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NIRS quantification of lake sediment composition
by multiple regression using end-member spectra
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Abstract Here we develop a novel method for

quantifying sediment components, e.g. biogenic silica,

organic or mineral matter, from near infrared (NIR)

spectra based on fitting by multiple regression of

measured spectra for end-member materials. We show

that with suitable end-members our new open-source

multiple regression routine gives excellent simultane-

ous quantification of the major components of a

sediment, the concentrations comparing well with

independent methods of quantification. Widely used

partial least squares regression approaches rely on

large environmental training data sets; our method

produces comparable results, but with the advantages

of negating the need for a training dataset and with

greater simplicity and theoretical robustness. We

demonstrate that component NIR spectra are additive,

a prerequisite for use of multiple regression to un-mix

the compound spectra, and show that a number of

environmental materials make suitable end-members

for this analysis. We show that spectral mixing is not

conservative with respect to mass proportion, but

rather to the relative chromatic intensity of contribut-

ing sediment components. Concentrations can be

calculated using the measured spectra by correction

using a chromatic intensity factor, the value of which

can be measured independently. We have applied our

approach to a postglacial sediment sequence from

Loch Grannoch (SWScotland) and reveal a down-core

pattern of varying dominance by biogenic silica,

organic and mineral content from the late glacial to

present. With isolation and measurement of appropri-

ate end-members this multivariate regression

approach to interrogating NIR spectra has utility

across a wide range of sedimentary environments and

potentially for other spectral analytical methods.

Keywords NIRS � End-member � Multiple

regression � Sediment characteristics �Organic matter �
Palaeolimnology

Introduction

Near infrared diffuse reflectance spectroscopy (NIRS)

has proven to be a valuable tool for quantifying the

components present in lake sediments, such as type

and quantity of organic and mineral matters (Malley

et al. 1999; Malley and Williams 2014; Pearson et al.

2014). NIRS has the advantages of being quick,
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simple, and non-destructive and is consequently used

in many different fields including environmental

research, agriculture, and pharmaceutical industries.

Applications of NIRS in palaeolimnology have

focused on extracting key environmental parameters

or proxies for inorganic/organic markers (e.g. % total

organic carbon: Pearson et al. 2014). The overlapping

absorption bands in near infrared (NIR) spectra make

identification or quantification of signals attributed to

individual materials or characteristics difficult (Brown

et al. 2006; Zornoza et al. 2008; Korsman et al. 2001).

Development in chemometric methods, particularly

partial least squares (PLS) regression, during the

1980s (Workman et al. 1996) improved and simplified

the interpretation of spectra. Though highly successful

applications have been made possible by these devel-

opments, the PLS approach has two disadvantages.

First, a substantial data training set is required for a

component to be quantified from the IR or NIR

spectra, which must be based either on large numbers

of samples with independent measurement of that

given component (for example, % total organic carbon

studied by Pearson et al. 2014) or on artificial mixtures

requiring large quantities of purified end-member

materials (for example, biogenic silica studied by

Meyer-Jacob et al. 2014, in this case by FTIRS).

Second, because PLS methods cannot be applied

simultaneously to a number of components, it is

difficult to evaluate potential interference in the NIR

spectra between components, which instead may

remain hidden in the PLS numerical processing.

Here we propose and present an entirely novel

approach to generating palaeoenvironmental data

from NIRS, based on the assumption that the NIR

spectra of mixtures comprise linear combinations of

the spectra of sediment components. This allows each

individual sample to be analysed by regressing its NIR

spectrum on to the spectra of a chosen set of end-

member materials, the regression coefficients quanti-

fying the end-member mixing proportions. This is

fundamentally different from traditional methods that

use regression not to analyse samples, but to develop a

statistical model using an extensive training data set.

For example, in the widely applied weighted-average

PLS methods a set of concentrations known indepen-

dently are regressed onto entire or partial NIR spectra

to evaluate coefficients that can then be applied to

unknown samples. The training sets required for this

process are based typically on either a range of modern

environmental samples or on parallel independent

measurements obtained for the same palaeorecord.

Our method circumvents the need for such training

sets, using instead regression to un-mix each sample

spectrum from a library of end-member spectra.

Consequently, our method provides simultaneous

quantitative reconstruction for multiple components

without requiring a training stage.

Here, we present and test our end-member regres-

sion methodology, address a number of key issues

with applying multiple regression to un-mix spectra.

Important among these are: the isolation and mea-

surement of appropriate end-members; sensitivity

testing of end-member choice; and comparison with

the PLS approach. To have confidence in our multiple

regression-based reconstructions some comparison is

necessary with independently measured equivalent

data, but critically the same issue applies to recon-

structions by PLS. We report the results of an

application of our approach tested on binary mixtures

and on a full late-glacial to present lake sediment

profile from Loch Grannoch, SW Scotland. We also

test the generality of the procedure and end-member

materials by applying them to the sediments of three

additional lakes from differing regions (Wales, Nor-

way and Sweden).

