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for climate change during the late glacial in the Southern
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Abstract We investigated oxygen and carbon iso-

topes of bulk carbonate and of benthic freshwater

ostracods (Candona candida) in a sediment core of

Lago Piccolo di Avigliana that was previously ana-

lyzed for pollen and loss-on-ignition, in order to

reconstruct environmental changes during the late

glacial and early Holocene. The depth–age relationship

of the sediment core was established using 14 AMS
14C dates and the Laacher See Tephra. While stable

isotopes of bulk carbonates may have been affected by

detrital input and, therefore, only indirectly reflect

climatic changes, isotopes measured on ostracod shells

provide unambiguous evidence for major environmen-

tal changes. Oxygen isotope ratios of ostracod shells

(d18OC) increased by *6% at the onset of the Bølling

(*14,650 cal BP) and were *2% lower during the

Younger Dryas (*12,850 to 11,650 cal BP), indicat-

ing a temporal pattern of climate changes similar to the

North Atlantic region. However, in contrast to records

in that region, d18OC gradually decreased during the

early Holocene, suggesting that compared to the

Younger Dryas more humid conditions occurred and

that the lake received gradually increasing input of
18O-depleted groundwater or river water.

Keywords Stable isotopes � Ostracods � Climate �
Pollen � Late glacial � Laacher See Tephra � Italy

Introduction

The late glacial is a period of major and rapid

environmental changes that was studied intensively.

In the North Atlantic region (including Central Europe)

the main climatic changes include a rapid warming at

the onset of the Bølling (*14,650 cal BP), a distinct

cooling at the onset of the Younger Dryas (YD,

*12,850 to *11,650 cal BP) followed by a rapid

warming at the YD/Holocene transition (e.g. Rasmus-

sen et al. 2006). The YD represents a geographically

widespread climatic change and models and data agree

on the involvement of the meridional overturning
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circulation (MOC, see for discussion Alley 2007). In

the Southern European Alps, increasing oxygen-

isotope ratios (d18O) from lacustrine carbonates indi-

cate a climate warming at the onset of the Bølling but

no signal could be detected from such records for the

YD (Eicher 1987; Baroni et al. 2001, 2006). Still, two

chironomid-inferred mean July-air temperature

records indicate a warming of *3�C at the Bølling

onset and a *1.5 to *2�C cooling during the YD

(Heiri et al. 2007; Larocque and Finsinger 2008) and

pollen records indicate vegetation responses to these

climatic changes (e.g. Finsinger et al. 2006; Vescovi

et al. 2007).

The Southern European Alps lie at the northern limit

of the Mediterranean Basin, which is located in a

climatically sensitive transitional zone between Cen-

tral Europe (temperate climate) and North Africa

(subtropical climate) (Fig. 1). Due to the proximity of

this region to the Mediterranean Basin, Eicher (1987)

suggested that the missing evidence in d18O records for

the YD cooling and the subsequent climate warming at

the YD/Holocene transition may be explained by a

strong influence of the mediterranean climate. How-

ever, d18O records in the eastern and southern

Mediterranean indicate a dry climate (marked by

higher d18O values) during the YD (Bar-Matthews

et al. 1997, 1999; Stevens et al. 2001; Roberts et al.

2001; Wick et al. 2003). Hence Wright et al. (2003)

suggested that somewhere between Central Europe and

the southern Mediterranean isotopic depletion due to

cooling and isotopic enrichment due to evaporation

could balance each other if cool and dry YD climatic

conditions occurred.

Here we present a new record of stable isotopes

measured on bulk carbonates (d18OB) and on mono-

specific ostracod shells (d18OC) of Candona candida

that were collected from a well-dated sediment record

of Lago Piccolo di Avigliana in the Southern

European Alps. This record provides strong evidence

for major late glacial and early Holocene climate

variations that enable teleconnections between the

southern Mediterranean and the North Atlantic

climate systems.

