Skip to main content
Log in

Preparation and structure of silicon oxycarbide aerogels fabricated by polymer derived ceramics method

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

SiOC ceramic aerogels (SiOC CAs) were successfully fabricated through vacuum freeze-drying method combined with PDC process. The microstructure, phase composition and thermal conductivity of the as-prepared samples were systematically investigated. The results showed that the as-prepared SiOC CAs were composed of amorphous phase with three-dimensional network porous structure. In addition, the as-prepared SiOC CAs demonstrated high specific surface area of 635.72 m2/g, low density of 0.19 g/cm3, large pore volume of 0.49 cm3/g, and ultra-low thermal conductivity of 0.031 ± 0.0015 W/(m K). The present developed work provided a new thought to produce other porous Si-based ceramic aerogel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Bahloul-Hourlier, J. Latournerie, P. Dempsey, Reaction pathways during the thermal conversion of polysiloxane precursors into oxycarbide ceramics. J. Eur. Ceram. Soc. 25, 979–985 (2005)

    Article  CAS  Google Scholar 

  2. D. Erb, K. Lu, Synthesis of SiOC using solvent-modified polymer precursors. Mater. Chem. Phys. 237, 121844 (2019)

    Article  CAS  Google Scholar 

  3. J. Cordelair, P. Greil, Electrical conductivity measurements as a microprobe for structure transitions in polysiloxane derived Si-O-C ceramics. J. Eur. Ceram. Soc. 20(12), 1947–1957 (2000)

    Article  CAS  Google Scholar 

  4. B.V.M. Kumar, Y.W. Kim, Processing of polysiloxane-derived porous ceramics: a review. Sci. Technol. Adv. Mater. 11, 044303–044319 (2010)

    Article  Google Scholar 

  5. P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805–1837 (2010)

    CAS  Google Scholar 

  6. G. Mera, A. Navrotsky, S. Sen, H.J. Kleebe, R. Riedel, Polymer-derived SiCN and SiOC ceramics—structure and energetics at the nanoscale. J. Mater. Chem. A 1, 3826–3836 (2013)

    Article  CAS  Google Scholar 

  7. G. Hasegawa, K. Kanamori, K. Nakanishi, T. Hanada, Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. J. Mater. Chem. 19, 7716–7720 (2009)

    Article  CAS  Google Scholar 

  8. V.S. Pradeep, D.G. Ayana, M. Graczyk-Zajac, G.D. Soraru, R. Riedel, High rate capability of SiOC ceramic aerogels with tailored porosity as anode materials for Li ion batteries. Electrochim. Acta 157, 41–45 (2015)

    Article  CAS  Google Scholar 

  9. Y. Juttke, H. Richter, I. Voigt, R.M. Prasad, M.S. Bazarjani, A. Gurlo, R. Riedel, Polymer derived ceramic membranes for gas separation. Chem. Eng. Trans. 32, 1891–1896 (2013)

    Google Scholar 

  10. K. Aylin, P. Andrea, P.R. Aravind, S. Giorgio, G.D. Soraru, Gas sensing behavior of mesoporous SiOC glasses. J. Am. Ceram. Soc. 96(8), 2366–2369 (2013)

    Article  Google Scholar 

  11. M. Narisawa, S. Watase, K. Matsukawa, T. Kawai, Y. Kawamoto, T. Matsui, A. Iwase, Influence of high-temperature oxidation on photoluminescent properties of white SiOC (–H) ceramics. J. Non-Cryst. Solids 391, 1–5 (2014)

    Article  CAS  Google Scholar 

  12. M.M. Hassan, T. Takahashi, K. Koyama, Preparation and characterisation of SiOC ceramics made from a preceramic polymer and rice bran. J. Eur. Ceram. Soc. 33, 1207–1217 (2013)

    Article  CAS  Google Scholar 

  13. L. Borchardt, C. Hoffmann, M. Oschatz, L. Mammitzsch, U. Petasch, M. Herrmann, S. Kaskel, Preparation and application of cellular and nanoporous carbides. Chem. Soc. Rev. 41(15), 5053–5067 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. J.H. Zou, J.H. Liu, A.S. Karakoti, A. Kumar, D. Joung, S. Seal, L. Zhai, Ultralight multi-walled carbon nanotube aerogel. ACS Nano 4(12), 7293–7302 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. N. Van Lam, Z. Emanuele, P. Andrea, Out-of-furnace oxidation of SiCN polymer-derived ceramic aerogel pyrolizated at intermediate temperature (600–800 °C). J. Eur. Ceram. Soc. 35, 3295–3320 (2015)

    Google Scholar 

  16. S. Bernard, P. Miele, Polymer-derived boron nitride: a review on the chemistry, shaping and ceramic conversion of borazine derivatives. Materials 7(11), 7436–7459 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  17. V.W.S. Pradeep, E. Zera, M. Graczyk-Zajac, Structural design of polymer-derived SiOC ceramic aerogels for high-rate Li ion storage applications. J. Am. Ceram. Soc. 99(9), 2977–2983 (2016)

    Article  Google Scholar 

  18. J. Ma, Y. Feng, S.J. Lin, C.P. Yang, Q. Liu, Large size and low density SiOC aerogel monolith prepared from triethoxyvinylsilane/tetraethoxysilane. Ceram. Int. 43, 5774–5780 (2017)

    Article  CAS  Google Scholar 

  19. S. Deville, Freeze-Casting of porous ceramics: a review of current achievements and issues. Adv. Eng. Mater. 10(3), 155–169 (2008)

    Article  CAS  Google Scholar 

  20. W.L. Li, K. Lu, J.Y. Walz, Freeze casting of porous materials: review of critical factors in microstructure evolution. Int. Mater. Rev. 57(1), 37–60 (2012)

