Skip to main content

Advertisement

Log in

Amine Group Surface-Functionalized Carbon Quantum Dots Exhibit Anti-amyloidogenic Effects Towards Hen Egg White Lysozyme by Inducing Formation of Nontoxic Spherical Aggregates

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The tendency of polypeptide chains to deviate from their conventional protein folding pathway and instead get trapped as off-pathway intermediates, has been a matter of great concern. These off-pathway intermediates eventually lead to the formation of insoluble, ordered fibrillar aggregates called amyloids, which are responsible for a host of neurodegenerative diseases like Alzheimer’s disease, Parkinson’s disease and Type II diabetes. In spite of extensive research, development of an effective therapeutic strategy against amyloidosis still remains elusive. In recent times, carbon quantum dots (CQD) have grabbed the attention of researchers against amyloidogenesis due to their ease of preparation, aqueous soluble nature, unique optical properties, high surface to volume ratio, physio-chemical properties, semi-conducting nature and mainly biocompatible. In the current study, we have reported an easy-to-prepare procedure for synthesis of amine group surface functionalized CQDs from commonly available kitchen spices with anti-oxidant properties. The as-synthesized CQDs were evaluated for their anti-amyloidogenic properties towards Hen Egg White Lysozyme (HEWL). Our results clearly show that the surfaced functionalized CQDs were able to interact with HEWL, thereby forming a stable complex, which was resistant towards amyloid formation and instead lead to the formation of non-toxic globular aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K, Kaether C, Fandrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. PNAS 107:1942–1947. https://doi.org/10.1073/pnas.0904532106

    Article  PubMed  PubMed Central  Google Scholar 

  2. Doig AJ, Derreumaux P (2015) Inhibition of protein aggregation and amyloid formation by small molecules. Curr Opin Struct Biol 30:50–56. https://doi.org/10.1016/j.sbi.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Bopardikar M, Bhattacharya A, Kakita VMR, Rachineni K, Borde LC, Choudhary S, KotiAinavarapu SR, Ramakrishna VH (2019) Triphala inhibits α-synuclein fibrillization and their interaction study by NMR provides insights into the self-association of protein. RSC Adv 9:28470–28477. https://doi.org/10.1039/c9ra05551g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alam P, Chaturvedi SK, Siddiqi MK, Rajpoot RK, Ajmal MR, Zaman M, Khan RH (2016) Vitamin K3 inhibits protein aggregation: implication in the treatment of amyloid diseases. Sci Rep 6:26759. https://doi.org/10.1038/srep26759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mitra A, Sarkar N (2020) Sequence and structure-based peptides as potent amyloid inhibitors: a review. Arch Biochem Biophys 695:108614. https://doi.org/10.1016/j.abb.2020.108614

    Article  CAS  PubMed  Google Scholar 

  6. Zhu C, Zhai J, Dong S (2012) Bi functional fluorescent carbon nanodots: green synthesis via soymilk and applications as metal-free electrocatalysts for oxygen reduction. Chem Commun 48:9367–9369. https://doi.org/10.1039/c2cc33844k

    Article  CAS  Google Scholar 

  7. Chahal S, Yousefi N, Tufenkji N (2020) Green synthesis of high quantum yield carbon dots from phenylalanine and citric acid: role of stoichiometry and nitrogen doping. ACS Sustain Chem Eng 8:5566–5575. https://doi.org/10.1021/acssuschemeng.9b07463

    Article  CAS  Google Scholar 

  8. Liu R, Zhang J, Gao M, Li Z, Chen J, Dongqing Wu, Liu P (2014) A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers. RSC Adv 5:4428–4433. https://doi.org/10.1039/c4ra12077a

    Article  Google Scholar 

  9. Deng J, Qiujun Lu, Mi N, Li H, Liu M, Mancai Xu, Tan L, QingjiXie YZ, Yao S (2014) Electrochemical synthesis of carbon nanodots directly from alcohols. Chem Eur J 20:4993–4999. https://doi.org/10.1002/chem.201304869

    Article  CAS  PubMed  Google Scholar 

  10. Javed M, Saqib ANS, Ata-ur-Rehman, Ali B, Faizan M, Anang DA, Iqbal Z, Abbas SM (2019) Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochim Acta 297:250–257. https://doi.org/10.1016/j.electacta.2018.11.167

    Article  CAS  Google Scholar 

  11. da Silva-Souza DR, Caminhas LD, de Mesquita JP, Pereira FV (2018) Luminescent carbon dots obtained from cellulose. Mater Chem Phys 203:148–155. https://doi.org/10.1016/j.matchemphys.2017.10.001