Methods

Sampling and the end-member library

To develop the end-member approach we collected

and measured a library of organic and inorganic

materials. Table 1 describes the locations and mate-

rials collected that form this end-member library. This

includes materials that are homogeneous (e.g. indi-

vidual minerals) and more heterogeneous materials

(e.g. plant materials, rocks and sediments). To apply

our end-member approach we obtained a postglacial

sediment core from Loch Grannoch in the Galloway

Hills (SW Scotland). Loch Grannoch is a small

(1.14 km2) upland (210 m O.D.) oligotrophic lake,

with a granite bedrock (Cairnsmore of Fleet intrusion)

(14 km2) catchment area (Flower et al. 1987). The

Loch Grannoch core was sampled on 31 October 2016

from the central part of the lake (54.9954�N,
4.2832�W) from an anchored floating platform in

* 16 m of water. The cores comprise 4 overlapping
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lengths sampled using a 0.075 9 1.5 m capacity

hand-percussive Russian corer. Cores were wrapped

and sealed in polythene and stored refrigerated until

required for analysis. The sediments comprised

3.19 m of largely organic limnic muds and 0.6 m of

inorganic muds that extend to deglaciation including

the late glacial oscillations (Greenland Interstadial and

Stadial 1), with regional deglaciation of the Galloway

Hills dated to * 15 k years ago (Ballantyne et al.

2013).

Specific end-member mineral samples were

selected and ground to a fine powder using a pestle

Table 1 Materials for which CIFM values have been measured

Sample code Type Material Location CIFM Latitude Longitude

PeatMMoss Organic Peat May Moss, N Yorkshire, UK 1.00 54.3559 - 0.6532

Platanus Organic Platanus leaf Liverpool, UK 2.70 53.4020 - 2.9652

Sphag Organic Sphanum sp. May Moss, N Yorkshire, UK 0.77 54.3559 - 0.6532

Erioph Organic Eriophylum May Moss, N Yorkshire, UK 1.46 54.3559 - 0.6532

Calluna Organic Calluna May Moss, N Yorkshire, UK 1.55 54.3559 - 0.6532

HAMMoss Organic Humic acid May Moss, N Yorkshire, UK 4.51 54.3500 - 0.6426

HARiv Organic Humic acid Rivington Moor, Lancashire, UK 4.73 53.6204 - 2.5380

FAMMoss Organic Fulvic acid May Moss, N Yorkshire, UK 1.56 54.3500 - 0.6426

DOCWhix Organic DOC Whixhall Moss, Cheshire, UK 0.84 52.9175 - 2.7596

DOCRiv Organic DOC Rivington Moor, Lancashire, UK 0.78 53.6207 - 2.5381

DOCMig Organic DOC Migneint, N Wales, UK 0.87 52.9767 - 3.8347

LGClayLOR Sediment/soil Late glacial silty clay Lilla Öresjön, Sweden 1.26 57.5531 12.3170

LGClayMyn Sediment/soil Late glacial silty clay Llyn Cwm Mynach,W Wales, UK 1.94 52.7960 - 3.9609

LGClayGran Sediment/soil Late glacial silty clay Loch Grannoch, Galloway, UK 2.26 54.9967 - 4.2838

TillOgGrey Sediment/soil Till clay Ogwen Valley, N Wales, UK 1.56 53.2301 - 4.0789

TillOgBrown Sediment/soil Till clay Ogwen Valley, N Wales, UK 1.79 53.2301 - 4.0789

TillAfon Sediment/soil Till clay Afon Gain, Gwynedd, W Wales, UK 2.82 52.8717 - 3.8730

Rhyo Rock Rhyolite Ogwen Valley, N Wales, UK 1.40 53.1289 - 4.0316

RhyoWeath Rock Rhyolite, weathered Ogwen Valley, N Wales, UK 2.60 53.1289 - 4.0316

Gneiss Rock Gneiss Vågsøy, Norway 3.03 62.0302 5.0034

MicrGabbr Rock Microgabbro Ogwen Valley, N Wales, UK 3.09 53.1235 - 4.0266

MicrGrani Rock Microgranite Ogwen Valley, N Wales, UK 3.90 53.1221 - 4.0095

Tuff Rock Tuff Ogwen Valley, N Wales, UK 4.00 53.1246 - 3.9961

LST Rock Limestone Great Orm, N Wales, UK 6.73 53.3236 - 3.8517

SiltST Rock Siltstone Ogwen Valley, N Wales, UK 0.98 53.1405 - 4.0371

SlatePurp Rock Slate, purple Ogwen Valley, N Wales, UK 1.14 53.1730 - 4.0572

SlateGrey Rock Slate, grey Ogwen Valley, N Wales, UK 2.82 53.1730 - 4.0572

SlateGreen Rock Slate, green Ogwen Valley, N Wales, UK 5.22 53.1730 - 4.0572

SST Rock Permotriassic Sst Wirral, UK 1.35 53.3535 - 3.1357

RockBWR0 Rock Andesitic volcaniclastics Dovedale, Cumbria, UK 3.74 54.4949 - 2.9582

RockBWR5b Rock Andesitic volcaniclastics Dovedale, Cumbria, UK 3.90 54.4971 - 2.9505

RockBWR6 Rock Andesitic volcaniclastics Dovedale, Cumbria, UK 3.70 54.4967 - 2.9569

RockBWR7 Rock Andesitic volcaniclastics Dovedale, Cumbria, UK 3.53 54.4950 - 2.9584

DiatomMar Biogenic silica Marine diatom California, USA 3.09

DiatomEd Biogenic silica Diatom Not known 3.79

DiatomGM Biogenic silica Diatom Grasmere, Cumbria, UK 2.50 54.4551 - 3.0296
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and mortar. The aim was to isolate single materials but

in reality some minor contaminant minerals poten-

tially remain. Rocks were sampled from various

catchments to reflect detrital sediment sources to

lakes. These were cut to expose fresh surfaces, and fine

powders were obtained using a diamond drill. In

formerly glaciated environments the basal lacustrine

muds lain down while ice was still affecting the lake

could be regarded as a partially homogenised sample

of catchment sediment sources, except where glacial

ice external to the lake catchment was likely. Dried

and powdered samples of these deglacial inorganic

muds are used as end-members reflecting bedrock of

the catchments.