Regional setting

Lago Piccolo di Avigliana (LPA; 45�030 N, 07�230 E;

350 m a.s.l.) is located in the southern foreland of the

Alps (Fig. 1). The catchment (8.1 km2) is surrounded

by hills lower than *650 m a.s.l. and is characterized

by metamorphic rocks (calcareous schists, serpentine,

peridotite; Petrucci et al. 1970). The lake (max. depth

12.5 m, surface area 60 ha, water-residence time

*0.9 years; Gaggino and Cappelletti 1984) is

dammed by a moraine system deposited by a lateral

Fig. 1 Left: Map of the Lago Piccolo di Avigliana (LPA) area

with coring location marked by the solid star. Right: Location

of sites mentioned in the text. Southern Central Europe (filled

circles): Ammersee (AMM), Gerzensee (GERZ). Southern

European Alps (shaded circles): LPA, Lake Terlago (LT), Lake

Frassino (LF), and Grotta Savi (GS). Mediterranean region:

Lake Pergusa (LP), Eski Acıgöl (EA), Lake Van (V), Lake

Zeribar (Z), Lake Mirabad (M), Soreq Cave (SC), and Lake

Lisan (L)

886 J Paleolimnol (2008) 40:885–895

123



tongue of the Susa valley glacier and receives its

water from two seasonal streams and from an infilled

lake (Torbiera di Trana). Mean annual temperature at

Avigliana is 13.0�C, while mean temperature of the

coldest and warmest months are 2.2�C (January) and

23.9�C (July), respectively (Biancotti et al. 1998).

The average sum of annual precipitation amounts to

880 mm, with major rainfall occurring mainly in

autumn and spring in connection with the activity of

the Genoa Low, a cyclonic circulation over the Gulf

of Genoa where cyclones are formed mostly in the lee

of the Alps. This in turn is influenced by seasonal

latitudinal shifts of the polar front (Pinna 1977).

Present-day d18O of precipitation (d18OP) on the

western Po Plain seems to be influenced by the

shadow effect of the Alps (Dray et al. 1997) although

this effect is not well defined due to a lack of

collecting stations in this sector of the Alps (Longi-

nelli and Selmo 2003). During the YD only small

cirque glaciers remained in the Susa valley, none of

which was located in the hydrological catchment of

the lake (Carraro et al. 2002).

Materials and methods

Fieldwork and laboratory work

The lake sediments were collected with a modified

piston corer (diameter: 8 cm, Merkt and Streif 1970)

from a floating platform at a water depth of 12.5 m in

autumn 2001 (Fig. 1b). The one-meter long drives

were extruded into plastic half-tubes, wrapped in

plastic foil, transported to the laboratory, stored at

4�C, and subsequently sub-sampled.

Stable oxygen and carbon isotopes were measured

on bulk calcium carbonate (dB; 105 samples: 861–

646 cm depth), adult Candona candida shells (dCA;

12 samples: 849–654 cm depth), and juvenile C.

candida shells (dCJ; 17 samples: 849–654 cm depth).

Sediments for dB were treated and measured as

described by Siegenthaler and Eicher (1986). Isotopic

composition of ostracod shells (dC) was measured

with a Kiel III ThermoFinnigan device that was

coupled to a MAT 250 through a custom-made

communication and interface system. Sample weights

ranged from 10 to 220 lg. Values are reported in the

standard delta per mille notation relative to the PDB

standard (%PDB). The analytical precision is 0.1 and

0.15% for d13C and d18O, respectively. Samples for

pollen analysis (1 cm3) were prepared by decanting

and sieving at 500 lm before standard chemical

treatment (HCl, KOH, HF, HCl, Acetolysis, KOH)

and were eventually embedded in glycerine. Identi-

fication and counting of pollen grains (at least 400

pollen grains of terrestrial plants) was conducted

under a light microscope at 4009 magnification with

the aid of identification keys (e.g. Moore and Webb

1991) and atlases (Reille 1992). Percentages were

calculated upon the terrestrial pollen sum including

tree, shrub, herb pollen, and fern spores. Loss on

ignition (LOI) was measured at 550 and 950�C

(following Heiri et al. 2001) to estimate the amount

of organic matter, carbonate content, and minerogen-

ic content (expressed in % of total dry weight) of the

sediment. Samples for ostracod analysis were pre-

pared as described in Belis et al. (in press).

