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Abstract
Analysing protein conformational ensembles whether from molecular dynamics (MD) simulation or other sources for func-
tionally relevant conformational changes can be very challenging. In the nineteen nineties dimensional reduction methods 
were developed primarily for analysing MD trajectories to determine dominant motions with the aim of understanding 
their relationship to function. Coarse-graining methods were also developed so the conformational change between two 
structures could be described in terms of the relative motion of a small number of quasi-rigid regions rather than in terms 
of a large number of atoms. When these methods are combined, they can characterize the large-scale motions inherent in a 
conformational ensemble providing insight into possible functional mechanism. The dimensional reduction methods first 
applied to protein conformational ensembles were referred to as Quasi-Harmonic Analysis, Principal Component Analysis 
and Essential Dynamics Analysis. A retrospective on the origin of these methods is presented, the relationships between 
them explained, and more recent developments reviewed.

Keywords Principal Component Analysis · Essential Dynamics · Quasi-Harmonic Analysis · Collective motions · Domain 
motions

1 Introduction

It is now a long-established fact that protein function is 
intimately linked to protein conformational change as dem-
onstrated by the solved structures of proteins in multiple 
functional states. For example, they show how the bind-
ing of a ligand can induce a conformational change. If we 
have only a single structure of a protein, however, there 
are a number of computational techniques that we can use 
to model dynamics and so gain insight into functionally 
related motions. The most popular and accurate is molecular 
dynamics (MD) simulation which is usually performed with 
the protein immersed in a bath of water molecules, and there 
are several well-known MD packages for this purpose, e.g., 
GROMACS [4], AMBER [5], CHARMM [6] and NAMD 
[7]. Other methods include Normal Mode Analysis (NMA) 
[8–14] and Monte Carlo (MC) sampling [15–21]. MD and 

MC give a trajectory for every atom, and the challenge is 
to extract functionally relevant motions hidden within the 
noisy trajectories of a large number of atoms. Experimental 
techniques such as NMR, X-ray crystallography, and more 
recently cryo-electron microscopy [22] can also provide us 
with conformational ensembles.

This review is mainly focussed on what is broadly known 
as Principal Component Analysis (PCA) in application to 
protein conformational ensembles. PCA is a general dimen-
sional reduction method that is widely applied in many 
fields and is used on high-dimensional data with the aim of 
representing the data as faithfully as possible using fewer 
dimensions. In application to conformational ensembles, it 
went under different names depending on context. In Quasi-
Harmonic Analysis (QHA), the context is its relationship 
to NMA which assumes that a protein behaves like a har-
monic oscillator. “Essential Dynamics Analysis” (EDA), 
developed in the Berendsen group by Amadei, Linnsen and 
Berendsen [1], is also PCA but captures in its terminology 
an important feature of protein motion, which is that most of 
the motion occurs in a subspace, called the “essential sub-
space” spanned by a very small number of dimensions. The 
emphasis of that paper and its terminology helped convey 
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this feature of protein dynamics to the MD community better 
than other publications [23–25] at the time even though they 
had similar findings.

By measuring the overlap of their essential subspaces, 
PCA offers a good way to compare results from two simu-
lations or from a simulation and a protein conformational 
ensemble from experiment. These methods can also be used 
to establish the stability of the essential subspace from a 
single simulation, for example by dividing the trajectory into 
two parts.

Sometimes PCA on a protein trajectory can reveal a sin-
gle very dominant mode of motion. Even in this case, the 
dominating mode’s motion can be very complex and difficult 
to understand, specifying in a collective fashion the move-
ment of all the atoms. However, depending on the nature 
of the motion, coarse-graining methods can be applied that 
reduce the description from an all atom one to one that of a 
few quasi-rigid regions or domains. Thus, combining PCA 
with a coarse-graining method can produce, from a highly 
complex and noisy trajectory, a depiction that is easy to 
comprehend.

In addition to reviewing the origins of PCA, EDA and 
QHA for the analysis of protein ensembles and the connec-
tions between them, some more recent variants of PCA that 
have been applied in this area will be reviewed.

2  First Applications of PCA, QHA and EDA 
to Protein Conformational Ensembles

In this section we review how PCA has been applied to pro-
teins and try to give a perspective on the variants of PCA 
that arose in its application to protein conformational ensem-
bles. As there has been a recent excellent review by Kitao 
[26] on PCA in application to protein dynamics, that review 
can be referred to for further details.