    Article  CAS  Google Scholar 

  12. Pires RN, Santos MWC, Sousa RR, de Paula RCM, Cunha PRL, Feitosa JPA (2015) Novel and fast microwave-assisted synthesis of carbon quantum dots from raw Cashewgum. J Braz Chem Soc 26:1274–1282. https://doi.org/10.5935/0103-5053.20150094

    Article  CAS  Google Scholar 

  13. Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK (2017) Green synthesis of carbon dots from Ocimum Sanctum foreffective fluorescent sensing of Pb+2 ions and live cell imaging. Sens Actuators B Chem 242:679–686. https://doi.org/10.1016/j.snb.2016.11.109

    Article  CAS  Google Scholar 

  14. Sachdev A, Gopianath P (2015) Green synthesis of multifunctional carbon dots from coriander leaves and their potential applications as anti-oxidants, sensors and bio imaging agents. Analyst 140:4260–4269. https://doi.org/10.1039/c5AN00454c

    Article  CAS  PubMed  Google Scholar 

  15. Chun S, Muthu M, Gansukh E, Thalappil P, Gopal J (2016) The ethanopharmacological aspect of carbon nanodots in turmeric smoke. Sci Rep 6:35586. https://doi.org/10.1038/srep35586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chunduri A, Kurdekar A, Patnaik S, Dev VB, Ratan TM, Kamisetti V (2016) Carbon quantum dots from coconut husk: evaluation for antioxidant and cytotoxic activity. Mater Focus 5:55–61. https://doi.org/10.1166/mat.2016.1289

    Article  CAS  Google Scholar 

  17. Zhao S, Lan M, Zhu X, Xue H, Ng WTZ, Meng X, Lee C-S, Wang P, Zhang W (2015) Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl Mater Interfaces 7:17054–17060. https://doi.org/10.1021/acsami.5b03228

    Article  CAS  PubMed  Google Scholar 

  18. Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, Wang J, Wang W (2016) Carbon dots: surface engineering and application. J Mater Chem B 4:5772–5788. https://doi.org/10.1039/c6tb00976j

    Article  CAS  PubMed  Google Scholar 

  19. Dimos K (2016) Carbon quantum dots: surface passivation and functionalization. Curr Org Chem 20:682–695. https://doi.org/10.2174/1385272819666150730220948

    Article  CAS  Google Scholar 

  20. Yousaf M, Huang H, Li P, Wang C, Yang Y (2017) Fluorine functionalized graphene quantum dots as inhibitor against hIAPP amyloid aggregation. ACS Chem Neurosci 8:1368–1377. https://doi.org/10.1021/acschemneuro.7b00015

    Article  CAS  PubMed  Google Scholar 

  21. Nugraha MW, Sambudi NS, Kasmiarno LD, Kamal NA (2021) The effect of amino-functionalization on photoluminescence properties of sugar cane bagasse-derived carbon quantum dots. ASEAN J Chem Eng 21:62–72. https://doi.org/10.22146/ajche.61234

    Article  CAS  Google Scholar 

  22. Wu J-A, Chen Y-C, Tu L-H (2021) Dopamine-conjugated carbon dots inhibit human calcitonin fibrillation. Nanomaterials 11:2242. https://doi.org/10.3390/nano11092242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan C, Chaoli Wang Xu, Shao QS, Xiaoling Hu, Guan P, Teng Y, Cheng Y (2021) Dual-targeted carbon dot-drugs nano assemblies for modulating Alzheimer’s related amyloid-β aggregation and inhibiting fungal infection. Mater Today Bio 12:100167. https://doi.org/10.1016/j.mtbio.2021.100167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalhor HR, Yahyazadeh A (2019) Investigating the effect of amino acid-based surface modification of carbon nanoparticles on the kinetics of insulin amyloid formation. Colloids Surf B Biointerfaces 176:471–479. https://doi.org/10.1016/j.colsurfb.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  25. Prabhu MPT, Sarkar N (2022) Inhibitory effects of carbon quantum dots towards hen egg white lysozyme amyloidogenesis through formation of a stable protein complex. Biophys Chem 280:106714. https://doi.org/10.1016/j.bpc.2021.106714

    Article  CAS  PubMed  Google Scholar 

  26. Ulicna K, Bednarikova Z, Hsu W-T, Holtztragerova M, Josephine WuW, Hamulakova S, Steven Wang SS, Gazova Z (2018) Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf B Biointerfaces 166:108–118. https://doi.org/10.1016/j.colsurfb.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  27. Sulatsky MI, Sulatskaya AI, Povarova OI, Antifeeva IA, Kuznetsova IM, Turoverov KK (2020) Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion 14:67–75. https://doi.org/10.1080/19336896.2020.1720487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andrea A, Beatrice C, Bystrenova E, Katarina S, Francesco V, Jan I, Maria V, Pavol K, Fabio B, Zuzana G (2011) Structure–activity relationship of acridine derivatives to amyloid aggregation of lysozyme. Biochim Biophys Acta 1810:465–474. https://doi.org/10.1016/j.bbagen.2011.01.007