Chronology

The depth–age relationship is based on 13 14C AMS

dates on terrestrial plant macrofossils (Finsinger

2004; Finsinger et al. 2006), and one additional 14C

date on wood (909 cm depth; 14,930 ± 80 14C BP;

Poz-6497), and by a distal micro-tephra layer, strati-

graphically and chemically identified as the Laacher

See Tephra (LST). The tephra was found with a

discrete shard-peak concentration between 768 and

769 cm, using a modified heavy liquid-separation

technique (Blockley et al. 2005). It was chemically

correlated (Table 1) to the LST by WDS electron

microprobe, using a Cameca SX100 microprobe (for

operating conditions see Table 1). The LST has been

previously reported from this region (van den Bogaard

and Schmincke 1985; Schmincke et al. 1999) and is a

chemically distinct phonolitic eruption that is rela-

tively easy to distinguish from Italian eruptions of the

same period (Fig. 2a). For the LST, the weighted

mean age of the middle cluster (i.e. 11,066 ± 12 14C

BP, Baales et al. 2002; 13,070–12,910 cal BP) was

used. All radiocarbon dates were calibrated using the

IntCal04 data set (Reimer et al. 2004) with the OxCal

3.1 program (Bronk Ramsey 1995, 2001). The depth–

age relationship (Fig. 2b) was established by means of

a generalized mixed-effect regression (Heegaard et al.

2005). The LST was given a weight equal to one in

order to guarantee a correct model-estimated age.

Estimated 95% confidence intervals are \200 years
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for ages\14,000 cal BP and increase to 300 years for

ages[15,700 cal BP (Fig. 2b).

Results

Changes in sediment composition

The sediment has low organic and carbonate content

until 14,400 cal BP (Fig. 3h). Thereafter, carbonate

and organic content increase rapidly, while the

ignition residue (Fig. 3i) decreases from ca. *90 to

*70% dry weight (% dw). Changes of smaller

amplitude occur at 12,900 cal BP when organic

content slightly decreased, and at 11,400 cal BP when

carbonate content increased to values[20% dw.

Stable isotopes

Stable oxygen and carbon isotope ratios of bulk

sediments (d18OB and d13CB, respectively) in sedi-

ments older than *15,500 cal BP were high (-6 and

[0%, respectively, Fig. 3c). Oxygen isotope ratios

decreased to ca. -8.0% between *15,200 and

*14,500 cal BP, then rapidly increased to -6.5%

between *14,500 and *14,200 cal BP, and later

gradually decreased to -9% at 9,500 cal BP. Highest

d13CB values occurred between *14,800 and

*14,200 cal BP (*0.5%). Between 14,600 and

14,200 cal BP d13CB values decreased, then levelled-

off at ca. -3% until *11,500 cal BP, and later

decreased gradually to reach -4.0% at 9,500 cal BP.

Pollen-inferred vegetation dynamics

With the climatic warming at the onset of the Bølling,

the mixed and open woodland dominated by birch

(Betula) and pine (Pinus) with large amounts of herbs

(e.g. sagebrush (Artemisia)) and shrubs (e.g. juniper

(Juniperus), not shown) was replaced by denser

stands of Pinus and Betula (Fig. 3f–g). Summergreen

oak (Quercus) populations expanded during the

Allerød as inferred from higher pollen amounts.

These oak populations partially collapsed during the

YD period. Changing pollen abundances of Artemisia,

Quercus, and Betula indicate that vegetation

during the YD returned to an open woodland

dominated by Betula, Pinus, and Artemisia and

that at the onset of the Holocene oak populations

recovered rapidly.

