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Abstract
Developing degradable filter membranes that inhibit bacterial infection for preventing particle matter and infectious disease 
has been a research hotspot. Here, the fiber membranes of polylactic acid (PLA)/HKUST-1 with porous structure through the 
entire fiber matrix were prepared by electrospinning method. Due to the HKUST-1 incorporation and the presence of pore 
through fiber, the hydrophobicity of prepared membranes had been improved. The PLA/HKUST-1 membranes exhibited the 
good antibacterial activity against Escherichia coli and Staphylococcus aureus, and the antibacterial rate for S. aureus reached 
99.99%. The filtration performance of PLA/HKUST-1 membranes was better than that of the melt-blown fabric although 
their thickness was only about one-third of the thickness of the currently commercial polypropylene melt-blown fabric.
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1 Introduction

The effects of particulate matter (PM) with different sizes 
and highly infectious diseases such as COVID-19 on the 
human health have driven mankind to develop more effective 
protective materials [1–3]. Among them, the filter membrane 
is one of the most important materials, which can be widely 
used in various protective equipment such as protective face 
masks and antismog window screens. The electrospinning 
fiber membranes in filtration application have attracted con-
siderable attention due to their small diameter, high surface-
to-volume ratio, small inter-fiber pore sizes, low-cost and 
relatively high production rate [4–11], etc. By incorporating 
appropriate polymers with functional materials, degradable 
filter membranes can be prepared to solve the environmental 
problems caused by common non-degradable filter materi-
als, and at the same time, the membranes can be endowed 
with functions such as antibacterial properties [12–14].

The morphology, hydrophilicity or hydrophobicity, filtra-
tion efficiency and pressure drop of the electrospinning com-
posite membranes can be controlled by changing contents of 
particles added into the polymer matrix because the presence 

of particles could influence the roughness, chemistry, and 
porosity of the surface of the prepared membranes [15–17]. 
The incorporation of particles into electrospinning polymer 
nanofibers have been explored working in drug delivery [18, 
19], water treatment, air filtration and antibacterial applica-
tions [14, 20–22]. A lot kind of particles such as  SiO2, Ag, 
 TiO2, and graphene oxides have been used for different pur-
poses [23, 24]. Porous structures on the electrospinning fiber 
surface or through the entire fiber matrix can increase the 
surface to volume and broaden the range of applications for 
membranes. The preparation of porous polymer nanofibers 
with high surface areas is still a challenge.

Metal–organic frameworks (MOFs) are formed by the 
coordination of metal ions with organic ligands, and have 
the advantages of high specific surface area, large porosity, 
variable structure, and adjustable channel [24–26]. MOFs 
have become the attractive antimicrobial materials for appli-
cations in which a tunable antibacterial agent is required. 
Different from the action mechanism of small molecular 
antibacterial agents, the antibacterial performance of MOFs 
is mainly due to release of metal ions (such as  Ag+,  Cu2+, 
 Zn2+, and  Co2+) from structure collapse, which destroy the 
cell membrane, lipid peroxidation, and DNA degradation to 
kill bacteria [27–30].

In this study, the fiber membranes with a porous structure 
consisted of polylactic acid (PLA) and HKUST-1 were pre-
pared by electrospinning method. PLA was a biodegradable 
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polymer [31], which could be degraded into  CO2 and  H2O. 
As a kind of Cu-MOFs, HKUST-1 had previously been 
reported to have good antibacterial activity against Candida 
albicans, Aspergillus niger and Aspergillus oryzae etc. [1, 
12]. Therefore, the prepared membranes had biodegrada-
bility and antibacterial performance. When they were used 
as filter material, they could overcome the environmental 
problems caused by the non-degradable polypropylene melt 
blown cloth which was widely used as at present. In addi-
tion, due to its good antibacterial performance, the mem-
branes could reduce the influence of bacteria and other 
microorganisms in the air on people’s health.

2  Experimental

2.1  The preparation of HKUST‑1

HKUST-1 was synthesized by the hydrothermal method 
[30]. Cu(NO3)2⋅3H2O (12 mM) was dissolved in 25 mL 
of deionized water and 8 mM of  H3BTC was dissolved in 
25 mL of DMF. At room temperature, the two solutions were 
mixed and stirred for 10 min. The mixture was transferred 
into the reaction kettle and kept in the oven at 105 ℃ for 
24 h. The HKUST-1 particles were obtained by centrifu-
gation and washed with water and ethanol for three times, 
respectively.

