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Abstract
Many research teams all over the world focus their research on the SARS-CoV-2, the new coronavirus that causes the so-
called COVID-19 disease. Most of the studies identify the main protease or 3C-like protease (Mpro/3CLpro) as a valid target 
for large-spectrum inhibitors. Also, the interaction of the human receptor angiotensin-converting enzyme 2 (ACE2) with the 
viral surface glycoprotein (S) is studied in depth. Structural studies tried to identify the residues responsible for enhancement/
weaken virus-ACE2 interactions or the cross-reactivity of the neutralizing antibodies. Although the understanding of the 
immune system and the hyper-inflammatory process in COVID-19 are crucial for managing the immediate and the long-term 
consequences of the disease, not many X-ray/NMR/cryo-EM crystals are available. In addition to 3CLpro, the crystal structures 
of other nonstructural proteins offer valuable information for elucidating some aspects of the SARS-CoV-2 infection. Thus, 
the structural analysis of the SARS-CoV-2 is currently mainly focused on three directions—finding Mpro/3CLpro inhibitors, 
the virus-host cell invasion, and the virus-neutralizing antibody interaction.
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1  Introduction

In late 2019, a new coronavirus (CoV) strain has passed 
from the animal host to human and caused the severe acute 
respiratory syndrome.[1]. The pathogen responsible for 
the epidemic of coronavirus disease 2019 (COVID-19) 
was classified as SARS-CoV-2 [2]. The current COVID-
19 outbreak probably emerged from a local seafood mar-
ketin Wuhan, the capital of China’s Hubei province [3]. At 
the time of writing the present paper (August 12, 2020), 
there are more than 20,000,000 confirmed cases and nearly 
800,000 deaths reported on (https​://www.who.int). Accord-
ing to Worldometers https​://www.world​omete​rs.info/coron​
aviru​s/, almost 14,000,000 persons have recovered. The new 

characteristics of the SARS-CoV-2 have brought it to the top 
of the list of the scientific community. The Lancet journal 
allowed free access for the articles focused on the SARS-
CoV-2 and issued a special section Coronavirus Resource 
Centre (https​://www.thela​ncet.com). Many other prestigious 
publishers devoted special free platforms to COVID-19—
Centers for Disease Control and Prevention CDC https​://
www.cdc.gov and https​://www.coron​aviru​s.gov, National 
Institute of Health—LitCovid (go.nature.com/3almd5p), 
Latest Research and Reviews (https​://www.natur​e.com), 
Coronavirus: Research, Commentary, and News (https​://
www.scien​cemag​.org), Corona-Webinar (https​://www.sprin​
ger.com), COVID-19/SARS-CoV-2 Resources (https​://www.
rcsb.org/), etc [4].

The SARS-CoV-2 is an enveloped RNA positive-sense 
single-stranded virus and belongs to the Coronaviridae 
family, the betacoronavirus group. The SARS-CoV-2 is the 
seventh human HCoV (HCoV) discovered until now. The 
other six HCoVs are HCoV-229E, HCoV-OC43, HCoV-
NL63, HCoV-HKU1, severe acute respiratory syndrome 
coronavirus (SARS-CoV), and the Middle East respira-
tory syndrome coronavirus (MERS-CoV) [5]. There is the 
hypothesis that the origin of the SARS-CoV-2 strain is the 
bat [3]. The hypothesis that the intermediate host between 
the bat and the human is pangolin is not supported by the 
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latest works [6, 7]. Much of the knowledge about the trans-
mission of SARS-CoV-2 has gleaned from the SARS-CoV 
and MERS-CoV studies [5, 8]. There are some notable dif-
ferences between tissue tropism of the HCoVs. Analysis of 
structural similarities and structural differences between 
HCoVs species could advance the understanding of SARS-
CoV-2 pathogenesis [8–12].

