. Siokas, C. Vogiatzi, E. Peristeri, A.O. Docea, D. Petrakis et al., Pesticides, cognitive functions and dementia: a review. Toxicol. Lett. 326, 31–51 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. S. Huo, H. Zhao, J. Dong, J. Xu, Facile synthesis of ordered mesoporous zirconia for electrochemical enrichment and detection of organophosphorus pesticides. Electroanalysis 30, 2121–2130 (2018)

    Article  CAS  Google Scholar 

  3. H. Zhao, B. Liu, Y. Li, B. Li, H. Ma, S. Komarneni, One-pot green hydrothermal synthesis of bio-derived nitrogen-doped carbon sheets embedded with zirconia nanoparticles for electrochemical sensing of methyl parathion. Ceram. Int. 46, 19713–19722 (2020)

    Article  CAS  Google Scholar 

  4. J. Yuan, L. Jiang, X. Tan, Y. Yue, H. Shi, S. Feng, Fabrication of zr(IV) modified gold electrode via layer-by-layer self-assembly for methyl parathion. J. Electrochem. Soc. 167, 027519 (2020)

    Article  CAS  Google Scholar 

  5. A.K. Ravi, N. Punnakkal, S. Punathil Vasu, B.G. Nair, S.B. T.G, manganese dioxide based electrochemical sensor for the detection of nitro-group containing organophosphates in vegetables and drinking water samples. J. Electroanal. Chem. 859, 113841 (2020)

    Article  CAS  Google Scholar 

  6. G.K. Sidhu, S. Singh, V. Kumar, D.S. Dhanjal, S. Datta, J. Singh, Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Crit. Rev. in Env Sci. Tec. 49, 1135–1187 (2019)

    Article  CAS  Google Scholar 

  7. Y. Zeng, D. Yu, Y. Yu, T. Zhou, G. Shi, Differential pulse voltammetric determination of methyl parathion based on multiwalled carbon nanotubes-poly(acrylamide) nanocomposite film modified electrode. J. Hazard. Mater. 217–218, 315 – 22 (2012)

  8. H. Parham, N. Rahbar, Square wave voltammetric determination of methyl parathion using ZrO2-nanoparticles modified carbon paste electrode. J. Hazard. Mater. 177, 1077–1084 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. L. Chen, X. Dang, Y. Ai, H. Chen, Preparation of an acryloyl beta-cyclodextrin-silica hybrid monolithic column and its application in pipette tip solid-phase extraction and HPLC analysis of methyl parathion and fenthion. J. Sep. Sci. 41, 3508–3514 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. V.A. Muckoya, P.N. Nomngongo, J.C. Ngila, Determination of organophosphorus pesticides in wastewater samples using vortex-assisted dispersive liquid–liquid microextraction with liquid chromatography–mass spectrometry. Int. J. Environmen Sci. Technol. 17, 2325–2336 (2020)

    Article  CAS  Google Scholar 

  11. D. Pan, S. Ma, X. Bo, L. Guo, Electrochemical behavior of methyl parathion and its sensitive determination at a glassy carbon electrode modified with ordered mesoporous carbon. Microchim. Acta 173, 215–221 (2011)

    Article  CAS  Google Scholar 

  12. R. Shanmugam, S. Manavalan, S.-M. Chen, M. Keerthi, L.-H. Lin, Methyl parathion detection using SnS2/N, S–Co-Doped reduced graphene oxide nanocomposite. ACS Sustain. Chem. Eng. 8, 11194–11203 (2020)

    Article  CAS  Google Scholar 

  13. T. Tao, Y. Zhou, C. He, H. He, M. Ma, Z. Cai et al., Highly sensitive methyl parathion sensor based on Au-ZrO2 nanocomposites modified graphene electrochemical transistor. Electrochim. Acta 357, 136836 (2020)