2.2  Preparation of the fiber membranes

PLA (18 g) and 105.6 g of dichloromethane (DCM) were 
added to a round-bottomed flask, and the mixture was sealed 
and stirred for 2 h to dissolve PLA in DCM completely. The 
HKUST-1 particles in DMF suspension were put it into the 
above round-bottomed flask and stirred to obtain electro-
spinning solution (The HKUST-1 content was 0, 0.6, and 
3.0 wt% of the PLA mass and the ratio of DCM to DMF 
was 8:2). Then, the spinning solution was pit into a syringe. 
The electrospinning process proceeded under 18 kV. The 
receiving distance was set as 17 cm and the pushing injec-
tion speed was 0.004 mm/s. The temperature and the humid-
ity were controlled at about 40 ℃ and 50–80% respectively. 
The fiber membranes with a thickness of about 0.036 mm 
were obtained and named as PLA, PLA-K0.6 and PLA-K3 
according to the content of HKUST-1 (0, 0.6, and 3.0 wt%) 
in sequence. Figure 1 showed the preparation process of 
membranes.

2.3  General characterization

Field emission scanning electron microscope (FEI Quanta 
250FEG) was used to observe the surface morphology of the 
samples. X-ray Diffraction (XRD, Bruker D8-ADVANCE) 

was performed on Cu Kα radiation with a range of 5°–70°. 
The Fourier transform infrared test was performed with Shi-
madzu 8400S and the scanning range was 400–4000  cm−1. 
TGA was carried on the GA/SDTA85 (DTG, Shimadzu 
DTG-60) between 20 and 800 ℃ in a nitrogen atmosphere. 
The concentration of  Cu2+ released from PLA-K3 was 
obtained by inductively coupled plasma mass spectrometry 
(ICP-MS, ThermoFisher I CAPQ). The membrane was cut 
discs with a diameter of 5 cm and immersed in water. The 
bottle with water and discs was placed in a constant tempera-
ture oscillator to shake for different time. Then, the solution 
was centrifuged for detection. The tensile test of the mem-
brane was carried out with the TY8000A-500N electrome-
chanical universal testing machine (Jiangsu Tianyuan Test-
ing Equipment Co., Ltd) in accordance with the ASTMD638 
standard. The sample was 4 cm × 0.5 cm. The speed was 
10 N/min and each sample was tested for 5 times.

2.4  Antibacterial test of fiber membrane

The antibacterial abilities of fiber membranes were evalu-
ated by bacterial colony counting method using Escherichia 
coli and Staphylococcus aureus [7]. The target bacteria were 
cultivated at 37 ℃ in Luria–Bertani broth until the bacteria 
concentration was at approximately  109 CFU/mL. The con-
centration of bacterial suspension was diluted with sterile 
water to (1–5) ×  106 CFU/mL. Then, 2 mL of  106 CFU/mL 
suspension was put into 40 mL water suspension contain-
ing the membrane discs of 5 cm diameter. The bottles with 
mixture were set on the shaker at 37 ℃ and shaken for 24 h. 
Subsequently, 1 mL of suspension after shake period was 
cultivated at 37 ℃. The antibacterial rate (R) was calculated 
via the Eq. (1):

(1)R(% ) =
N0 − N

N0

∗100

Fig. 1  The preparation process of membranes
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where N0 and N are the average number of viable bacteria on 
a reference sample without discs and on the sample contain-
ing discs after antibacterial tests, respectively. Each sample 
was tested for 3 times.

2.5  PM filtration measurement

The PM adsorption experiment was carried out with a self-
assembled experimental device as shown in Fig. S1 [4, 16, 
20]. The dust detector was the LD-5/J laser dust meter from 
Nanjing Trinyaer Environmental Protection Technology Co., 
Ltd. The PM particles were produced by burning cigarette 
in the upper container. The prepared membrane was cut 
into 7 cm × 7 cm square and sandwiched between upper and 
lower containers. The air in the upper container was drawn 
through the prepared membrane into the lower container 
using a vacuum pump at a flow rate of 2 L/min. The removal 
efficiency Re was calculated via Eq. (2):

where Cabove was the PM concentration in the upper con-
tainer (μg/m3) and Cbelow was the PM concentration in the 
lower container (μg/m3).