PCA is a multi-variate technique that can be applied to a 
wide variety of data and it predates its application to protein 
dynamics by over 100 years [27]. Its first application to pro-
tein dynamics was framed in the context of NMA and was 
called “Quasi-Harmonic Analysis”. In order to appreciate 
QHA it is necessary to explain NMA.

2.1  QHA and Its Relationship to NMA

NMA is a harmonic method that models protein dynamics at 
physiological temperatures using the parabolic approximation 
of the conformational energy surface at a single energy mini-
mum (for details see the early papers on NMA [8, 10, 14] or 
some later reviews [9, 11–13, 26, 28]). To simplify the kinetic 
energy term in the Lagrangian, NMA in Cartesian coordinate 
space uses mass-weighted atomic displacements 

( Δqi =
√
mjΔxj , Δqi+1 =

√
mjΔyj,Δqi+2 =

√
mjΔzj ) where 

mj is the mass of the jth atom (j = 1,N, where N is the total 
number of atoms) and Δxj , Δyj,Δzj give its displacement from 
its position at the energy minimum conformation. Performing 
NMA gives a set of eigenvectors vk (3N × 1 column vectors, 
k = 1,3N-6) that define shape changing patterns of atomic dis-
placements; the remaining 6 define the external degrees of 
freedom (translational and rotational degrees of freedom of the 
whole molecule) that have eigenvalues equal to zero. The form 
of these external eigenvectors is such that they satisfy the Eck-
art conditions [29–31]. The eigenvectors define collective vari-
ables (normal mode variables):

where t denotes the transpose, Δ� = (Δq1Δq2 …Δq3N)
t , 

the 3N × 1 column vector of mass-weighted atomic dis-
placements, and vik is the ith element of the eigenvector, 
vk . Equation (1) shows the collective nature of the normal 
mode variables in being a linear sum of the atomic displace-
ments. The normal mode variables behave as independent 
harmonic oscillators, each with an angular frequency given 
by its associated eigenvalue, �2

k
 . Statistical mechanics for a 

harmonic oscillator in thermal equilibrium gives:

where kB is Boltzmann’s constant, and T  the absolute tem-
perature. Also, one can show that [30]:

The left-hand side of this equation is a mass-weighted total 
mean-square displacement and is a measure of the total overall 
motion of the protein in thermal equilibrium. It shows that the 
lowest frequency normal modes have the largest contribution 
whatever the frequency distribution. Frequency distributions 
on the small globular proteins that NMA was first performed, 
showed how the contribution of a relatively small number of 
low-frequency normal modes dominated the total mean square 
fluctuation of the whole protein. This led to the concept of the 
“important subspace” [28, 30], which is the subspace defined 
by the lowest frequency normal modes in which most of the 
motion occurs. NMA also allows one to calculate the vari-
ance–covariance matrix for the mass-weighted atomic coor-
dinate displacements as:

(1)�k = vt
k
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3N∑
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or in matrix form:

where C is the variance–covariance matrix with elements 
⟨ΔqiΔqj⟩ , V is the eigenvector matrix, the kth column of 
which is vk , and � , a diagonal matrix with elements, �k =

kBT

�2
k

 
which are the mean-square displacement or mean-square 
fluctuation (msf) of the normal mode variables [see Eq. (2)]. 
Equation (5) reveals the origin of QHA as it shows how one 
can derive NMA eigenvectors and eigenvalues from the vari-
ance–covariance matrix. This would mean that if an MD 
simulation were performed for a system with a single para-
bolic energy well, then provided it were sufficiently long (see 
below for more on convergence), good approximations to 
NMA eigenvectors and eigenvalues could be determined.

In NMA time plays a central role as one is solving New-
ton’s equations of motion. However, in performing QHA 
time is not explicitly involved, and it can therefore be applied 
to protein conformational ensembles where there is no time 
ordering of the conformations, e.g., ensembles of crystal-
lographic structures.