Organic materials include specific plant samples

(e.g. Sphagnum, Calluna vulgaris (L.) Hull), a sample

of UK ombrotrophic peat (from May Moss, a site of

varying composition in terms of plant remains and the

degree of peat humification), natural dissolved organic

matter from streams draining peatlands (Rivington

Moor, Whixall Moss, and Migneint) isolated by

freeze-drying, and separated humic and fulvic acid

extracted from May Moss peat (collected March

2017). Humic acid was also collected from May Moss

and Rivington Moor stream water by acidification to

pH 2 and filtration.

Biogenic silica end-members were obtained using

(1) the[ 90 lm fraction of diatom-rich sediment

taken from the edge of Grasmere (Cumbria), visually

inspected to confirm the absence of mineral matter, (2)

a cultured marine diatom (Thalassiosira pseudonana,

supplied by Reed Mariculture, Campbell, California,

USA), and (3) commercial food supplement diatoma-

ceous earth (Ultra-fine freshwater diatomaceous earth,

Diatom Retail Ltd, Leicester, UK). All three samples

were treated with hot acidified hydrogen peroxide to

remove organic matter.

Humic and fulvic acid were extracted from May

Moss peat following the method of Hayes et al. (1975)

but excluding the acid prewash (our samples lack

carbonate). The extraction comprised (Stage 1): 10 g

peat reacted with 100 ml of 1 M NaOH, swirled for

16 h at room temperature and then decanted following

centrifugation. Stage 2 involved careful acidification

of the NaOH extract with concentrated AnalR HCl,

adjusting to pH 1. After 3 days at 4 �C, the humic acid

precipitate was collected by centrifugation, and

repeatedly washed in deionised water. Stage 3

involved neutralisation of the remaining solution with

1 MNaOH. The neutral solution was then freeze dried

to recover a mixture of fulvic acid and NaCl. Stage 4

involved removal of the NaCl using dialysis tubing.

We also created artificial binary and ternary

admixtures of materials to assess the impact of varying

compositions on the quantitative information acquired

from the NIRS analyses. All such mixtures were

homogenised by grinding in a pestle and mortar. A

ternary equal mass proportion admixture was created

using the late glacial muds from Loch Grannoch, Llŷn

Cwm-mynach (N Wales) and Lilla Öresjön (S Swe-

den). May Moss peat and late glacial sediment (Loch

Grannoch) were prepared in quantity for these

synthetic admixtures. The raw materials were homo-

genised by repeated sieving (63 lm for the mineral

matter, 125 lm for the peat). The binary admixtures

were created on a mass proportional basis (0, 7, 20, 33,

47, 60, 73, 87, 93, 100%) of Loch Grannoch late

glacial muds to May Moss peat to assess any deviation

of fitting coefficients from a linear relationship with

respect to mass proportions.

Analytical methodology

NIR spectra for both Loch Grannoch sediment and the

end-member materials, processed as outlined in this

section, are available in the University of Liverpool

Data Repository as tab delimited text files (http://dx.

doi.org/10.17638/datacat.liverpool.ac.uk/550). These

files are formatted for use in the R code, also provided.

NIR spectra were measured by diffuse reflectance

using an integrating sphere on a Bruker MPA Fourier-

Transform NIRS for both the end-member data set and

for 65 discrete evenly spaced 5-mm-thick subsamples

from the 3.19 m Loch Grannoch core. All samples

measured were freeze-dried, homogenised by grinding

in a mortar, and lightly hand pressed (Korsman et al.

2001), with the NIR spectra based on combining 64

scans collected at 8 cm-1 intervals across the range

3595–12,500 cm-1.

To compare partial least squares (PLS) regression

methods applied conventionally to interrogate IR

spectra (Pearson et al. 2014; Meyer-Jacob et al.

2014) with our new multiple regression end-member

approach, PLS-WA analysis was undertaken using the

Bruker OPUS software (Quant Package). A range of

numerical processing procedures were used to sys-

tematically vary the numerical processing of the NIR

spectra including various normalisation procedures
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and derivatives. We also used a Principal Components

Analysis (PCA) on a correlation basis to examine the

overall spectral structure. This approach has enabled

assessment of the most appropriate numerical methods

and wavelength range in the NIR spectra for deter-

mining organic and mineral components in the sedi-

ments. Similar to previous work (Burns and Ciurczak

2001; Korsman et al. 2001; Pearson et al. 2014) we

found using the 1st derivative of the NIR spectra was

most appropriate. 1st derivatives for all NIR spectra

were calculated using a centrally-weighted Savitzky–

Golay smoothing (SGA) algorithm, and our analysis

focuses on the wavelengths 8000–3800 cm-1, min-

imising noise whilst containing the key spectral

structure diagnostic of organic and mineral

components.