The review aims to collect and synthesize the X-ray/
NMR/cryo-EM structures of the SARS-Cov-2 deposited in 
the public database Protein Data Bank (PDB) (https​://www.
rcsb.org/pdb). Structures retrieved from PDB (August 12, 
2020) were analyzed for relevant information on COVID-19 
infection, synthesis of new inhibitors, SARS-CoV-2 inter-
action with host receptors, and the neutralizing antibodies 
interactions with spike glycoprotein. In this review, the 
SARS-CoV-2 related structures published in peer-reviewed 
papers are analyzed in depth. Very often the authors add 
minor/major revisions of the coordinate files after the PDB 
structure was submitted in the PDB. An association of scien-
tists has created a public database in which CoVs structures 
are systematically validated (https​://covid​-19.biore​produ​
cibil​ity.org/) [13].

2 � Objectives

The aim of this review is to provide an analysis of the SARS-
CoV-2 structures deposited in the PDB. Every Wednesday, 
the COVID-19/SARS-CoV-2 Resources announce the new 
PDB structures (https​://www.rcsb.org/). The rapid accumu-
lation of the X-ray/NMR/cryo-EM structures of the SARS-
Cov-2 in the Protein Data Base (PDB) needs an objective 
selection analysis of these crystal structures for further 

research. The COVID-19 is an ongoing pandemic and the 
virus undergoes mutations reflected in differences of the 
crystal structures. There are many crystal structures of the 
SARS-CoV-2 spike (S) co-crystallized with antibodies that 
further advance the understanding of the immunogenicity 
of the S [14–25]. Also, there is an intense work on design-
ing effective inhibitors. There are many compounds mainly 
co-crystallized with the viral main protease (3CL-protease). 
The subgroup analysis of structural and non-structural pro-
tein (nsp) of the SARS-Cov-2 and other CoVs includes the 
multiple sequence alignment.

3 � Methods

The X-ray/NMR/cryo-EM structures of the SARS-CoV-2 
were retrieved by searching “SARS-CoV-2” in PDB (https​
://www.rcsb.org/pdb).

Inclusion criteria: The present review narrows the anal-
ysis of the SARS-CoV-2 crystal structures deposited in 
the PDB only for the crystal structures published in peer-
reviewed journals (August 12, 2020). The further analy-
sis of some important characteristics of the SARS-CoV-2 
needs the inclusions of other five crystal structures (Fig. 1). 
The structures were checked in the Validated SARS-CoV-2 
related structural models of potential drug targets site (https​
://covid​-19.biore​produ​cibil​ity.org/) [13].

Exclusion criteria: The PDB SARS-CoV-2 related crystal 
structures non-published in peer-reviewed journals.

The structures were visualize and analyzed on Dassault 
Systèmes BIOVA program—Discovery Studio Modeling 
Environment, Release 2017, San Diego: Dassault Systèmes, 
2016 (https​://accel​rys.com).

Fig. 1   The flow of the selec-
tion of the crystal structures 
retrieved from the PDB. *To be 
published

https://www.rcsb.org/pdb
https://www.rcsb.org/pdb
https://covid-19.bioreproducibility.org/
https://covid-19.bioreproducibility.org/
https://www.rcsb.org/
https://www.rcsb.org/pdb
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Sequence analysis: Multiple sequence alignment was 
made by the Clustal Omega program (https​://www.ebi.ac.uk/
Tools​/msa/clust​alo).

Molecular docking protocol: Protein–ligand docking 
experiments were performed with the AutoDock4.2 pro-
gram, distributed as open source under a GPL license (https​
://autod​ock.scrip​ps.edu) [26–28].

4 � The SARS‑CoV‑2 Structures Analysed

The search of “SARS-CoV-2” in PDB retrieved 337 entries 
(August 12, 2020) (Table S1). Among them, only 65 of 
2 X-ray/NMR/cryo-EM structures are published until 
now—PDB ID(s) 6LXT, 6VYB, 6VXX, 7BTF, 6M71, 
6M0J, 6M3M, 6W01, 6VWW, 6VSB, 6LZG, 7BV1, 7BV2, 
6YYT, 6M17, 6VW1,6XR8, 6XRA, 6LU7, 7BQY, 6LZE, 
6M0K, 7BUY, 6Y2E, 6Y2G, 6Y2F, 6W41, 6YOR, 7BZ5, 
7C01, 7BWJ, 7BYR, 6XCM, 6XCN, 6XCA, 7C2L, 7BZF, 
7C2K, 6Z97, 6ZLW, 6ZM7, 6ZN5, 6ZON, 6ZP4, 6XDG, 
6WQF, 7BW4, 7CAH, 6XEY, 6ZOX, 6ZOZ, 6ZOY, 6ZP0, 
6ZP1, 6ZP2, 6YVA, 6ZCZ, 6ZDH, 6ZDG, 6ZER, 6ZFO, 
6ZMI, 6ZMO, 6ZMT, and 6ZME [14–25, 29–50]. The first 
X-ray structure found (PDB ID 6LU7) belongs to the non-
structural protein 5 (3C-like protease) of the SARS-CoV-2 
in complex with the Michael acceptor-based inhibitor N3 
(PRD_002214). The structure was deposited in PDB in 
2020-01-26 and released in 2020-02-05 by the Liu X. et al. 
[41].