Although NMA could predict atomic B-factors well and 
the lowest frequency normal modes were plausible in that for 
proteins like lysozyme they produced the expected domain 
motion [32], the assumption of harmonicity is in a strict 
sense wrong as it is known that the state point (the point in 
the 3N-6 dimensional space that represents the conforma-
tion) visits multiple energy minima. This was demonstrated 
in early experimental observations [33] and MD simula-
tions [34] and a large body of work has since supported 
this. In contrast to NMA, with MD simulations the state 
point can move from minimum to minimum giving a more 
realistic simulation of protein dynamics. Despite this it is 
still possible to do QHA by calculating the variance–covari-
ance matrix irrespective of the nature of the conformational 
energy surface. To do this one first has to remove the exter-
nal degrees of freedom which is done by performing mass-
weighted least-squares best fits of the conformations to a 
reference structure, e.g., the starting structure. This mass-
weighting is important as it can be shown [31] that in doing 
so, the Eckart conditions for removal of the external degrees 
of freedom are satisfied. For NMA, displacements are cal-
culated from the minimum energy structure which would be 
the same as the average structure for motion on a truly para-
bolic energy surface. To perform QHA the mass-weighted 
displacements used to calculate the variance–covariance 
matrix are calculated from the simulation average structure. 
It can be performed as follows. After removing the external 
degrees of freedom and calculating the average structure, 
a matrix of each atom’s mass-weighted displacement from 
its average position, at each time frame can be constructed:

(5)C = V�Vt, where, as above, �ql is a column vector of the mass-
weighted atomic displacements at time frame l , and L is 
the number of time frames saved from the simulation. The 
variance–covariance matrix can then be calculated as:

Diagonalisation of C gives the eigenvector matrix V and 
eigenvalue matrix, � , as in Eq. (5) above. In NMA one is 
interested in the lowest frequency motions as they produce 
the largest fluctuations [see Eq. (2)] and so one would sort 
the eigenvalues from lowest to highest, whereas in doing 
QHA one sorts the eigenvalues from highest to lowest given 
that the eigenvalues directly give the msf’s of the quasi-
harmonic mode variables. The projection of the trajectory 
into the space of the first n QHA coordinates is given by:

where �i is a 1 × L row vector giving the atomic displace-
ments at each frame projected onto the ith QHA coordinate.

The earliest application to protein dynamics of QHA 
was by Karplus and Kushick [35] in order to estimate the 
configurational entropy. Later applications of QHA by Levy 
et al. [36, 37] to butane and BPTI concentrated on the fre-
quency distributions derived from the eigenvalues rather 
than inspecting motions along eigenvectors.

2.2  First Applications of PCA and Essential 
Dynamics Analysis to MD Trajectories

QHA is in fact PCA on the mass-weighted coordinates but 
framed as an inverse procedure to NMA that can be applied 
to MD and MC simulations.

In the early nineteen nineties, papers [1, 23–25] appeared 
that analysed MD trajectories using PCA that aligned closer 
to the origins of PCA as a geometrical method for finding the 
orthogonal transformation that best represents a distribution 
of points using fewer dimensions. Many of these papers did 
not directly frame their work in terms of QHA even if they 
did use mass-weighted displacements, preferring to use the 
term PCA, and others did not mass-weight the displacements 
thus breaking the formal connection to QHA.

These papers showed plots of the cumulative msf’s with 
principal coordinate number (ordered from largest eigen-
value to smallest). They showed the dominance of a small 
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)
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number of the first principal coordinates in their contribution 
to the total msf; this dominance being more dramatic than 
seen with NMA. Of particular impact was study carried out 
in the Berendsen group by Amadei et al. [1], where PCA was 
framed as an “Essential Dynamics Analysis”. The analysis 
was also performed on  Cα atoms only, unique at the time as 
others used all the atoms. A particular emphasis was put on 
the small size of the subspace within which protein dynam-
ics is largely confined, and the terms such “essential” and 
“near constraint” (in the sense of an effective constraint) 
served to convey this message very well. Figure 1 shows the 
original plots from Amadei et al. for the relative cumulative 
fluctuation against eigenvector number. An early application 
that arose from EDA was a new sampling technique that 
accelerates sampling within the essential subspace [38]. In 
the Gō group, the focus was on the dynamical behaviour of 
collective motions [24, 39]. In particular Langevin mode 
analysis [40] was performed which assumes the motion can 
be modeled as a harmonic oscillator in a viscous fluid.