2.6  Statistical analysis

One-way analysis of variance (ANOVA) with Tukey’s 
post hoc test was used for statistical analysis of between-
group and within-group data. The *p < 0.05, **p < 0.01 and 
***p < 0.001 were accepted as statistically significant.

3  Results and discussion

3.1  The morphology of fiber membranes

The HKUST-1 particles were synthesized through the sol-
vothermal reaction according to the previous report. The 
SEM image, XRD and IR of the prepared HKUST-1 were 
displayed in Fig. S2. The HKUST-1 particles had the octa-
hedral morphology and their size was about 16 μm. The 
results of XRD and IR were consistent with the literature 
as reported [30]. Figure 2 showed the morphology of the 
fiber membranes. The fibers with diameter of about 1 μm 
were stacked together and many interspaces were formed. 
As seen from the enlarged image in the upper right corner, 
every fiber contained a large number of nano pores which 
were through the entire fiber. The formation of pores on the 
fiber primarily was attributed to the phase separation of the 

(2)Re =
Cabove − Cbelow

Cabove

× 100%

different components of the electrospinning solution, spe-
cifically, the separation between the polymers and solvents, 
the separation between the polymers and the non-solvents 
[32, 33]. The existence of pores on fiber was beneficial to 
increase the surface to volume or surface to weight ratio of 
the fiber membranes. Because the size of HKUST-1 particles 
was larger than the diameter of fibers, it could be seen that 
they were wrapped on the membrane by the intersecting fib-
ers. The mapping of Cu showed that the HKUST-1 particles 
were dispersed uniformly in the membrane containing 0.6 
wt% of HKUST-1. However, the agglomeration of HKUST-1 
particles could be observed for PLA-K3 containing 3 wt% 
of HKUST-1 [4].

3.2  The contact angles and mechanical properties 
of fiber membranes

The contact angle was related to the surface roughness and 
chemical properties of the material, which could reflect the 
wettability of the fiber membrane and directly affected the 
adsorption of bacteria or pollution particles on the surface 
[34, 35]. As shown in Fig. 3a, the contact angle of the PLA 
membrane was 72.31°, and the values for PLA-K0.6 and 
PLA-K3 were increased 83.41° and 92.54°, respectively. 
Both the embedded HKUST-1 particles on membrane sur-
face and the resulting change in the chemical composition in 
the surface increased the contact angle. As shown in Fig. 3b, 
the tensile strength of PLA membrane was 1.43 MPa. When 
0.6 wt% of HKUST-1 was added, the tensile strength of 
PLA-K0.6 membrane was 2.28 MPa. However, the tensile 
strength of PLA-K3 membrane was slightly reduced to 
2.00 MPa. It was reported that the MOF particles in the 
composites could effectively transfer stresses and lead to 
the enhancement in tensile strength [36, 37]. As the amount 
of MOF increased, agglomeration of particles occurred, 
which weakened the inter-fiber forces and reduced the ten-
sile strength [7]. (A typical stress–strain curve was shown 
in Fig. S3).

3.3  Antibacterial rate of HKUST‑1/PLA fiber 
membranes

The antibacterial properties of prepared fiber membranes 
against both Gram-positive Staphylococcus aureus and 
Gram-negative E. coli were assessed and shown in Fig. 4. 
The neat PLA membrane adsorbed bacteria as had frequently 
been proved [36]. When E. coli contacting with PLA-K3, the 
number of colonies in the petri dishes was reduced compared 
with PLA membrane and the antibacterial rate was 91%. 
For S. aureus, there were no colonies growing in the petri 
dishes (Fig. 4) and the antibacterial rate reached 99.99% 
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(Fig. 5a) with PLA-K3. The enhancement in bactericidal 
properties for fiber membranes with HKUST-1 was mainly 
due to release of  Cu2+ from HKUST-1 in the membrane. 
Figure 5b showed the  Cu2+ concentration change in solution 
when PLA-K3 was soaked in water at different time. The 
concentration of  Cu2+ in solution gradually increased and 
reached a maximum of 22.06 ppb at 12 h. Then, the concen-
tration of  Cu2+ in the solution began to decrease. The  Cu2+ 
from the release of PLA-K3 entered the bacterial cell, and 
damaged the structure of DNA and some essential enzymes 
[24, 38–40].