Independently quantified sediment component con-

centrations in the Loch Grannoch core (Organic

matter, biogenic silica, and mineral matter) were

needed both to test the results of the multiple

regression and as a training dataset for the PLS

comparison. A subset of 22 samples from the Loch

Grannoch core was used to train the PLS-WA

regression. Organic matter concentrations were quan-

tified by loss on ignition (LOI), with weight loss

measured after 1 h of ignition at 550 �C on sediment

previously dried at 105 �C (Boyle 2004). Element

concentrations from which to calculate normative

mineral matter and biogenic silica were measured

using an Energy Dispersive X-ray Fluorescence

Analyser (ED-XRF). Dried samples were hand-

pressed in 20 mm pots, and measured under a He

atmosphere using a Spectro XEPOS 3 ED-XRF that

emits a combined binary Pd and Co excitation

radiation and uses a high resolution, low spectral

interference silicon drift detector. The XRF analyser

undergoes a daily standardization procedure and has

accuracy verified using 18 certified reference materi-

als (Boyle et al. 2015).

Garrels and Mackenzie (1971) demonstrated that

mineral concentrations present in soil or sediment can

be calculated using a method borrowed from igneous

petrology. Idealised, or ‘normative’, mineral concen-

trations are calculated based standard compositions

for the constituent minerals, via application of a series

of steps that allow for the elements in the soil or

sediment to be fully accounted for. Details are

provided in Boyle (2001). The following steps were

applied:

• Recalculate major elements as oxides (SiO2,

Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, TiO2,

MnO2, P2O5), and together with LOI normalise

these to unity

• Mineral matter is calculated as the sum of:

measured oxides excluding SiO2; calculated SiO2

associated with silicate minerals (chlorite, albite,

orthoclase, anorthite); and quartz

• Biogenic silica is calculated as measured SiO2

minus quartz, and minus calculated SiO2 associ-

ated with silicate minerals.

• Silicate-associated SiO2 is calculated by assuming

it to be present only as chlorite, albite, orthoclase,

and anorthite, considered to be the sole sources of

MgO, Na2O, K2O and CaO, respectively. Silica/

oxide ratios, from Deer et al. (1966), were taken to

be 1.68, 6.13, 5.53, and 2.27, respectively.

• Quartz is not measured directly, but is taken to be

30 times TiO2. This value is the average ratio of

‘‘free’’ SiO2 to TiO2 for the late glacial sediment

(assumed to contain negligible biogenic silica),

where free SiO2 is total measured SiO2 minus

silicate associated SiO2. This approach is most

reliable where mineral matter concentrations are

low, and least reliable when they are high (where

quartz uncertainty is maximal and biogenic silica is

lowest).

Data handling and statistical methods

The IR intensity arising from a mixture depends on the

type and concentration of chromophores (the regions

of a molecule that interact with photons) contributed

by its component parts (Boroumand et al. 1992) with

intensity related to sample component mass concen-

tration. The combined intensity is not expected to be

linearly related to the mass proportions, as the

chromophore density will vary among materials.

However, the component IR intensities (mass propor-

tion scaled by chromophore density) should be

additive, such that their mixing proportions can be

found by multiple regression (Eq. 1).

IM;k ¼ b0 þ b1IC1;k þ b2IC2;k þ � � � þ bnICn;k ð1Þ

where I is the signal intensity at wavenumber k (cm-1)

for the mixture (M) and components (C1 to Cn), b0 to

bn are the regression coefficients
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If chromophore density was equal for all materials,

then the regression coefficient would yield the mass

proportions (concentrations) of the components in a

mixture. However, chromophore densities vary

according to material, so the coefficients instead

quantify what may be described as the chromatic

proportions. To calculate mass proportions from this

information we need to know something of the

chromatic properties of the components. This need

not be known in detail because we have measured

spectra for the components, and are fitting these to the

measured spectrum of mixtures. Instead, provided we

assume (after Boroumand et al. 1992) that the

component spectra are additive, then we simply need

a coefficient that represents the average chromatic

intensity of each component, which we term the

Chromatic Intensity Factor (CIF). This allows mass

proportions to be calculated (Eq. 2).

wx ¼
b1CIF1Pn
x¼1 bxCIFx

ð2Þ

where shown for component 1: wx is mass fraction of

component x, CIFx if the chromatic intensity factor of

component x

The CIF value for each component may be found by

parameterisation, if independent information is avail-

able for the composition of the mixture. However, it

can also be measured using synthetic mixtures, if one

component is chosen as a reference and assigned a

value of 1, a 50:50 mixture of May Moss peat (our

chosen reference) with component X yields a com-

pound spectrum that can be regressed onto the spectra

of its two components. The measured CIF value for

component X relative to May Moss peat is given by

Eq. 3.

CIFx ¼
bMMPeat

bX
ð3Þ

Multiple regression was used for each sample to fit

end-member spectra to the sample spectrum. This is

done using the linear regression model (LM) function

in R (R Core Team, 2013), with regression model

coefficients and confidence intervals returned using

the COEF and CONFINT functions. Mass normalisa-

tion following correction for chromatic intensity was

undertaken using Eqs. 2 and 3. The R code reports and

plots mixing proportions for each component included

in the multiple regressions with 95% confidence

intervals for each sample, and a measure (R2) of the

proportion of the variance in the sample NIR spectra

explained by the selected component end-member

NIR spectra. The R code is available in University of

Liverpool Data Repository (http://dx.doi.org/10.