    Article  CAS  Google Scholar 

  14. L. Liu, M. Qian, H. Sun, Z. Yang, L. Xiao, X. Gong et al., A highly sensitive fluorescence probe for methyl parathion detection in vegetable and fruit samples based on N and S co-doped carbon dots. J. Food Compos. Anal. 107, 104374 (2022)

    Article  CAS  Google Scholar 

  15. J. Hou, J. Dong, H. Zhu, X. Teng, S. Ai, M. Mang, A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots. Biosens. Bioelectron. 68, 20–26 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. C. Wang, J. Zhong, J. Hu, G. Zhang, Sensitive detection of Methyl Parathion in Human urine using carboxyl-group Functionalized Carbon Nanotubes/Carbon Paper-Based Electrochemical Sensor. Int. J. Electrochem. Sci. 16, 151003 (2021)

    Article  CAS  Google Scholar 

  17. R. Liu, Y. Wang, D. Li, L. Dong, B. Li, B. Liu et al., A. Simple, Low-cost and efficient β-CD/MWCNTs/CP-based Electrochemical Sensor for the Rapid and Sensitive Detection of Methyl Parathion. Int. J. Electrochem. Sci. 9785–9795 (2019)

  18. M. Ghalkhani, S. Maghsoudi, R. Saeedi, S.S. Khaloo, Ultrasensitive quantification of paraquat using a newly developed sensor based on silver nanoparticle-decorated carbon nanotubes. J Iran. Chem Soc 16, 1301–1309 (2019)

    Article  CAS  Google Scholar 

  19. M. Ghalkhani, S.S. Khaloo, R.A. Mirzaie, Klonopin assay using modified electrode with multiwalled carbon nanotubes and poly melamine nanocomposite. Mater. Sci. Eng. C Mater. Biol. Appl. 99, 121–128 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. M. Ghalkhani, E.M. Khosrowshahi, E. Sohouli, Carbon nano-onions: Synthesis, Characterization, and Application, Handbook of Carbon-Based Nanomaterials (Elsevier, Amsterdam, 2021), pp. 159–207

    Google Scholar 

  21. S. Manavalan, P. Veerakumar, S.M. Chen, K.C. Lin, Three-dimensional zinc oxide nanostars anchored on graphene oxide for voltammetric determination of methyl parathion. Microchim. Acta 187, 17 (2019)

    Article  Google Scholar 

  22. Y. Lv, T. Yang, X. Hou, Z. Fang, K. Rajan, Y. Di et al., Zirconia nanofibers-loaded reduced graphene oxide fabrication for specific electrochemical detection of methyl parathion. J. Alloy Compd. 904, 163798 (2022)

    Article  CAS  Google Scholar 

  23. F. Li, R. Liu, V. Dubovyk, Q. Ran, H. Zhao, S. Komarneni, Rapid determination of methyl parathion in vegetables using electrochemical sensor fabricated from biomass-derived and β-cyclodextrin functionalized porous carbon spheres. Food Chem. 384, 132643 (2022)

    Article  CAS  PubMed  Google Scholar 

  24. H. Zhao, G. Zhu, F. Li, Y. Liu, M. Guo, L. Zhou et al., 3D interconnected honeycomb-like ginkgo nut-derived porous carbon decorated with β-cyclodextrin for ultrasensitive detection of methyl parathion. Sens. Actuat B: Chem 380, 133309 (2023)

    Article  CAS  Google Scholar 

  25. F. Li, R. Liu, V. Dubovyk, Q. Ran, B. Li, Y. Chang et al., Three-dimensional hierarchical porous carbon coupled with chitosan based electrochemical sensor for sensitive determination of niclosamide. Food Chem. 366, 130563 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. J. Liu, X. Li, W. Weng, H. Xie, G. Luo, Y. Niu et al., A biomass-derived porous carbon-based nanocomposite for voltammetric determination of quercetin. Microchem. Acta 186, 783 (2019)