Two PDB entries (6M1D and 6M18) of the human ACE2 
co-crystallized with the sodium-dependent neutral amino 
acid transporter B(0)AT1were added because these struc-
tures are part of the same work with the spike—receptor 
binding domain (RBD)/ACE2/ B(0)AT1 EM-structure (PDB 
ID 6M17) [39]. Three nsp9 structures non-published in the 
peer-reviewed papers were included in the study (PDB ID(s) 
6W9Q, 6W4B, and 6WXD). Their sequences were analyzed 
by multiple sequence alignment and compared with previous 
works. The selection flow of the 70 PDB structures included 
in the present review is shown in Fig. 1.

5 � SARS‑CoV‑2 Inhibitors

One of the most urgent aims of controlling the SARS-CoV-2 
pandemic is to find out an efficient therapy. Healthcare pro-
fessionals have established different clinical practice guide-
lines. The update of the clinical results helps the medical 
teams to monitor and refine their therapy, but a conclu-
sion could be drawn only at the end of the SARS-CoV-2 
pandemic. There is no specific cure for COVID-19, which 
explains the race to discover effective inhibitors and a univer-
sal vaccine. Despite numerous SARS-CoV-2 PDB structures 

co-crystallized with inhibitors, only a few of them have been 
publishing in peer-reviewed papers. Many research teams 
focus on designing inhibitors of viral proteases due to their 
role in viral replication [51]. There are two viral proteases: 
main protease/3C-like protease (Mpro/3CLpro) and papain-
like protease (PLpro). These proteases cleave the polyprotein 
1ab (UniProtKB P0C6X7) to yield the viral proteins [44]. 
There are seven PDB structures of SARS-CoV-2 3CLpro co-
crystallized with antiviral drug candidates. Two structures 
are co-crystallized with N3 (PRD_002214) (PDB ID(s) 
6LU7 and 7BQY) [41]. The 6LZE and 6M0K structures 
are co-crystallized with compounds 11a and 11b, respec-
tively [42]. Two structures are co-crystallized with alpha-
ketoamide 13b (PDB ID(s) 6Y2F and 6Y2G) [44]. The 
7BUY structure is co-crystallized with the antineoplastic 
drug carmofur [43]. There is a cryo-EM crystal structure of 
the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) 
complex (nsp12/nsp8/nsp7) with the antiviral drug remde-
sivir (PDB ID 7BV2) [37]. However, these compounds are 
not optimal inhibitors of SARS-CoV-2. The comparison of 
the antiviral drug candidates against SARS-CoV-2 and other 
CoVs is shown in Table 1.

5.1 � SARS‑CoV‑2 3C‑Like Protease Inhibitors

The 3CLpro (UniProtKB P0DTD1) is extensively studied for 
designing of new inhibitors due to its unique characteristics. 
It is also known as non-structural protein 5 (nsp5). It is a 
cysteine protease involved in the cleavage of the viral poly-
proteins 1a and 1ab. Moreover, there are no human counter-
parts for 3CLpro [52–57]. The 3CLpro is one of the targets for 
the control of zoonotic reservoir of CoVs. The peptidomi-
metics with 3-thiophene and 1-methylbenzotriazole back-
bones inhibit the bat CoVs HKU4-CoV and HKU5-CoV at 
sub-micromolar concentrations [58].