17638/datacat.liverpool.ac.uk/550).

CIF values may also be found by optimisation if

component concentrations are independently known.

In such cases CIF values can be adjusted to minimise

the mean squared difference between modelled and

known component concentrations.

Results

End-member NIR spectra

A selection of raw unprocessed spectra for potential

end-members (Fig. 1a, c) illustrates the high degree of

similarity between widely different materials. Com-

paring the same materials, a greater distinction is

achieved using 1st derivative NIR spectra, with clearer

differences between organic and mineral end-mem-

bers (Fig. 1b, d).

Comparing the spectra of a 50:50 binary synthetic

mixture (Red: Fig. 2a) with May Moss Peat and Loch

Grannoch mineral component end-member spectra

(Grey: Fig. 2a) shows that the 50:50 admixture

spectrum lies between, but not midway between, its

end-members at all wave counts. For an equal ternary

admixture of Llŷn Cwm-mynach, Lilla Öresjön and

Loch Grannoch mineral matter, the admixture spec-

trum is also bracketed by the end-members (Fig. 2b),

but the distinction between the original end-member

1st derivative spectra is less clear. In both cases

(Fig. 2), multiple regression has been applied to fit the

component end-member spectra to the admixture

spectrum, and a very high degree of fit is obtained

for both the binary (adjusted R2 = 0.991, F = 60,723)

and ternary mixtures (adjusted R2 = 0.996,

F = 93,022). The regression coefficients, however,

do not conform to the known mass mixing proportions

of the end-member components (values shown on

Figure).

The non-linear NIR signal response to end-member

concentration is further illustrated by a range of binary

mixtures of Loch Grannoch mineral matter with May

Moss peat (Fig. 3). The raw multiple regression

coefficients (Fig. 3, filled symbols) do not lie on a

mass-proportion mixing line, but do lie on a
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Fig. 1 Exemplar NIR spectra showing raw NIR spectra for a selected mineral and biogenic materials, b selected organic matter end-

members, and 1st derivative NIR spectra for c mineral and d organic end-member materials. Colour figure available online
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theoretically constrained line (form obeying Eq. 2,

with a fitted CIF value of 2.26 for Loch Grannoch

mineral obtained by minimising the squared differ-

ences). If this CIF value is used to correct the

regression coefficients using Eq. 2 (rearranged to

yield chromatic proportions), then samples (Fig. 3,

open symbols) do lie close to the ideal 1:1 mixing line.

Evaluating chromatic intensity factors

The method used above to determine a CIF value for

Loch Grannoch mineral matter could be applied to any

other material. However, a logistically easier alterna-

tive is to calculate the value from a single point, for

which we use the 50:50 mass admixture of each end-

member (Table 1) withMayMoss peat. This was done

for all end-member materials (Table 1) to obtain

measured CIF values, which range from 0.77 for

Sphagnum and up to 6.73 for a limestone sample. For

the materials we have measured to date, organic

materials typically show lower values (except humic

acids), biogenic silica are higher, and rock materials

range widely (Fig. 4).

While testing the applicability of these measured

CIF values, we observed some cases where mixtures

were non-ideal. For example, where fine rock powder

coated larger fibres of peat, low concentrations of the

rock powder yielded exaggerated chromatic intensi-

ties, presumably because fibre surfaces were prefer-

entially measured. Consequently, it is desirable to take

an additional approach to CIF estimation, whereby

values are found for natural admixtures (soil or

Fig. 2 Mixing of end-member components showing the 1st

derivative NIR spectra for a a binary mixture of May Moss peat

and Loch Grannoch mineral matter and b an equal ternary

mixture of Llŷn Cwm Mynach, Lilla Öresjön and Loch

Grannoch mineral matter. The NIR spectra shown include: the

original raw end-members, the measured admixture and the

modelled fitted admixture spectrum from the end-members

derived by multiple regression. Colour figure available online

Fig. 3 Known versus NIRS quantified mineral matter end-

member proportions for synthetic binary mixtures (0, 7, 20, 33,

47, 60, 73, 87, 93, 100%) of May Moss peat and Loch Grannoch

mineral matter. CIF corrected proportions were calculated from

the MR coefficient using Eq. 2 with CIF = 1 for the peat, and

2.26 for the mineral matter
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sediment) by adjusting CIF values to optimise agree-

ment with independently quantified component con-

centrations. We demonstrate this in the case of the

Loch Grannoch sediment record (Figs. 5, 6). We thus

have two classes of CIF value, here distinguished as

measured CIFM and optimised CIFO.

Sensitivity to the choice of end-members

To explore the sensitivity of our multiple regression

approach to the choice of end-members, two further

experiments were conducted holding two of the end-

members constant and varying a third using a range of

related materials (Table 1). The experiment uses the

NIR spectra obtained for the Loch Grannoch sediment

record (Fig. 5). The primary end-member materials

(the ones found to give the best overall fit) were May

Moss peat (organic matter), marine diatom (biogenic

silica) and Loch Grannoch late-glacial sediment

(mineral matter). The first experiment (Fig. 5a) uses

May Moss peat and marine diatom as fixed end-

members, and cycles through a range of differing

minerogenic sediments and rock types in place of

Loch Grannoch late-glacial sediment. The greatest

impacts are on the quantification of the mineral matter

fraction with organic and biogenic silica content less

affected by choice of mineral matter end-member.