    Article  CAS  Google Scholar 

  29. Zhang C, Gao C, Jianshuai Mu, ZhangleiQiu LL (2013) Spectroscopic studies on unfolding process of apo-neuroglobin induced by guanidine hydrochloride and urea. Biomed Res Int 2013:349542. https://doi.org/10.1155/2013/349542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bourassa P, Kanakis CD, Tarantilis P, Pollissiou MG, Tajmir-Riahi HA (2010) Resveratrol, genistein and curcumin bind bovine serum albumin. J Phys Chem B 114:3348–3354. https://doi.org/10.1021/jp9115996

    Article  CAS  PubMed  Google Scholar 

  31. Wang B-B, Wang Y-Y, Zhang X-Y, Zi-Qiang Xu, Jiang P, Jiang F-L, Liu Yi (2020) Bifunctional carbon dots for cell imaging and inhibition of human insulin fibrillation in the whole aggregation process. Int J Biol Macromol 147:453–462. https://doi.org/10.1016/j.ijbiomac.2019.12.267

    Article  CAS  PubMed  Google Scholar 

  32. Sisombath NS, Jalilehvand F (2015) Similarities between N-acetylcysteine and glutathione in binding to lead (II) ions. Chem Res Toxicol 28:2313–2324. https://doi.org/10.1080/19336896.2020.1720487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weilin Du, Liao L, Yang Li, Qin A, Liang A (2017) Aqueous synthesis of functionalized copper sulfide quantum dots as near-infrared luminescent probes for detection of Hg2+, Ag+ and Au3+. Sci Rep 7:11451. https://doi.org/10.1038/s41598-017-10904-y

    Article  CAS  Google Scholar 

  34. Clogston JD, Patri AK (2010). In: McNeil S (ed) Zeta potential instrument, characterization of nanoparticles intended for drug delivery: methods in molecular biology. Humana Press, New York

    Google Scholar 

  35. Ahlawat J, Narayan M (2022) Multifunctional carbon quantum dots prevents soluble-to-toxic transformation of amyloid and oxidative stress. ACS Sustain Chem Eng 10:4610–4622. https://doi.org/10.1021/acssuschemeng.1c08638

    Article  CAS  Google Scholar 

  36. SibaprasadMaity RK, Maity SK, Jana P, Dera S, Haldar D (2013) Synthesis and study of 2-acetylamino-3-[4-(2-amino-5-sulfo-phenylazo)-phenyl]-propionic acid: a new class of inhibitor for hen egg white lysozyme amyloidogenesis. Med Chem Commun 4:530–536. https://doi.org/10.1039/c2md20236k

    Article  CAS  Google Scholar 

  37. Sarroukh R, Gooramaghtigh E, Ruysschaert JM, Raussens V (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta 1828:2328–2338. https://doi.org/10.1016/j.bbamem

    Article  CAS  PubMed  Google Scholar 

  38. Mohammadi F, Mahmudin A, MarzichMoeeni LH (2016) Inhibition of amyloid fibrillation of hen egg white lysozyme by the natural and synthetic curcuminoids. RSC Adv 6:23148–23160. https://doi.org/10.1039/c5ra18992f

    Article  CAS  Google Scholar 

  39. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and references databases. Biopolymers 89:392–400. https://doi.org/10.1002/bip.20853

    Article  CAS  PubMed  Google Scholar 

  40. LeCroy GE, Shiral Fernando KA, Bunker CE, Wang P, Tomlinson N, Sun Y-P (2017) Steady state and time-resolved fluorescence studies on interactions of carbon “quantum” dots with nitrotoluenes. Inorg Chim Acta 468:300–3007. https://doi.org/10.1016/j.ica.2017.05.058

    Article  CAS  Google Scholar 

  41. Pace CN, Scholtz JM (1997) Measuring the conformational stability of a protein. In: Creighton TE (ed) Protein structure: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  42. Fersht AR (2020) A kinetically significant intermediate in the folding of barnase. PNAS 97:14121–14126. https://doi.org/10.1073/pnas.260502597

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding provided to NS by Science and Engineering Research Board (SERB), Govt. of India (Grant No. ECR/2017/002081). The infrastructural facilities provided by NIT Rourkela are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandini Sarkar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, M.P.T., Chrungoo, S. & Sarkar, N. Amine Group Surface-Functionalized Carbon Quantum Dots Exhibit Anti-amyloidogenic Effects Towards Hen Egg White Lysozyme by Inducing Formation of Nontoxic Spherical Aggregates. Protein J 42, 728–740 (2023). https://doi.org/10.1007/s10930-023-10157-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10157-x

Keywords

Navigation