The bacterial morphologies cultured on PLA membrane 
and PLA-K3 were compared in Fig. 6 to further understand 
the antibacterial mechanism of the membranes. On the PLA 
membrane, E. coli and S. aureus exhibited smooth surface 
and intact morphology with rod and rounded shapes, respec-
tively. However, they clumped, deformed, collapsed, and 
even dissolved on the PLA-K3 membrane. Table 1 showed 
the comparison of the antibacterial rates of the prepared 
membranes against E. coli and S. aureus with those reported. 
The presence of pores on the fibers increased the specific 

Fig. 2  The SEM of a PLA; b PLA-K0.6; c PLA-K3
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surface area of the membrane, which would help bacteria to 
adhere on the surface of membrane and  Cu2+ to find bacteria 
quickly after release. Therefore, the membrane had a good 
antibacterial effect when the addition amount of HKUST-1 
was only 3 wt%.

3.4  Filtration performance of HKUST‑1/PLA fiber 
membranes

The photos of the filtration effect to PM2.5 and PM10 
of the HKUST-1/PLA fiber membranes at different 
time were shown in Fig. S4. It could be seen that the 
membrane had good filtration performance in the case 

Fig. 3  Bar diagram of contact angle (a) and mechanical properties (b) of fiber membranes

Fig. 4  Agar plate experiment of antibacterial activity of PLA and 
PLA-K a E. coli; b S. aureus 

Fig. 5  a Antibacterial rate of E. coli and S. aureus by PLA-K; b  Cu2+ release curves of PLA-K3 in aqueous solution at different time
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of high concentration or low concentration of PM. Fig-
ure 7a showed the filtration efficiency curves of melt-
blown fabric (MB) and PLA-K3 with time. It was obvi-
ous that the filtration performance of PLA-K3 was very 
stable. The filtration efficiency of PLA-K3 for PM2.5 

and PM10 was close to 100% within filtration time, while 
the filtration efficiency of MB fabric was only 24% at 
2 min. Then, the filtration efficiency slowly increased 
with time but it was still lower than that of the PLA-K3. 
The above results showed that the filtration efficiency of 
the prepared fiber membrane was higher than that of the 
melt-blown fabric, especially in the high concentration 
PM2.5 environment, where the filtration efficiency was 
four times higher than that of the melt-blown fabric. In 
addition, PLA-K3 had the advantage of being ultra-thin 
with a thickness of 0.036 mm, which was only 1/3 of 
that of melt-blown cloth. This would reduce the amount 
of polymer used, thereby lightening the environmental 
burden that may be caused by the large-scale application 
of non-degradable polymers. However, it can be seen in 
Fig. 7b that the PLA-K3 had higher pressure drop than 
that of the melt-blown fabric. Table 2 showed a compari-
son of the filtration efficiency for PM2.5 between PLA-
K3 membrane and other spinning membranes reported. 
The quality factor of PLA-K3 was 0.063, which was suf-
ficient to demonstrate its good filtration performance 
further. SEM was used to observe the membrane after 
filtration as shown in Fig. 7e and f, and a lot of deposits 
were observed on the membranes.

4  Conclusion

HKUST-1 particles were prepared and incorporated into 
the PLA electrospinning fiber membranes. When the 
HKUST-1 content was 3.0 wt%, the removal efficiency 
was clos to 100% for PM2.5 and PM10 within 20 min and 
the quality factor of PLA-K3 was 0.063. The PLA-K3 had 
an antibacterial rate of 99.99% for S. aureus. The prepared 
membrane could be used in the field of masks instead of 
melt-blown fabric of polypropylene, and solved the prob-
lem of non-degradability and non-functionalization of 
melt-blown fabric.

Fig. 6  SEM images of PLA (a) and PLA-K3 (b) after 24 h in E. coli; 
SEM images of PLA (c) and PLA-K3 (d) after 24 h in S. aureus 

Table 1  Comparison of antibacterial rate of HKUST-1/PLA mem-
brane with others

Fiber membranes Antibacterial rate (%) References

E S

PLA-K3 91 99.99 This work
1.7%CuCl2L2/CA 75 80 [41]
9.1%Cu-MOFs/PLA 99 99 [42]
10%HKUST-1/CS/PVA 99 99 [39]
GO/SF 64 58 [43]
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Fig. 7  The filtering efficiency of MB and PLA-K3 at different time (a); the pressure drop of MB and PLA-K3 (b); thickness of melt-blown fab-
ric (c) and PLA-K3 (d); SEM of the membranes after adsorption (e) MB and (f) PLA-K3
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