Whilst the principal down-core pattern of mineral

variation is captured in all cases, the mineral compo-

nent shows widely varying values. This variation

shows some association with rock type. Thus, slates

give low values, while quartz-rich rock types give

high. However, there are exceptions, so predicting the

outcome based on the known local rock type is not

reliable. Instead, incorporating a local catchment

specific mineral sediment end-member appears impor-

tant in order to capture both the pattern and critically

the magnitude of down-core variation in all end-

members. Powdered local bedrock or glaciogenic lake

sediments of late glacial age both appear to success-

fully account for catchment mineral matter. The

second experiment (Fig. 5b) holds the Loch Grannoch

late-glacial mineral matter and marine diatom as fixed

components, but cycles through various organic

matter fractions. The impact of varying the organic

component is substantial, affecting the fit for all three

components. For example, humic acid yields low

values for mineral matter and biogenic silica, and high

values for organic matter. That said, the down core

patterns remain broadly similar for all the end-

members assessed. We currently have only three

samples of biogenic silica in conducting the third

experiment (Fig. 5c). Very similar patterns are

obtained with slightly varying magnitude.

Applying end-member multiple regression to lake

sediments

To test the utility of the methods presented here in

discerning evidence for environmental change from

the NIRS analysis of lake sediments, three different

approaches have been applied using NIR spectra

obtained for the Loch Grannoch sediment record

(Fig. 6). The three approaches were:

1. End-member multiple regression using the NIR

spectra for three materials with measured CIF

values (CIFM) (Fig. 6a).

2. End-member multiple regression using the NIR

spectra for three materials with optimised CIF

values (CIFO) (Fig. 6b)

Fig. 4 CIFM values plotted against broad categories of material

type. Lowest CIFMs were encountered for organic matter,

particularly DOC recovered from water. Measured rock types

show considerable variation, with highest values in mafic and

intermediate igneous rocks. The biogenic silica samples show

high values. The asterisk indicates an isolated extreme value
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3. Using a PLS method relating the NIR spectra to

independently quantified environmental parame-

ters based on a training set that comprised a third

of the samples from the Grannoch core

(Fig. 6c).

All three experiments attempt to reconstruct the

concentrations of biogenic silica, organic and mineral

matter for the sediment core. The results are compared

with independently quantified measures of the three

parameters. The end-member materials were May

Moss peat representing natural organic matter; marine

Fig. 5 Example fitted concentrations for rocks, organic and

biogenic silica end-members to Loch Grannoch. a Cycles

through a range of differing minerogenic sediments and rock

types, with May Moss peat and marine diatom as fixed end-

members. b Cycles through a range of differing organic matter

types, with Loch Grannoch mineral matter and marine diatom as

fixed end-members. c Uses May Moss peat and Loch Grannoch

mineral matter as fixed end-members, together with each of the

three biogenic silica samples. The thick black line represent the

preferred case with marine diatom, Loch Grannoch mineral

matter, and May Moss peat
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diatom representing biogenic silica; and Loch Gran-

noch late glacial sediment representing catchment

mineral matter.When using the measured CIFM values

to estimate concentration of mineral matter, organic

matter and biogenic silica in the Loch Grannoch

sediment, we observe high correlations with the

independently quantified concentrations, and good

agreement in the depth of peaks and troughs (Fig. 6a).

However, the absolute values differ particularly for

Fig. 6 Fitted concentrations for Loch Grannoch using Loch

Grannoch mineral matter, marine diatom, and May Moss peat

end-members with a measured CIFm values (2.26, 3.09, 1

respectively) and b optimised CIFo values (1.4, 3.09, 1

respectively), and c values quantified by PLS. These are

compared with independently quantified concentrations. Colour

figure available online
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mineral and organic matter and the regression lines

significantly deviate from the origin.

With optimised CIFO values (Fig. 6b), absolute

magnitudes are constrained to be similar to those

independently quantified. However, there is also a

substantial improvement in that the regression lines

now pass through the origin for all three components,

and in the case of organic matter the R2 value is

substantially increased. The poor fit obtained for the

biogenic silica in the basal samples need not indicate a

failure of our method; a likely explanation is the poor

independent quantification in these highly minero-

genic sediments (Fig. 6).

The PLS method, trained using a third of the

samples from the Loch Grannoch core with indepen-

dently quantified concentrations, was successful in

predicting the concentrations of these components.

Correlation between independently quantified and

PLS estimates should be and is strong (Red curve:

Fig. 6c). While the PLS approach is effective, equiv-

alently good results are obtained using CIF corrected

end-member multiple regression (Fig. 6b), despite not

using a training data set, or indeed being trained at all.

To further test the generality of our approach, and

of our organic and biogenic silica end-member

materials, we have measured NIRS spectra from three

additional lake sediment cores from different regions

and with differing climate and bedrock and applied our

method (Fig. 7). We fitted our two general end-

members (May Moss peat and marine diatom) using

the CIFO values optimised for Loch Grannoch. Local

mineral matter end-members were used to reflect the

differing geology. No optimisation was undertaken.

Site details are shown in Table 2, and the chosen

mineral matter end-members are listed in the caption

to Fig. 7.

The results reveal good fits with low bias and noise

for May Moss peat and marine diatom for the sites in

Wales and Sweden, with rather noisier results at

Stemmen which has a rather unusual bedrock type. At

all three sites mineral matter is the least well fitted.