Projection onto the first two principal components is 
particularly informative as clusters can be seen. For exam-
ple, a comparison of MD trajectories [24, 25] in vacuo 
and in explicit water showed how the presence of water 

created small local clusters in the projected trajectories. 
Such projections can also show clusters that might relate 
to functionally related stable states in the conformational 
landscape. Projection of MD trajectories on to individual 
principal components with the highest msf’s to produce 
“probability distributions” (histograms of population 
density) clearly demonstrated the non-harmonic nature 
of protein dynamics. In this regard the QHA approach 
is particularly useful as one can compare results directly 
to those obtain from NMA. One would not expect NMA 
eigenvectors to be well aligned to QHA eigenvectors of 
an MD trajectory as NMA is performed in a single energy 
minimum, whereas in MD the state point visits multiple 
energy minima. Nevertheless, NMA can be used to distin-
guish anharmonic and harmonic QHA modes. If we denote 
the NMA eigenvectors, wi , and the QHA eigenvectors, vk , 
then we can project the NMA msf onto the kth QHA mode 
using:

The “anharmonicity factor” [41] for each QHA mode is 
defined as:

where �k is the msf of the kth QHA mode (its eigenvalue) 
from the MD simulation. If �k = 1 then it means that the msf 
derived from all the normal modes projected onto the kth 
QHA mode matches that from the MD trajectory projected 
onto the kth QHA mode. The QHA modes with �k = 1 were 
referred to as harmonic and their probability distributions 
showed the expected Gaussian form. Those QHA modes 
with 𝜇k > 1 were suggested to be anharmonic as their msf’s 
could not be reproduced by NMA. Those with the largest 
values of �k had multi-modal distributions consistent with a 
state point moving on an energy surface with multiple min-
ima. Studies revealed that QHA modes separate into low 
number modes that are anharmonic, and high number modes 
that are harmonic. For BPTI simulated in vacuo only 12% of 
the mode were anharmonic, but they contributed 98% to the 
total msf [41]. A comparable result was found for a simula-
tion of lysozyme in water [42]. An interesting finding was 
that the larger the msf of a mode, the larger its anharmonic-
ity factor, suggesting that large-scale movements in proteins 
are those that derive principally from anharmonic, minima 
jumping events. This analysis led to a variant of QHA, called 
the Jumping Among Minima or JAM model [42] that can 
separate the contributions to the variance–covariance matrix 
into those that arise from fluctuations within minima and 
those that arise from fluctuations between minima. Using 

(9)�har
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= kBT
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Fig. 1  Reproduced from Fig.  2 in Amadei et  al. [1] showing the 
relative cumulative fluctuation against eigenvector number for an 
essential dynamics analysis on a 900  ps solvent MD simulation of 
lysozyme. This demonstrates the dominance of a relatively small 
number (out of a possible 3792) of “essential” eigenvectors. A Cα 
atoms only. B All atoms
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this model, it was possible to gain insight into the structure 
of the energy surface for a protein, revealing it to have a 
hierarchical nature. Amadei et al. [43] developed a double 
diffusion model for the kinetics of “essential” coordinates 
that combined motions within energy minima with jumps 
between energy minima, the former having a higher diffu-
sion constant than that of the latter.

PCA, being a statistical method is subject to sampling 
errors. Hess [44] a member of the Berendsen group at the 
time, showed that applying PCA to random diffusion in a 
high-dimensional space can give the impression of underly-
ing correlations even when there are none. It was shown that 
trajectories from random diffusion projected onto the domi-
nant PCA mode variables have a cosine form. This can be a 
strong indication of non-convergence, but its presence alone 
does not necessarily indicate an unstable subspace. If the 
results of PCA on protein MD trajectories are to have mean-
ing, then the subspaces of the dominant PCA modes should 
not vary dramatically between two different portions of a 
trajectory from a single simulation of a protein in thermal 
equilibrium, or indeed between two different equilibrium 
simulations of the same protein in the same state. Thus, one 
can quantify the stability of the subspace by measuring the 
overlap of the two subspaces. Labelling the two trajectories, 
or two portions of a single trajectory, a and b , the root mean-
square inner product (rmsip), is a measure which directly 
quantifies the overlap, Oa,b

M
 , of two subspaces:

where va,i and vb,j are the ith and jth eigenvectors from the 
PCA analyses of trajectories, a and b , and M is the dimen-
sion of the subspaces. Oa,b

M
 is equal to 1.0 for fully overlap-

ping subspaces. An early study [45] using state-of-the-art 
MD simulations at the time on G-actin (470 ps), suggested 
that PCA did not give a stable dominant subspace. This was 
established by performing PCA (375  Cα atoms) on each of 
the two 235 ps halves of the trajectory and comparing the 
subspaces using a measure related to the rmsip. However, a 
slightly later study [46] using 2 ns MD simulations on pro-
tein L and Cytochrome c551 found the essential subspaces to 
be stable. A much more recent study applying PCA to trajec-
tories from multiple MD simulations on BPTI and lysozyme 
of ten’s of nanoseconds duration, has served to confirm the 
stability of subspaces defined by dominant PCA modes [47].