Table 1 Chemical analyses of the Laacher See Tephra found at 768–769 cm depth at LPA

SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Cl Total

57.2 0.2 22.0 1.7 0.4 0.1 0.8 6.6 5.4 0.4 94.8

58.3 0.5 19.3 2.2 0.2 0.3 1.8 5.5 7.1 0.2 95.4

58.3 0.7 19.3 2.5 0.2 0.3 1.8 5.4 7.3 0.2 96.1

59.7 0.6 20.1 2.0 0.1 0.3 1.8 4.7 7.2 0.2 96.8

59.2 0.5 20.0 2.2 0.1 0.3 1.5 5.2 6.8 0.3 96.1

59.6 0.3 20.1 1.9 0.1 0.2 1.6 6.2 7.3 0.3 97.6

58.2 0.5 19.5 2.3 0.2 0.3 1.5 6.5 7.7 0.3 96.9

58.9 0.5 19.2 2.4 0.2 0.3 1.5 5.5 7.1 0.3 95.8

57.9 0.6 19.7 2.3 0.2 0.3 1.5 5.9 7.5 0.3 96.2

59.1 0.5 19.2 2.4 0.1 0.3 1.5 5.4 7.0 0.3 95.8

58.9 0.5 19.5 2.3 0.2 0.3 1.8 5.4 7.5 0.3 96.6

55.8 0.1 22.8 1.5 0.3 0.1 0.5 9.8 4.4 0.4 95.7

58.7 0.6 19.4 2.3 0.1 0.3 1.7 5.1 7.6 0.3 96.1

58.4 0.2 20.0 2.1 0.2 0.2 1.6 7.0 7.2 0.3 97.2

58.7 0.6 19.5 2.3 0.2 0.3 1.5 5.3 7.4 0.3 96.0

59.3 0.6 19.8 2.3 0.2 0.3 1.6 4.9 7.4 0.3 96.7

Samples were mounted in resin block and polished to a flat surface, microprobe operating conditions were 20 kev accelerating

voltage, 10 na current and a 1 lm beam rastering a 10 lm spot size; Lipari Obsidian standards were used for secondary calibration

and beam drift was monitored with reference to an Andradite standard. Samples with evidence of phenocryst inclusions and those

with analytical totals below 95% were excluded from the results
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Discussion

Given the high ignition residue values (Fig. 3i), it is

conceivable that bulk sediment d18OB and d13CB may

be reflecting isotopic composition of detrital carbon-

ates. This is especially the case for samples older than

14,450 cal BP, when the sediment consisted of[80%

detrital material. For this period, the d13CB values are

in the range of -2 to +1%. Instead, for periods after

14,200 cal BP d13CB values are around -3%. This

suggests that equilibration with atmospheric CO2 and

biological activity of plants enriched the dissolved

bicarbonate with respect to groundwater (that has

typically d13CB values between -10 and -15%,

Siegenthaler and Eicher 1986; Leng and Marshall

2004) throughout the record but to varying degrees.

Neglecting evaporative enrichment and d18O changes

in sea water, the d18OB composition will mainly covary

Fig. 2 (a) Al2O3 vs CaO

plot for the Avigliana data

compared to summary

proximal data for the

middle and upper phases of

the Laacher See Tephra

(Schmincke et al. 1999) and

major Italian eruptions from

the late glacial (Wulf et al.

2004), (b) depth–age

relationship of the sediment

core AVP1. The two dashed

lines indicate the upper and

lower 95% confidence

limits of the mean expected

age throughout the

sequence (central line); dots

and error bars: mean

calibrated ages and

associated 2r errors; LST:

Laacher See Tephra
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with temperature—with an increase of *0.36%/�C

(Siegenthaler and Eicher 1986). In contrast, d13CB is

indirectly related to climate due to the influence of

inflowing waters (different isotopic composition), of

CO2 exchange between atmosphere and lake water, of

photosynthesis/respiration of aquatic plants within the

lake (Leng and Marshall 2004), and of dissolved

bicarbonate from the watershed, which can be affected

by changes in the relative abundance of C3 (-25%)