The results are therefore fully consistent with our

experiments at Loch Grannoch; fitted organic matter is

least impacted by choice of mineral matter end-

member, and fitted mineral matter most so.

Discussion

The approach demonstrated here affirms previous

work showing that taking the 1st derivative of NIR

spectra is the most effective way of reducing unwanted

physical information, for example the effects of

particle size (Rinnan et al. 2009). Alternative normal-

isation procedures can also reduce or remove these

signals, but have been shown not to enhance perfor-

mance and are not recommended for pre-treatment

(Dåbakk et al. 1999). Here the 1st derivative is

calculated using a centrally-weighted 9-point Sav-

itzky–Golay smoothing algorithm combined to reduce

unwanted noise, remove the baseline offset and

amplify the spectral curvature, all of which contribute

Fig. 7 Fitted concentration of May Moss peat (a), marine

diatom (b), and local mineral matter (c) for three additional

sites. Site details in Table 2. Mineral matter end-member used:

schist for Sotaure, local late glacial sediment at Llyn Cwm-

mynach, and orthoclase plus crushed anorthosite at Stemmen.

1:1 lines are plotted to emphasise any bias. Colour figure avail-

able online
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to it being regarded as the best mathematical pre-

treatment choice for handling NIR spectra (Burns and

Ciurczak 2001; Korsman et al. 2001; Pearson et al.

2014).

The 1st derivative spectra exhibit well-defined

peaks, some of which may be attributed to specific

chemical bonds (Terhoeven-Urselmans et al. 2006;

Brown et al. 2006; Zornoza et al. 2008), with the

intervals of the spectrum 4100–4500 cm-1 and

5100–5300 cm-1 dominated by organic chemical

bonds (Korsman et al. 2001). This observation appears

to be in contradiction with empirical evidence (Pear-

son et al. 2014) that model prediction skill is not

improved by restricting analysis to regions of the

spectrum. Our results, however, offer a simple expla-

nation. If component spectra are additive, then each

influences all parts of the spectrum, and all parts of the

spectrum would contain information about each

component of the mixture.

The question of whether spectra are fully additive,

in essence that the spectrum of a mixture comprises a

linear combination of its component spectra, is

fundamentally important to quantitative interpretation

of NIR spectra. This behaviour is expected on the basis

of theory (i.e., Boroumand et al. 1992), but our

analysis of artificial mixtures demonstrates this to be

the case in practice too. For the spectra of synthetic

binary mixtures of mineral and organic matter (Fig. 3)

99% of the variance can be explained by fitting the

component spectra using multiple regression, which

yields root mean squared differences between known

and inferred concentrations in the order of 1% for both

mineral and organic matter.

Success in component fitting is harder to assess for

natural heterogeneous mixtures, because of the uncer-

tainty in the nature of the end-member materials.

Fitting three different materials (May Moss peat, Loch

Grannoch late glacial mud, and marine diatom) to the

Loch Grannoch core produced adjusted R2 values that

ranged 0.85–0.97. The best fits are unsurprisingly for

the late glacial mineral matter, where our end-member

has been specifically tailored to be suitable. The

failure to explain the mineral matter more fully can be

attributed to variability in its composition, with

varying proportions of the constituent minerals

(quartz, feldspars, micas and chlorite). Through the

Holocene there are a number of events and intervals of

higher or lower R2, which may represent periods in

which the component materials were slightly different,

or periods during which additional materials different

from the selected end-member materials were present.

A crucial question is whether periods of poorer fit as

measured by the R2 of regression represent periods of

poor quantification of the components or simply

dilution by other materials. This cannot be fully

answered, but the squared differences between the

NIRS inferred and independently quantified values for

the Loch Grannoch core do not co-vary with the R2

value (Fig. 6). Thus, although more work is needed, it

appears that the fitted concentrations are relatively

insensitive to the proportion of total variance (R2)

explained.

Table 2 Site details for additional cores shown on Fig. 7

Site name Sotaure Tarn at Stemmen Llyn cwm Mynach

Country Sweden Norway Wales

Latitude� 66.7333 58.4534 52.7958

Longitude� 20.5734 6.0870 -3.9608

Rock type Granitic gneiss and schist Anorthosite Ordovician metasediments

Core code SO-2-1 N17-Lake1-GC1 MYN15-SC2

Date of coring 15/07/2012 21/08/2017 25/06/2015

Lake area km2 0.016 0.015 0.057

Catchment area km2 0.042 0.064 1.19

Coring depth m 6.2 9.5 11

Core length m 0.95 2.57 0.35

Core type Russian Russian 8 cm diameter, Gravity

123

J Paleolimnol (2019) 62:73–88 85



The additive nature of the 1st derivative NIR

spectra (Fig. 2; Boroumand et al. 1992) means that it is

possible to separate end-members quantitatively using

multiple regression. However, we have shown that the

multiple regression coefficients are not linearly related

to mass concentration (Fig. 3). This result is consistent

with the theoretical treatment of Boroumand et al.