    Article  CAS  Google Scholar 

  21. Z. Wu, X.Q. Cheng, L. Zhang, J. Lia, C.H. Yang, Sol-gel synthesis of preceramic polyphenylsilsesquioxane aerogels and their application toward monolithic porous SiOC ceramics. Ceram. Int. 44(12), 14947–14951 (2018)

    Article  CAS  Google Scholar 

  22. A. Zirakjou, M. Kokabi, SiC/C aerogels from biphenylene-bridged polysilsesquioxane/clay mineral nanocomposite aerogels. Ceram. Int. 46(2), 2194–2205 (2020)

    Article  CAS  Google Scholar 

  23. P. Krawiec, D. Geiger, S. Kaskel, Ordered mesoporous silicon carbide (OM-SiC) via polymer precursor nanocasting. Chem. Commun. 23, 2469–2470 (2006)

    Article  Google Scholar 

  24. H. Fukui, H. Ohsuka, T. Hino, K. Kanamura, A Si−O−C composite anode: high capability and proposed mechanism of lithium storage associated with microstructural characteristics. Appl. Mater. Interface 2(4), 998–1008 (2010)

    Article  CAS  Google Scholar 

  25. N. Wu, X. Liu, S.W. Or, Core/shell-structured nickel/nitrogen-doped onion-like carbon nanocapsules with improved electromagnetic wave absorption properties. J. AIP Adv. 6(5), 056206 (2016)

    Article  Google Scholar 

  26. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    Article  CAS  Google Scholar 

  27. C. Liu, X.Y. Meng, X.H. Zhang, C.Q. Hong, J.C. Han, W.B. Han, B.S. Xu, S. Dong, S.Y. Du, High temperature structure evolution of macroporous SiOC ceramics prepared by a sol-gel method. Ceram. Int. 41(9), 11091–11096 (2015)

    Article  CAS  Google Scholar 

  28. P. Dibandjo, S. Diré, F. Babonneau, G.D. Soraru, Influence of the polymer architecture on the high temperature behaviour of SiCO glasses: a comparison between linear- and cyclic-derived precursors. J. Non-Cryst. Solids 356(3), 132–140 (2010)

    Article  CAS  Google Scholar 

  29. G.D. Soraru, R. Campostrini, S. Maurina, F. Babonneau, Gel precursor to silicon oxycarbide glasses with ultrahigh ceramic yield. J. Am. Ceram. Soc. 80(4), 999–1004 (1997)

    Article  CAS  Google Scholar 

  30. X.Y. Yuan, H.L. Jin, X.B. Yan, L.F. Cheng, L.T. Hu, Q.J. Xue, Synthesis of ordered mesoporous silicon oxycarbide monoliths via preceramic polymer nanocasting. Microporous Mesoporous Mater. 147(1), 252–258 (2012)

    Article  Google Scholar 

  31. F. Kolar, V. Machovic, J. Svıtilova, L. Borecka, Structural characterization and thermal oxidation resistance of silicon oxycarbides produced by polysiloxane pyrolysis. Mater. Chem. Phys. 86(1), 88–98 (2004)

    Article  CAS  Google Scholar 

  32. D.B. Liu, B.L. Shi, C.Q. Wang, Z.S. Li, X.B. Wang, B.S. Xu, L.J. Qu, Polymer-derived SiC ceramic aerogels with in-situ growth of SiC nanowires. Ceram. Int. 48(7), 9157–9163 (2018)

    Article  Google Scholar 

  33. J. Rouquerol, G. Baron, R. Denoyel, Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report). Pure Appl. Chem. 84(1), 107–136 (2011)

    Article  Google Scholar 

  34. B. Dua, C.Q. Honga, A.Z. Wang, S.T. Zhou, S.B. Zhou, X.H. Zhang, Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment. Ceram. Int. 44(1), 563–570 (2018)

    Article  Google Scholar 

  35. M. Kim, J. Kim, Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes. ACS Appl. Mater. Interface 6(12), 9036–9045 (2014)

    Article  CAS  Google Scholar 

  36. B. Wang, Y.D. Wang, Y.P. Lei, N. Wu, Y.Z. Gou, C. Han, D. Fang, Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2, 20873–20881 (2014)

    Article  CAS  Google Scholar 

  37. C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4(3), 1443–1450 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. J. Li, W.J. Yuan, C.J. Deng, H.X. Zhu, Porous SiC/SiCN composite ceramics fabricated by foaming and reaction sintering. J. Eur. Ceram. Soc. 37(3), 1131–1134 (2017)

    Article  CAS  Google Scholar 

  39. J.Z. Feng, Y.Y. Xiao, Y.G. Jiang, J. Feng, Synthesis, structure, and properties of silicon oxycarbide aerogels derived from tetraethylortosilicate/polydimethylsiloxane. Ceram. Int. 41(4), 5281–5286 (2015)

    Article  CAS  Google Scholar 

  40. Z.Q. Sun, M.S. Li, Y.C. Zhou, Thermal properties of single-phase Y2SiO5. J. Eur. Ceram. Soc. 29(4), 551–557 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jinghua Xu from Shiyanjia Lab (www.shiyanjia.com) for the XRD analysis.

Funding

This work is supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

DL: Performed the experiments; Analyzed and interpreted the data; Wrote the paper; YX: Contributed reagents, Supervision, Revised the paper.

Corresponding author

Correspondence to Yahui Xue.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Xue, Y. Preparation and structure of silicon oxycarbide aerogels fabricated by polymer derived ceramics method. J Porous Mater 30, 881–887 (2023). https://doi.org/10.1007/s10934-022-01389-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01389-w

Keywords

Navigation