and C4 (-12%) plants in the catchment (e.g. Huang

et al. 2001). Variations in d13CB ratios may parallel

those of d18OB if productivity of aquatic vegetation

responded to climate change, with relatively strong

(weak) biological activity in warm (cold) phases

Fig. 3 Comparison

between the (a) NGRIP2-

d18O record (after NGRIP

Members 2004; Rasmussen

et al. 2006), (b) Ammersee

d18O measured on benthic

ostracods (von Grafenstein

et al. 1999a), (c) stable

isotopes measured on bulk

carbonates (continuous line:

d18OB; dotted line: d13CB),

(d) d18O of C. candida
shells (open circles:

juveniles; closed circles:

adults), (e) d13C of C.
candida shells (open

circles: juveniles; closed

circles: adults), (f, g)

selected pollen types, (h)

organic and carbonate

content (% dw), (i) ignition

residue (% dw).

LST = Laacher See

Tephra. Thin grey area:

onset of Bølling; large grey

area Younger Dryas
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leading to enhanced (reduced) 13C and 18O enrichment

in the water (Siegenthaler and Eicher 1986). When all

samples are considered the linear correlation between

d18OB and d13CB is low (Fig. 4). However, n-point

running correlations (n = 3, 5, and 10) of d18OB and

d13CB indicate that these isotopes are negatively

correlated (r B -0.7) between *14,500 and

*14,200 cal BP. The linear correlation coefficient

between *14,200 and *12,900 cal BP is higher

(0.02 B r B 0.6), while d18OB and d13CB covary

(r C 0.7) starting from *12,900 cal BP. The decrease

in d13CB (from *+1% to *-3%) between *14,800

and *14,200 cal BP may reflect the successive

establishment of terrestrial vegetation (expansion of

Betula and Pinus, Fig. 3f–g) and related soil develop-

ment in the lake’s catchment as well as the smaller

influence of detrital carbonate. As discussed by

Hammarlund et al. (1999) on the basis of similar

carbon-isotope records from Sweden, this develop-

ment can lead to increased release of 13C-depleted CO2

from soil respiration and successive depletion with

time in 13C of dissolved inorganic carbon (DIC) in

groundwater and lakes.

Rising d18OB values at *14,500 cal BP may only

indirectly indicate a warming climate. First, d13CB

values decreased *200 years before the d18OB

change occurred, suggesting that the establishment

of terrestrial vegetation and related soil development

preceded the d18OB change. Second, d18OB values

increase synchronously with the ignition-residue

change and with the rapid closing of Pinus–Betula

stands, suggesting that vegetation played an impor-

tant role in soil stabilization thereby reducing

sediment runoff. Slightly lower d18OB values during

the YD may point to a climate cooling, but the

change is very subdued in this record as in other

d18OB records from the region (Eicher 1987).

Decreasing d13CB and d18OB values starting from

*11,500 cal BP might be caused by increased input

of groundwater or river water, which generally has

low oxygen and carbon isotopic values. The decreas-

ing trend was distinctly interrupted at *11,200 cal

BP by a short-term positive excursion of both isotope

ratios. Since oxygen and carbon isotopes still covary

during this positive excursion, the less depleted

isotopic values might indicate decreased input of

groundwater or river water.

In addition to bulk sediments, stable-isotope ratios

of the freshwater ostracod Candona candida were

analyzed because ostracod-isotope records are not

affected by detrital carbonates. Oxygen isotope ratios

of C. candida (d18OC) are generally less depleted (by

*4%) than d18OB. One reason for this difference is

certainly the large vital offset (ca. +2.2%), which

Fig. 4 Scatter plot of

d18OB vs d13CB for Lago

Piccolo di Avigliana.

Samples were classified

following a 10-point

running correlation
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seems to be constant for all instars as observed by

von Grafenstein et al. (1999b).

C. candida is a benthic organism (Meisch 2000),

whose juveniles form their shells during the warm

season while adults grow from late fall to spring.

d18O values of modern juvenile Candoninae (incl. C.

candida) shells in Ammersee (southern Germany) are

depleted by up to 2% compared to adult shells (von

Grafenstein et al. 1999b). Since the difference

decreases with water depth and vanishes at about

20 m, where seasonal water-temperature differences

are subdued, the difference is likely related to the

temperature-dependent fractionation between calcite

and water (*-0.25%/K, von Grafenstein et al.