(11)O
a,b

M
=

√√√√ 1

M

M∑
i=1

M∑
j=1

(
vt
a,i
vb,j

)2
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3  Recent Developments based on PCA

Since the emergence of PCA as a powerful method for ana-
lysing protein trajectories, many other variants and applica-
tions have since been developed.

3.1  Linear Response

Linear response can be used to determine the conformational 
response of a system under external forces. In application 
to protein–ligand binding it can be stated as follows: the 
equilibrium fluctuations of the protein in the absence of the 
ligand, can be used to approximate the response of the pro-
tein due to forces of interaction with the ligand. It was shown 
by Ikeguchi et al. [48] to reproduce quite accurately known 
ligand-induced conformational changes for a selection of 
proteins. The basic formula is:

where f  is the 3N × 1 force vector, giving the force on each 
protein atom from the ligand, Δr is the 3N × 1 displacement 
vector, giving the displacement of each protein atom, and C 
is the 3N × 3N variance–covariance matrix (here not mass-
weighted). This approach has been used in the interactive 
docking tool, DockIT [3, 49, 50], for docking a ligand to 
a protein receptor. DockIT enables the user to control the 
ligand position and orientation using either a keyboard and 
mouse, a haptic device, or in VR using hand-held control-
lers. To model interaction forces it uses GROMACS [4] 
topology files generated using the pdb2gmx command and 
GROMACS itp files containing the non-bonded interaction 
parameters for GROMOS and AMBER force fields. Interac-
tive docking is an interesting application as calculations have 
to be evaluated within real time limits (< 30 ms for graph-
ics, < 2 ms for haptics) in order to produce a smooth real-
istic experience. Evaluation of Δr in Eq. (12) requires 9N2 
multiplications which even using a modern graphics card 
cannot be achieved in real-time when using a haptic device 
and/or with a large protein. Diagonalisation of C enables the 
following approximation to Eq. (12):

where VM is the 3N × M eigenvector matrix containing the 
first M dominant PC modes, and �M the M × M diagonal 
eigenvalues matrix of corresponding eigenvalues. Using 
Eq. (13) to get an approximation to Δr requires M(6N + 1) 
multiplications (multiplying from right to left). The idea 
behind this is that even though M might have to be small in 
order to satisfy time and memory constraints, the approxi-
mation in Eq. (13) may still be very good as most of the 

(12)Δr =
1

kBT
Cf ,

(13)Δr ≈
1

kBT
VM�MV

t
M
f ,
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fluctuation occurs within the important or essential sub-
space. Indeed, in the case of maltose binding to maltose 
binding protein (MBP), where C was calculated from a 
100 ns explicit solvent MD simulation of MBP, only about 
3% of the total number of eigenvectors could be used, but 
these represented nearly 90% of the total fluctuation [50]. 
Figure 2 shows the result of docking maltose to MBP using 
DockIT when only 26 of the 17,205 eigenvectors are used, 
i.e., just 0.15%. Despite the very small size of the subspace, 
docking maltose into the interdomain cleft resulted in a 
domain movement that matched very well the domain move-
ment between the crystallographic unbound and maltose-
bound structures [3].

