Skip to main content
Log in

Effects of Ti and Al incorporation on the performance of FSM-16 supported nickel catalyst in dry reforming of methane

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The effect of Ti and Al incorporation to FSM-16 framework as the support of Ni catalysts on their catalytic performance in the reaction of dry reforming of methane (DRM) was investigated. A series of Ni/M-FSM-16 (M = Al, Ti) with M/Si molar ratio = 100, 50, 20 were synthesized via double-solvent impregnation of Nickel. Fresh catalysts were characterized using N2 adsorption/desorption, XRD, FTIR, FE-SEM, H2-TPR analyses. The prepared catalyst went through DRM reaction at 750, 800, and 850 °C. The spent catalysts of best catalytic performance, i.e. Ni/Al50-FSM-16 and Ni/Ti100-FSM-16, were analyzed by FT-IR and O2-TPO to characterized carbonaceous deposits. Based on TPR results, the promotion of DRM performances was related to the strength of Ni interaction with supports to which Ti or Al was incorporated. Conversion of CH4 and CO2, and H2/CO ratio of the products via Ni/Al50-FSM-16 catalyst were promoted by 95%, 83%, 25% with respect to Ni/FSM-16 at 850 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Usman, W.W. Daud, H.F. Abbas, Dry reforming of methane: influence of process parameters—a review. Renew. Sustain. Energy Rev. 45, 710–744 (2015)

    Article  CAS  Google Scholar 

  2. P. Nikolaidis, A. Poullikkas, A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017)

    Article  CAS  Google Scholar 

  3. R. Amin, B. Liu, Z.B. Huang, Y.C. Zhao, Hydrogen and syn gas production via CO2 dry reforming of methane over Mg/La promoted Co–Ni/MSU-S catalyst. Int. J. Hydrog. Energy 41(2), 807–819 (2016)

    Article  CAS  Google Scholar 

  4. J. Goscianska, R. Pietrzak, J. Matos, Catalytic performance of ordered mesoporous carbons modified with lanthanides in dry methane reforming. Catal. Today 301, 204–216 (2018)

    Article  CAS  Google Scholar 

  5. H.S. Whang et al., Enhanced activity and durability of Ru catalyst dispersed on zirconia for dry reforming of methane. Catal. Today 293, 122–128 (2017)

    Article  CAS  Google Scholar 

  6. V. Danghyan, S.C. Novoa, A. Mukasyan, E. Wolf, Pressure dilution, a new method to prepare a stable Ni/fumed silica catalyst for the dry reforming of methane. Appl. Catal. B 234, 178–186 (2018)

    Article  CAS  Google Scholar 

  7. M.M. Nair, S. Kaliaguine, Structured catalysts for dry reforming of methane. New J. Chem. 40(5), 4049–4060 (2016)

    Article  CAS  Google Scholar 

  8. R. Debek, R. Dębek, Novel catalysts for chemical CO2 utilization. Ph.D. thesis (2016)

  9. N. Patel, R. Fernandes, S. Gupta, R. Edla, D. Kothari, A. Miotello, Co-B catalyst supported over mesoporous silica for hydrogen production by catalytic hydrolysis of ammonia borane: a study on influence of pore structure. Appl. Catal. B 140, 125–132 (2013)

    Article  CAS  Google Scholar 

  10. W. Li, Z. Zhao, X. Guo, G. Wang, Employing a nickel-containing supramolecular framework as Ni precursor for synthesizing robust supported Ni catalysts for dry reforming of methane. ChemCatChem 8(18), 2939–2952 (2016)

  11. L. Qian et al.,  Investigation of La promotion mechanism on Ni/SBA-15 catalysts in CH4 reforming with CO2. Fuel 122, 47–53 (2014)

  12. K. Świrk, M.E. Gálvez, M. Motak, T. Grzybek, M. Rønning, P. Da Costa, Syngas production from dry methane reforming over yttrium-promoted nickel-KIT-6 catalysts. Int. J. Hydrog. Energy 44(1), 274–286 (2019)

    Article  CAS  Google Scholar 

  13. S. Zhang, S. Muratsugu, N. Ishiguro, M. Tada, Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane. ACS Catal. 3(8), 1855–1864 (2013)