    Article  CAS  Google Scholar 

  27. R. Liu, B. Li, F. Li, V. Dubovyk, Y. Chang, D. Li et al., A novel electrochemical sensor based on beta-cyclodextrin functionalized carbon nanosheets@carbon nanotubes for sensitive detection of bactericide carbendazim in apple juice. Food Chem. 384, 132573 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. H. Zhao, Q. Ran, Y. Li, B. Li, B. Liu, H. Ma et al., Highly sensitive detection of gallic acid based on 3D interconnected porous carbon nanotubes/carbon nanosheets modified glassy carbon electrode. J. Mater. Res. Technol. 9, 9422–9433 (2020)

    Article  CAS  Google Scholar 

  29. W. Yang, W. Yang, F. Ding, L. Sang, Z. Ma, G. Shao, Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111, 419–427 (2017)

    Article  CAS  Google Scholar 

  30. L. Dong, L. Fan, D. Yigang, Hierarchical porous carbon derived from pyrolysis of sodium citrate for sensitive determination of dopamine and uric acid. J. Electrochem. Soc. 166, B1585–B1593 (2019)

    Article  CAS  Google Scholar 

  31. R. Liu, Y. Chang, F. Li, V. Dubovyk, D. Li, Q. Ran et al., Highly sensitive detection of carbendazim in juices based on mung bean-derived porous carbon@chitosan composite modified electrochemical sensor. Food Chem. 392, 133301 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. H. Zhao, Y. Chang, R. Liu, B. Li, F. Li, F. Zhang et al., Facile synthesis of Vulcan XC-72 nanoparticles-decorated halloysite nanotubes for the highly sensitive electrochemical determination of niclosamide. Food Chem. 343, 128484 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. Y. Yao, L. Zhang, X. Duan, J. Xu, W. Zhou, Y. Wen, Differential pulse striping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes. Electrochim. Acta 127, 86–94 (2014)

    Article  CAS  Google Scholar 

  34. M. Ghalkhani, E. Sohouli, Synthesis of the decorated carbon nano onions with aminated MCM-41/Fe3O4 NPs: morphology and electrochemical sensing performance for methotrexate analysis. Micropor. Mesopor. Mat. 331, 111658 (2022)

    Article  CAS  Google Scholar 

  35. D. Li, H. Zhao, G. Wang, J. Rinklebe, S.S. Lam, R. Liu et al., Ultrasensitive determination of diquat using a novel nanohybrid sensor based on Super-P nanoparticles dispersed palygorskite nanofibers. Sens. Actuat B: Chem Sens. Actuat B: Chem 367, 132142 (2022)

    Article  CAS  Google Scholar 

  36. H. Zhao, B. Li, R. Liu, Y. Chang, H. Wang, L. Zhou et al., Ultrasonic-assisted preparation of halloysite nanotubes/zirconia/carbon black nanocomposite for the highly sensitive determination of methyl parathion. Mater. Sci. Eng. C Mater. Biol. Appl. 123, 111982 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the University Students’ Innovation and Pioneering Project (No. 202210467017) and Postdoctoral Research Project of Henan Province (No. 202102098).

Funding

The research was supported the University Students’ Innovation and Pioneering Project (No. 202210467017) and Postdoctoral Research Project of Henan Province (No. 202102098).

Author information

Authors and Affiliations

Authors

Contributions

XW and QW conceived and designed the experiment. XW, QW and XG analyzed the data and wrote the manuscript. XW, QW, XG, LC and TE conducted experiments or provided materials and put forward valuable suggestions. HZ supervised the work, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongyuan Zhao.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, X., Wang, Q., Guo, X. et al. Highly sensitive detection of methyl parathion based on morning glory-like porous carbon nanosheets modified electrochemical sensor. J Porous Mater 30, 1533–1542 (2023). https://doi.org/10.1007/s10934-023-01439-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01439-x

Keywords

Navigation