3.2  PCA in Dihedral Angle Space

PCA is not limited to Cartesian coordinates, although it 
is the most straightforward to perform. The exact tertiary 
structure of a protein will be specified by all its so-called 
internal variables which would be the whole set of bond 
lengths, bond angles and dihedral angles. Bond lengths 
and angles are rather constrained in comparison to dihe-
dral angles and so it is common to consider only the rotat-
able dihedrals which reduces the number of variables com-
pared to the number of Cartesian coordinates by about a 
factor of eight for proteins. Using internal variables also 
means no fitting to a fixed structure is necessary in per-
forming PCA. NMA can also be carried out using only 
the dihedral angles and in doing so one needs to be able 

to convert dihedral angle changes to Cartesian coordinate 
displacements via a Jacobian that is derived to satisfy the 
Eckart conditions and calculated for the energy minimum 
structure. Omori et al. [51] showed how to perform dihe-
dral angle PCA in an analogous procedure but the Jaco-
bian matrix, L , for the transformation between dihedral 
angle changes and Cartesian coordinate displacements is 
calculated at the average MD structure rather than at the 
energy minimum structure. In the linear approximation 
the relationship between atomic displacements and angle 
changes is given by:

where Δr is the 3N × 1 the vector of atomic displacements, 
Δ� is the M × 1 vector of dihedral angle changes, and L is the 
3N × M Jacobian matrix. Equation (14) be can used to define 
the dihedral angle variance–covariance matrix as:

Comparison of C� to the variance covariance matrix 
performed directly on dihedral angles changes (from their 
average) revealed motions corresponding to compensating 
dihedral angles changes that maintain the overall struc-
ture of a protein and which were referred to as “latent 
dynamics” [51, 52]. In a different context these motions 
have been called path-preserving motions, [53] specific 
examples being the backrub motion [54] and the peptide 
plane flip [55]. This approach has also been used with 

(14)Δr = LΔ�,

(15)C� =
(
LtC−1L

)−1

Fig. 2  Domain movement in MBP from docking maltose to MBP 
with DockIT[3] using the linear response model [see Eq.  (13)] to 
model the conformational change upon maltose binding. Only 26 
eigenvalues and eigenvectors were used which were derived from 
a 100 ns explicit solvent MD simulation of MBP in its maltose free 
state. Colouring shows domains (red and blue) and hinge bending 

regions (green) as assigned by DynDom for the movement between 
the maltose-free (PDB: 1OMP) and maltose-bound structure (PDB: 
1ANF). A The relaxed structure of MBP without maltose. B A closed 
domain MBP structure with maltose (ball-and-stick) docked into its 
binding site
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some success to model the linear response of proteins upon 
binding a ligand [51].

There are other approaches that use dihedral angles such 
as that by Stocks and co-workers [56, 57] who build a vari-
ance–covariance matrix constructed from both the sine and 
cosine of each dihedral angle, so the variance–covariance 
matrix is order 2 M. This “dPCA” approach is taken to 
ensure a proper metric is established in that the distance 
between two angles is now the distance between their corre-
sponding points on the unit circle. On penta-alanine, where 
Cartesian coordinate PCA shows a single energy minimum 
on the first two eigenvectors at the α-helical conformation, 
for dPCA using the ϕ, ψ dihedrals, multiple minima are seen 
on the first two eigenvectors [57].

For a review of other dihedral angle-based approaches see 
the recent review article by Kitao [26].

3.3  Kernel PCA

Kernel PCA is a way to project point distributions onto 
non-linear coordinates. Kernel methods are often used in 
machine learning to separate clusters that cannot be sepa-
rated linearly [58]. It relies on a so-called kernel function 
that gives the inner product between feature vectors Φ(Δ�) 
which are non-linear functions of the original coordinates. 
Instead of specifying these functions directly, kernel meth-
ods specify them implicitly using the kernel function. The 
most popular kernel function to use is the Gaussian kernel:

where �2 is a parameter. PCA performed directly on feature 
vectors would require the solution of the following eigenvec-
tor equation:

where the summation gives the variance–covariance matrix 
in the feature vector space. It can be shown that Φ

(
Δ�l

)t
vj , 

the projection of the l th feature vector onto the jth kernel 
PCA eigenvector, can be calculated from the eigenvalues and 
eigenvectors of the kernel matrix Kij = k

(
Δ�i,Δ�j

)
 . Thus, 

one can project the trajectory data onto selected kernel PCA 
eigenvectors by diagonalizing Kij.

Jacob and David [59] have applied kernel PCA to pro-
tein trajectories and have provided useful implementation 
recipes, pointing out common pitfalls. It seems its main use 
would be in characterizing non-linear motions in protein 
dynamics and for clustering where clusters are not linearly 
separable in projections using standard PCA.