    Article  CAS  Google Scholar 

  14. S. Qiu, X. Zhang, Q. Liu, T. Wang, Q. Zhang, L. Ma, A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation. Catal. Commun. 42, 73–78 (2013)

    Article  CAS  Google Scholar 

  15. Z. Roosta, A. Izadbakhsh, A. Sanati, S. Osfouri, Synthesis and evaluation of NiO@ MCM-41 core–shell nanocomposite in the CO 2 reforming of methane. J. Porous Mater. 25(4), 1135–1145 (2018)

    Article  CAS  Google Scholar 

  16. E.N. Alvar, M. Rezaei, “Mesoporous nanocrystalline MgAl2O4 spinel and its applications as support for Ni catalyst in dry reforming.” Scr. Mater. 61(2), 212–215 (2009)

    Article  CAS  Google Scholar 

  17. N. Hadian, M. Rezaei, Combination of dry reforming and partial oxidation of methane over Ni catalysts supported on nanocrystalline MgAl2O4. Fuel 113, 571–579 (2013)

  18. M. Rezaei, S.M. Alavi, S. Sahebdelfar, L. Xinmei, L. Qian, Z.-F. Yan, "CO2 – CH4 reforming over nickel catalysts supported on mesoporous nanocrystalline zirconia with high surface area. Energy Fuels 21(2), 581–589 (2007)

    Article  CAS  Google Scholar 

  19. D. Liu, X.Y. Quek, W.N.E. Cheo, R. Lau, A. Borgna, Y. Yang, MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: effect of strong metal–support interaction. J. Catal. 266(2), 380–390 (2009)

    Article  CAS  Google Scholar 

  20. E. Lovell et al., CO2 reforming of methane over MCM-41-supported nickel catalysts: altering support acidity by one-pot synthesis at room temperature. Appl. Catal. A 473, 51–58 (2014)

    Article  CAS  Google Scholar 

  21. X. Zhang et al., “Nickel nanoparticles embedded in mesopores of AlSBA-15 with a perfect peasecod-like structure: a catalyst with superior sintering resistance and hydrothermal stability for methane dry reforming.” Appl. Catal. B 224, 488–499 (2018)

    Article  CAS  Google Scholar 

  22. C.-Y. Chen, S.-Q. Xiao, M.E. Davis, Studies on ordered mesoporous materials III. Comparison of MCM-41 to mesoporous materials derived from kanemite. Microporous Mater. 4(1), 1–20 (1995)

    Article  Google Scholar 

  23. S. Inagaki, FSM-16 and mesoporous organosilicas. Stud. Surf. Sci. Catal. 148, 109–132 (2004)

  24. T. Kimura, K. Kuroda, Ordered mesoporous silica derived from layered silicates. Adv. Func. Mater. 19(4), 511–527 (2009)

    Article  CAS  Google Scholar 

  25. T. Linssen, K. Cassiers, P. Cool, E. Vansant, Mesoporous templated silicates: an overview of their synthesis, catalytic activation and evaluation of the stability. Adv. Colloid Interface Sci. 103(2), 121–147 (2003)

    Article  CAS  PubMed  Google Scholar 

  26. D.T. On, D. Desplantier-Giscard, C. Danumah, S. Kaliaguine, Perspectives in catalytic applications of mesostructured materials. Appl. Catal. A 222, 1–2 (2001)

    Google Scholar 

  27. Y. Kitayama, H. Asano, T. Kodama, J. Abe, Y. Tsuchiya, Synthesis of Sn-incorporated folded sheets mesoporous materials (Sn-FSM-16). J. Porous Mater. 5(2), 139–146 (1998)

    Article  CAS  Google Scholar 

  28. Y. Liu, T. Hanaoka, K. Murata, K. Okabe, I. Takahara, K. Sakanishi, Synthesis of Zr-containing FSM-16 as an effective support for Co catalyst in the Fischer-Tropsch synthesis. React. Kinet. Catal. Lett. 92(1), 147–154 (2007)