1999b). Hence, if water-depth was *20 m at LPA,

then the difference between juvenile and adult d18OC

would not be water-level dependent but would reflect

seasonal changes in d18O of lake water. The

sediments of the studied section lie at [6.5m below

the present-day sediment–water interface (12.5 m

water depth). Since it is unlikely that the outflow was

lower than at present, we infer a maximum water

depth of at least *19 m. Under this scenario, the

temperature-dependent fractionation between calcite

and water could be considered more or less as

constant, and d18OC would parallel the d18O of lake

water, which, if the lake was an open system with a

short water-residence time as it is at present, would

be mainly influenced by d18O of precipitation (d18OP)

(von Grafenstein et al. 1999a; Schwalb 2003). Based

on these assumptions, we may infer that during most

of the analyzed period the winter to summer differ-

ence remained constant since juvenile and adult

d18OC values are similar. A summer-d18OP decrease

during YD (12,850–11,650 cal BP) can be inferred

from lower d18OCJ, while little can be said for winter

(only one sample). Increasing d13CCJ during this

1200-year-long cold phase might have been caused

by a reduction of the summer inflow (hence drier

climate), which would lead to an increase of d13CDIC

in the lake. This is because DIC of inflowing water,

with relatively negative d13C, compensates both lake-

internal processes of enrichment (net-sedimentary

flux of organic matter and equilibration with atmo-

spheric CO2, von Grafenstein et al. 2000). A

decreased summer-water input might also be inferred

from the abundance decrease of C. candida and the

occurrence of Darwinula stevensoni (Belis et al. in

press), which at present is an indicator of shallow

water (0–12 m water depth) in modern lakes (Meisch

2000). After *11,500 cal BP, d18OC gradually

decrease, only being interrupted by a positive

shift at *11,200 cal BP. During the latter event,

higher d18OC and d13CC might indicate a return to

pre-YD d18OP conditions. However, since similar

changes are depicted in dB ratios, decreasing dC

values during the early Holocene may as well have

been caused by increasing input of groundwater or

river water, or by a concomitant onset of eutrophi-

cation in the lake.

Major changes in vegetation composition at LPA,

as inferred from the pollen record, are contempora-

neous with changes in d18OC and d13CC ratios (within

the resolution limits of the d18OC record; Fig. 3). At

the onset of the Bølling, d18OC increased when

mixed-woodland dominated by Betula, Pinus, Larix,

and Juniperus were replaced by denser stands of

Pinus and Betula. During the YD d18OC decreased

along with a partial collapse of mixed forests (e.g.

Quercus) and the expansion of Betula and Artemisia-

dominated shrubland.

An increase at the onset of the Bølling, followed

by a decrease during the YD and a subsequent

increase at the YD/Holocene transition (YD/PB) has

been observed in several d18O records of lacustrine

carbonates in Central and northern Europe (e.g.

Eicher and Siegenthaler 1976; Lotter et al. 1992;

von Grafenstein et al. 1999a) and of ice-cores in

Greenland (e.g. NGRIP, Rasmussen et al. 2006). The

change in d18O values is interpreted as reflecting

changes in air temperatures. For the lacustrine

records the main assumption states that variations

of the drainage-basin water balance (precipitation-

evaporation) and of the long-term humidity have only

negligible effect (Eicher and Siegenthaler 1976; von

Grafenstein et al. 1999a). A similar sequence of July-

air temperature changes is confirmed for the Southern

European Alps by chironomid-inferred temperature

records at LPA and Lago di Lavarone (Heiri et al.

2007; Larocque and Finsinger 2008).

In contrast to Central European d18O records, an

increase in the d18O values during the YD and a

strong decrease in the d18O values at the YD/PB

transition has been observed in several records from

the Mediterranean region (Fig. 1), like in the spele-

othem record of the Soreq Cave and in lacustrine

carbonates in Lake Lisan, Israel (Bar-Matthews et al.