(16)k(�, �) = Φ(�)tΦ(�) = exp
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−
||� − �||2

2�2

)
,

(17)1

L

L∑
l=1

Φ
(
Δ�l

)
Φ
(
Δ�l

)t
vj = �jvj,

Another modern technique is time-lagged independent 
component analysis (TICA) which is a method to find modes 
of motions that maximize time-lagged autocorrelation func-
tions derived from a time-lagged covariance matrix. This 
method has been applied to protein dynamics [60] and can 
be used for Markov model construction. A recent paper on 
TICA has discussed convergence of TICA modes from pro-
tein trajectories by comparing them to modes derived from 
random walk trajectories [61].

Other dimensional reduction methods exist although many 
of them are not widely applied to protein dynamics possibly 
because they do not appear to dramatically improve upon the 
results from Cartesian coordinate PCA [62].

4  Comparing Results from PCA 
on Simulation Trajectories 
with Experimentally Derived Movements

It is common to compare MD trajectories to experimentally 
derived movements. It is often the case in X-ray crystallogra-
phy that the structure of a protein is solved in both a ligand-
free state and a ligand-bound state giving the opportunity to 
compare the results with an MD simulation trajectory. If one 
performs MD simulation on the ligand-free protein and the 
trajectory is one of the protein in thermal equilibrium, the 
effect of the ligand is ignored, and one might wonder about the 
implication of this. However, the theory of pre-existing popu-
lations or conformational selection [63] where the ligand is 
thought to stabilise a conformation of the ligand-free protein, 
suggests that this is a good approach. This view is supported 
by the excellent results from linear response (see above) and 
impressive results on ubiquitin [64]. It also makes logical sense 
at least for hinge-bending proteins as their domain motions 
are clearly encoded in their structures and would therefore be 
expected to occur in equilibrium, although not necessarily to 
the extent when binding a ligand.

The dominant PC modes, i.e., those with the highest msf, 
are also those that are the most “collective”, meaning that they 
involve the displacements of atoms across the whole protein, 
as opposed to being localized, a feature of the modes with low 
msf’s. It is the high msf collective motions that are the most 
likely to relate to function [65]. For this reason, it is usual to 
compare these to experimental derived functional movements.

If one is to compare the results from a PCA of a simulation 
trajectory to an experimentally determined movement then 
there are various measures. Consider the case where one has 
performed a simulation on the ligand-free protein and per-
formed PCA. If there is also a ligand-bound structure, then 
one measure analogous to the rmsip might be:
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where �rexp is the 3N × 1 vector determined from the move-
ment between the ligand-free and ligand-bound structures, 
and vsim,i is the ith eigenvector from a PCA of the simula-
tion trajectory. In evaluating Osim,exp

M
 care should be taken to 

ensure that the external frame of reference for the calculation 
of �rexp is the same as for the PCA. Osim,exp

M
 measures whether 

the experimentally determined movement lies within the 
M-dimensional PCA subspace. The maximum value for 
O

sim,exp

M
 is 1.0 but only values close to 1.0 for small M would 

indicate a good result, i.e., Osim,exp

M
→ 1.0,M → 3N − 6 . For 

some proteins, many structures are available and if there are 
a sufficient number, then PCA can also be performed and 
compared to PCA on a simulation trajectory. Again, a rmisp 
measure can be used to compare results:

(18)O
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M
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which measures the overlap between the N-dimensional sub-
space from the PCA of the experimental structures and the 
M-dimensional subspace from the PCA of the simulation 
trajectory. This was done in the Berendsen group on calmo-
dulin [66]and T4 lysozyme [2]. Figure 3 shows the result 
of projecting 38 crystallographic structures of T4 lysozyme 
and the trajectories of three separate MD trajectories onto 
the first two modes from a PCA of the crystallographic struc-
tures. The excellent overlap between the subspaces is indi-
cated by Osim,exp

5,1
= 0.96 determined using the first mode from 

the PCA of the crystallographic structures and the first five 
PCA modes from a PCA of the combined MD trajectories.

Of course, since the development of these methods, 
advances mean that longer simulations can be performed, 
and free energies calculated using sampling techniques. 