    Article  CAS  Google Scholar 

  29. T. Selvam, M. Köstner, G. Mabande, W. Schwieger, N. Pfänder, R. Schlögl, Synthesis, characterization and catalytic properties of mesoporous Al-FSM-16 materials. J. Porous Mater. 14(3), 263–272 (2007)

    Article  CAS  Google Scholar 

  30. M. Zimowska et al., A comparative study of direct versus post-synthesis alumination of mesoporous FSM-16 silica. Mater. Res. Bull. 83, 623–631 (2016)

    Article  CAS  Google Scholar 

  31. B.A. Mehrabadi, S. Eskandari, U. Khan, R.D. White, J.R. Regalbuto, A review of preparation methods for supported metal catalysts. Adv. Catal. 61, 1–35 (2017)

  32. Y. Shu, L.E. Murillo, J.P. Bosco, W. Huang, A.I. Frenkel, J.G. Chen, The effect of impregnation sequence on the hydrogenation activity and selectivity of supported Pt/Ni bimetallic catalysts. Appl. Catal. A 339(2), 169–179 (2008)

    Article  CAS  Google Scholar 

  33. J.R. Sietsma et al., Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts: impregnation, drying, and thermal treatments. Chem. Mater. 20(9), 2921–2931 (2008)

    Article  CAS  Google Scholar 

  34. M. Cabo et al, Influence of the preparation method on the morphology of templated NiCo 2 O 4 spinel. J. Nanopart. Res. 13(9), 3671–3681 (2011)

    Article  CAS  Google Scholar 

  35. L. Guo-Min, W. Lian-Cheng, X. Yao, Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties. Chin. Phys. B 23(8), 088105 (2014)

    Article  CAS  Google Scholar 

  36. I. Lopes, N.El Hassan, H. Guerba, G. Wallez, A. Davidson, Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas. Chemistry of materials 18(25), 5826–5828 (2006)

    Article  CAS  Google Scholar 

  37. J. van der Meer, I. Bardez, F. Bart, P.-A. Albouy, G. Wallez, A. Davidson, Dispersion of Co3O4 nanoparticles within SBA-15 using alkane solvents. Microporous Mesoporous Mater. 118, no. 1–3 (2009) pp. 183–188

    CAS  Google Scholar 

  38. J. Van Der Meer, I. Bardez-Giboire, C. Mercier, B. Revel, A. Davidson, R. Denoyel, Mechanism of metal oxide nanoparticle loading in SBA-15 by the double solvent technique. J. Phys. Chem. C 114(8), 3507–3515 (2010)

    Article  CAS  Google Scholar 

  39. M. Kaydouh, N. El Hassan, A. Davidson, S. Casale, H.El Zakhem, P. Massiani, Highly active and stable Ni/SBA-15 catalysts prepared by a “two solvents” method for dry reforming of methane. Microporous Mesoporous Mater. 220, 99–109 (2016)

    Article  CAS  Google Scholar 

  40. M. Tao, Z. Xin, X. Meng, Y. Lv, Z. Bian, Impact of double-solvent impregnation on the Ni dispersion of Ni/SBA-15 catalysts and catalytic performance for the syngas methanation reaction. RSC Adv. 6(42), 35875–35883 (2016)

    Article  CAS  Google Scholar 

  41. S. Inagaki, Y. Fukushima, Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM-16. Microporous Mesoporous Mater. 21, no. 4–6 (1998) pp. 667–672

    Article  Google Scholar 

  42. A. Matsumoto, T. Sasaki, N. Nishimiya, K. Tsutsumi, Thermal stability and hydrophobicity of mesoporous silica FSM-16. Colloids Surf., A 203, no. 1–3 (2002) pp. 185–193

    Article  Google Scholar 

  43. Z. Taherian, M. Yousefpour, M. Tajally, B. Khoshandam, Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane. Microporous Mesoporous Mater. 251, 9–18 (2017)

    Article  CAS  Google Scholar 

  44. S. Damyanova, B. Pawelec, K. Arishtirova, J. Fierro, C. Sener, T. Dogu, MCM-41 supported PdNi catalysts for dry reforming of methane. Appl. Catal. B 92, 3–4 (2009)