1992, who show that varying chromophore density

among materials means that conservative mixing by

mass would be the exception rather than the rule. We

demonstrate in the case of the binary mixture (Fig. 3)

that application of a simple chromatic intensity factor

(CIF) corrects for this effect, such that we observe

conservative mixing of what may be termed the

chromatic proportions. This is fully quantifiable, such

that mass concentration (mass/mass) may be calcu-

lated from the chromatic proportions provided the CIF

values are known. However, we cannot extract end-

members from natural mixtures, so our measured CIF

values must be obtained instead using proxies, the

appropriateness of which cannot be fully assessed. In

the case of the Loch Grannoch core, we have used

(Fig. 6a) the measured CIFM values for May Moss

peat (definitively 1), Loch Grannoch mineral matter

(2.26), and marine diatom (3.09). Yet, when we find

CIFO values by optimisation (minimising the squared

differences from known values), a very different value

is found for the mineral matter (1.4). The CIFO for

marine diatom is identical to the CIFM value. The

differing CIF values for mineral matter likely reflect

the differences in the mineral matter mixture between

the late glacial and the Holocene. This suggests that

the issue of CIF magnitude is rather less important

than the problem of being unable to choose end-

members on a truly a priori basis. However, the

sensitively testing (Fig. 5) shows that useful results

are obtained even when an imperfect end-member

material is used. And, when using optimal CIF values,

it is apparent (Fig. 6b) that multiple regression very

successfully explains both magnitude and variation in

the independently quantified components (biogenic

silica, organic and mineral matter). Quantification of

major sediment components in the Loch Grannoch

core using multiple regression compares well with the

independently quantified values despite not being

trained in the manner that the PLS methods are.

Indeed, this favourable comparison is still more

encouraging given that the PLS method was trained

using the independently quantified variable data set

and would therefore be expected to predict it success-

fully, while our method did not include a training

procedure.

Choice of organic materials can affect the fit for

other major sediment components. In the case of the

Loch Grannoch core, MayMoss peat provides the best

proxy for lake sediment organic matter. This is likely

due to it comprising a mixture of organic materials

which would be similar to those found in the lake

sediment that are allochthonous in origin. It is possible

that other combinations of organic materials would

replicate this natural mixture. This has not been fully

explored, but other examples of good fits for Loch

Grannoch organic matter are combinations of humic

acid, fulvic acid and Sphagnum spp. Generally, with

the exception of May Moss peat, precision of fitting is

improved when pairs or greater combinations of

organic matter end-members, are used. Some combi-

nations, owing to the similarity of spectra for some

types of organic matter with consequent high multi-

collinearity, lead to excessively high (� 1) or low

(� 0) regression coefficients. However, with favour-

able combinations, such as humic acid, fulvic acid and

Sphagnum, coefficients generally lie between 0 and 1

even when both biogenic silica and mineral matter are

also included as independent variables. This is highly

promising, though further work is needed to test the

validity of such results.

Due to a limited end-member library of biogenic

silica materials, we cannot generalise with confidence.

However, the similarity of results found using three

widely differing sources of biogenic silica, and the

good agreement with independently quantified bio-

genic silica for the Loch Grannoch core, are very

promising.

The broader generality of our method is illustrated

by its successful application, without optimisation, to

sites with different characteristics and climate from

Wales, Norway and Sweden. It is particularly encour-

aging that good results were obtained when applying

May Moss peat and marine diatom, with only mineral

matter choice adjusted for local conditions. On the

other hand, based on the results from these three sites,

and the experiments at Loch Grannoch, we can expect

poorer results where the sediment mineral component

is poorly represented by the selected end-member, so

at new sites, particularly those with unknown or

unusual bedrock types, some validation of the end-

member fits is recommended.

123

86 J Paleolimnol (2019) 62:73–88



Conclusions

With suitable end-member materials selected, our new

open-source multiple regression procedure gives

simultaneous quantification of the major components

(biogenic silica, mineral and organic matter content)

of lake sediments, with excellent performance com-

pared with results obtained by independent methods.

Poor choice of end-member can lead to bias in the

quantification, thus tailoring the choice of mineral

material, for example selecting a similar bedrock type

to that of the sample environment, is the preferred

option. An advantage of the multiple regression

method is that it does not require a training data set

of materials which have been independently quantified

using alternative methods. A library of end-member

materials has been created relatively simply with little

time investment and is easily expanded. Fitting of end-

member spectra by multiple regression is a valuable

alternative to the various PLS methods (or other

‘trained’ methods), that do not transparently allow

assessment of potential interfering factors. It has the

further advantage of resting in theory rather than on

chemometric statistical methods.
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Dåbakk E, Nilsson M, Geladi P, Wold S, Renberg I (1999)

Sampling reproducibility and error estimation in near

infrared calibration of lake sediments for water quality

monitoring. J Near Infrared Spectrosc 7:241–250. https://

doi.org/10.1255/jnirs.254

Deer WA, Howie RA, Zussman J (1966) An introduction to the

rock-forming minerals. Longmans, Harlow

Flower RJ, Battarbee RW, Appleby PG (1987) The recent

paleolimnology of acid lakes in Galloway, Southwest

Scotland—diatom analysis, pH trends and the role of

afforestation. J Ecol 75:797–824. https://doi.org/10.2307/

2260207

Garrels RM, Mackenzie FT (1971) Evolution of sedimentary

rocks. Norton, New York

Hayes MHB, Swift RS, Wardle RE, Brown JK (1975) Humic

materials from an organic soil: a comparison of extractants

and of properties of extracts. Geoderma 13:231–245.

https://doi.org/10.1016/0016-7061(75)90020-8
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