2003; Kolodny et al. 2005), in Lake Van and in Eski
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Acıgöl, Turkey (Roberts et al. 2001; Wick et al.

2003), in Lake Zeribar and Lake Mirabad, Iran

(Stevens et al. 2001, 2006), in Lake Pergusa, south-

ern Italy (Zanchetta et al. 2007), and in the

speleothem record from Grotta Savi, northeastern

Italy (Fisia et al. 2005). A decrease in d18O ratios

during the early Holocene has also been observed in

two records from the southeastern Alps: at Lake

Terlago (Baroni et al. 2001) and at Lake Frassino

(Baroni et al. 2006). These records have been inter-

preted as reflecting changes in the seasonality of

precipitation (Lake Zeribar and Lake Mirabad),

changes in the isotopic composition of source mois-

ture and rainfall amount (Soreq Cave, Lake Lisan,

and Lake Pergusa), or changes in the water balance of

the lake (Eski Acıgöl), the amount of rainfall (Lake

Frassino and Lake Terlago), and the combined effect

of temperature and rainfall (Grotta Savi).

During the YD, as during other North Atlantic cold

spells (e.g. Heinrich events), climatic conditions were

generally drier in the southern Mediterranean region

(e.g. Lamb et al. 1995; Combourieu Nebout et al.

2002) leading to higher d18O ratios in lacustrine and

speleothem carbonates. Wright et al. (2003) sug-

gested that somewhere between the southern

Mediterranean and Central Europe isotopic depletion

due to temperature decrease and isotopic enrichment

due to evaporation could have balanced each other if

cool and dry YD climatic conditions occurred. As

suggested by our d18OC record, which shows more

negative values during the YD, this is clearly not the

case for the Southern European Alps although

chironomid-inferred temperatures indicate a temper-

ature decrease (Heiri et al. 2007; Larocque and

Finsinger 2008) and higher d13CC values suggest a

decreased inflow.

It is noteworthy that, within the limits of the

stratigraphic resolution, the LPA d18OC-inferred cli-

mate changes during the late glacial show similar

changes as those reconstructed for the same time-slice

in Central Europe (e.g. Ammersee, von Grafenstein

et al. 1999a, Fig. 4) and in the North Atlantic (Alley

2000). In contrast, soon after the onset of the Holocene,

the patterns at LPA and Central Europe diverge with

decreasing d18OC at LPA and increasing d18O ratios

north of the Alps. Thus, d18OC changes at LPA do not

reflect a typical ‘Central European’ (e.g. Ammersee,

Fig. 4) or ‘Mediterranean’ pattern (e.g. Soreq Cave).

Instead, they seem to reflect a ‘Central European’

pattern for the late glacial (increasing values at the

onset of the Bølling and decreasing d18OC values

during the YD) and a ‘Mediterranean’ pattern for the

early Holocene (decreasing d18OC values).

Conclusions

The Lago Piccolo di Avigliana sediments reflect the

impact of major late glacial and early Holocene

climate changes on sediment and vegetation compo-

sition, stable isotopes of bulk sediments, and more

clearly, on stable isotopes of monospecific freshwater

ostracod (C. candida) shells. While oxygen and

carbon isotope ratios of bulk sediments may be

affected by detrital carbonates and, therefore, only

indirectly record climate changes, stable isotopes

measured on ostracods provide evidence for the onset

of the Bølling warming and the YD cooling. During

the late glacial the climate changes were, therefore,

similar to those documented in Central Europe, as

also inferred using chironomid-based temperature

reconstructions in the Southern European Alps. In

contrast, during the early Holocene the record does

not show a climate warming as other records do in

Central Europe, but rather suggests that the lake

received gradually increasing input of groundwater or

river water. This is also reflected in other stable

isotope records from the Southern European Alps and

from the Mediterranean region. However, many

questions remain concerning climate changes and

their impact on terrestrial and aquatic environments

of the region. Further efforts are required to develop

higher-resolution climate reconstructions in order to

highlight late glacial and Holocene centennial-scale

climate changes and changes in climate gradients

across Southern and Central Europe.
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