    Article  CAS  Google Scholar 

  45. S. Qiu, Q. Zhang, W. Lv, T. Wang, Q. Zhang, L. Ma, Simply packaging Ni nanoparticles inside SBA-15 channels by co-impregnation for dry reforming of methane. RSC Advances 7(39), 24551–24560 (2017)

    Article  Google Scholar 

  46. S. Inagaki, Y. Fukushima, K. Kuroda, Synthesis and characterization of highly ordered mesoporous material; FSM-16, from a layered polysilicate. Stud. Surf. Sci. Catal.  84,125–132 (1994)

  47. S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, K. Kuroda, Syntheses of highly ordered mesoporous materials, FSM-16, derived from kanemite. Bull. Chem. Soc. Jpn 69(5), 1449–1457 (1996)

    Article  CAS  Google Scholar 

  48. C. Galacho, M.R. Carrott, P. Carrott, Evaluation of the thermal and mechanical stability of Si-MCM-41 and Ti-MCM-41 synthesised at room temperature. Microporous Mesoporous Mater. 108, no. 1–3 (2008) pp. 283–293

    Article  CAS  Google Scholar 

  49. H. Xia, B. Liu, Q. Li, Z. Huang, A.S.-C. Cheung, High capacity Mn-Fe-Mo/FSM-16 sorbents in hot coal gas desulfurization and mechanism of elemental sulfur formation. Appl. Catal. B 200, 552–565 (2017)

    Article  CAS  Google Scholar 

  50. M.S. Ghattas, Cobalt-modified mesoporous FSM-16 silica: Characterization and catalytic study. Microporous Mesoporous Mater. 97, no. 1–3 (2006) pp. 107–113

    Article  CAS  Google Scholar 

  51. D.L. Guerra, C. Airoldi, Thermochemical data for n-alkylmonoamines functionalization into lamellar silicate Al-kanemite. J. Chem. Thermodyn. 43(1), 69–74 (2011)

    Article  CAS  Google Scholar 

  52. F. Gholizadeh, A. Izadbakhsh, J. Huang, Y. Zi-Feng, Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane. Microporous Mesoporous Mater. 310, 110616 (2021)

    Article  CAS  Google Scholar 

  53. C. Wang et al., The importance of inner cavity space within Ni@ SiO2 nanocapsule catalysts for excellent coking resistance in the high-space-velocity dry reforming of methane. Appl. Catal. B 259, 118019 (2019)

    Article  CAS  Google Scholar 

  54. L. Xu, H. Zhao, H. Song, L. Chou, Ordered mesoporous alumina supported nickel based catalysts for carbon dioxide reforming of methane. Int. J. Hydrog. Energy 37(9), 7497–7511 (2012)

    Article  CAS  Google Scholar 

  55. A.H. Fakeeha, S.O. Kasim, A.A. Ibrahim, A.E. Abasaeed, A.S. Al-Fatesh, Influence of nature support on methane and CO2 conversion in a dry reforming reaction over nickel-supported catalysts. Materials 12(11), 1777 (2019)

  56. K. Coenen, F. Gallucci, B. Mezari, E. Hensen, M. van Sint, Annaland, An in-situ IR study on the adsorption of CO2 and H2O on hydrotalcites. J. CO2 Utilization 24, 228–239 (2018)

    Article  CAS  Google Scholar 

  57. B. Stuart, Infrared spectroscopy. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York (2000)

  58. F.X.W. Robert, M. Silverstein, D.J. Kiemle, D.L. Bryce, Spectrometric Identification of Organic Compounds. State University of New York, New York (2015)

  59. J. Gao, Z. Hou, H. Lou, X. Zheng, Dry (CO2) reforming. Fuel cells: technologies for fuel processing. Elsevier, New York, pp. 191–221 (2011)

Download references

Funding

Grant of National Strategic Technology Laboratory Network is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Izadbakhsh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 3357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafieenezhad, R., Izadbakhsh, A. & Sanati, A.M. Effects of Ti and Al incorporation on the performance of FSM-16 supported nickel catalyst in dry reforming of methane. J Porous Mater 28, 1749–1763 (2021). https://doi.org/10.1007/s10934-021-01111-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01111-2

Keywords

Navigation