(19)O
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Fig. 3  From de Groot et al. [2] showing the projections onto the 2D 
plane defined by the first two modes of a PCA of 38 crystallographic 
structures of T4 lysozyme. The top left plot shows the crystallo-

graphic structures themselves and the other plots show the projected 
trajectories from three independent MD simulations
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Free-energy profiles along principal coordinates can be 
calculated with and without a ligand present using tech-
niques such as umbrella sampling offering a deeper insight 
into functional movement. Using umbrella sampling along 
the first PCA coordinate on MBP, it was shown that the 
apo protein can reach a “semi-closed” metastable confor-
mation near to, but not coincident with the fully-closed 
maltose-bound structure [67].

5  Visualising and Characterising Motions 
along Dominant Modes

Even though the movement along a single principal coor-
dinate is linear it usually takes place in a very high-dimen-
sional space representing a large set of atomic movements 
that results in a conformational change that can be dif-
ficult to characterise. A first step to gain insight might 
be to simply view movements along individual principal 
coordinates using molecular graphics. This requires the 
generation of individual structures along the mode. One 
can do this as follows. First one can project the trajectory 
onto the selected mode i to find its extent as:

where ⟨r⟩ is the 3N × 1 vector of the Cartesian coordinates of 
the average structure used for PCA and Q is the 3N × L tra-
jectory matrix [see Eq. (6)], here from a non-mass weighted 
PCA, and rmin

i
 and rmax

i
 are 3N × 1 vectors of the Cartesian 

coordinates of the minimum and maximum extent of the ith 
mode when projecting the trajectory onto it. To view with 
molecular graphics, one can generate intermediate structures 
between rmin

i
 and rmax

i
 so that a smooth motion is seen. It is 

common to view just the first PC motion (i = 1) especially 
if this is dominant.

Motions in proteins can generally be described in terms 
of the structural elements that move. It has been found 
that domain motions form a large class and there are two 
reasons for this. The first is that most proteins are multi-
domain and the second is that by their very nature, links 
between domains are comparatively weak enabling their 
relative movement. In the nineteen nineties the number 
of proteins solved in different conformations correspond-
ing to different functional states increased considerably 
and tools were developed to determine domains from pro-
tein conformational change [68–70]. These methods are 
coarse-graining methods that group atoms into quasi-rigid 
regions, often referred to as “dynamic domains”. These 
tools also determine hinge axes that give the rigid-body 
rotation of one domain relative to the other. All these 

(20)
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tools require two conformations. Even though a single 
PCA mode is linear in the 3N-6 space, in the 3D space 
the atomic displacements can be tangential to the circular 
path taken by an atom in a rotating rigid body. Thus rmin

i
 

and rmax
i

 can be used for input to these tools as was done 
with DynDom for the first two eigenvectors from the PCA 
on the 38 crystallographic structures of T4 lysozyme [2] 
revealing a closing motion for the first eigenvector and a 
twisting motion for the second eigenvector.

6  Conclusions

A retrospective on the development of dimensional reduc-
tion methods for the application to protein conformational 
ensembles has been presented. PCA, a multivariate method 
that has general application, when first applied to protein 
ensembles arising from simulation of protein dynamics, 
had its origin in NMA and was called QHA. In that context 
its relationship to PCA might not have been appreciated 
by the community at the time. Later applications framed 
their approach in terms of the dominance of a small num-
ber of modes of motion and focused more on the character 
of these modes of motion. All but one of these papers 
referred to the method as PCA or EDA, the latter captur-
ing, in its terminology, the main feature of applying PCA 
to protein conformational ensembles: the overwhelming 
dominance of a relatively small number of modes. These 
studies also demonstrated the anharmonic nature of the 
dominant modes. Application of PCA can also be used to 
test the convergence of a simulation, to compare simula-
tion trajectories, or to compare a simulation trajectory to 
an experimental ensemble.

There are several variants of PCA including dihedral 
angle space methods and kernel PCA which presents a 
general non-linear approach. Much is still to be learned 
about the possible advantages these variants offer over 
Cartesian coordinate PCA or how they might comple-
ment Cartesian coordinate PCA. Once PCA has been per-
formed and the first few modes have been found to be very 
dominant, then there is still a lot one can do to understand 
the nature of the movement in an individual mode. Tools 
exist that can be applied to individual PC modes to help 
further characterise the nature of the implied movement 
by describing them in terms of the relative movement of 
regions or domains rather than individual atoms providing 
greater insight. In carrying out the analyses reviewed in 
this paper, the aim should always be to understand func-
tion, which almost always involves conformational change 
and is often synonymous with it.
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