The need for specific treatment of COVID-19 had led to 
testing the inhibitory activity of other antiviral drugs. At the 
beginning of the SARS-CoV-2 pandemic, Wang et al. pub-
lished the comparison of inhibitory activity of five antiviral 
drugs (ribavirin, penciclovir, favipiravir, nefamostat, and 
remdesivir) and two antiprotozoal drugs (nitazoxanide, and 
cloroquine). The EC50 of remdesivir and cloroquine against 
SARS-CoV-2 are 0.72 μM and 1.13 μM, respectively [59]. 
Dai et al. published the compounds 11b that showed EC50 
of 0.72 μM, identical to the EC50 of remdesivir (Table 1) 
[42].

Compounds  11a  and 11b  (PDB ID(s) 6LZE and 
6M0K) show good inhibitory activity at a concentration of 
1 μM—100% and 96%, respectively [42]. Zhang et al. pub-
lished three SARS-CoV-2 3CLpro—one free enzyme (PDB 
ID 6Y2E) and two crystal structures with a new inhibitor 
candidate—an alpha-ketoamide compound 13b (PDB ID(s) 
6Y2G and 6Y2F) [44]. Compound 13b is a non-polymer 

https://www.ebi.ac.uk/Tools/msa/clustalo
https://www.ebi.ac.uk/Tools/msa/clustalo
https://autodock.scripps.edu
https://autodock.scripps.edu
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compound derived from a peptidomimetic inhibitor against 
enterovirus proteases [60]. The X-ray crystal structures of 
the SARS-CoV-2 3CLpro co-crystallized with 13b demon-
strated that the interactions from the dimer interface are 
essential for shaping the binding pocket. Also, the authors 
greatly improved the pharmacokinetic characteristics of the 
compound 13b. The compound 13b can be administered as 
an inhaler [44].

Two X-ray crystal structures of the SARS-CoV-2 3CLpro 
co-crystallized with Michael acceptor-based inhibitor 
(PRD_002214) were recently published: PDB ID(s) 6LU7 
and 7BQY. The inhibitor PRD_002214, the inhibitor N3, is 
the result of the high-throughput screening of more 10,000 
inhibitory compounds against SARS-CoV-2 3CLpro. The 
kinetic experiments showed that N3 is a time-dependent irre-
versible peptide-like inhibitor of the SARS-CoV-2 3CLpro. 
Molecular docking analysis demonstrated that N3 fit inside 
the substrate-binding pocket (Cys145-His41 catalytic dyad) 
highly conserved in CoVs [41, 61]. A recent structural study 

hypothesized that a cluster of residues outside the catalytic 
site are possibly conformationally relevant when bound to 
the N3 [62]. The inhibition of hydrolytic activity of the N3 
was previously determined for other CoVs (HCoV-22E, 
FIPV, and MHV-A59) (Table 1). The overall analysis of the 
available data suggests that N3 is a wide-spectrum anti-CoV 
lead compound [63].

Another structural study demonstrated that the anti-
neoplastic drug carmofur inhibits the 3CLpro SARS-
CoV-2 (PDB ID 7BUY). Carmofur (PubChem CID 2577) 
(C11H16FN3O3) is an antimetabolite (pyrimidine analog) 
derivative of 5′-fluorouracil. Carmofur is used to treat colo-
rectal cancer and breast cancer (DrugBank DB09010). The 
Jin et al. study shows that carmofur inhibits viral replication 
by forming a covalent bond with the cysteine residue from 
the catalytic site of the 3CLpro SARS-CoV-2 (Table 1) [64].

The 3CLpro is a particular cysteine protease that com-
prises three domains. The 3CLpro proteolytic activity 
requires the formation of the Cys(−)/His(+) zwitterionic 

Table 1   The comparison of the 
antiviral drug candidates against 
SARS-CoV-2 and other CoVs

N3 (PRD_002214) (phenylmethyl) (4 ~ {S})-4-[[(2 ~ {S})-4-methyl-2-[[(2 ~ {S})-3-methyl-2-[[(2 ~ {S})-
2-[(5-methyl-1,2-oxazol-3-yl)carbonylamino]propanoyl]amino]butanoyl]amino]pentanoyl]amino]-
5-[(3 ~ {S})-2-oxidanylidenepyrrolidin-3-yl]pent-2-enoate; 11a ~ {N}-[(2 ~ {S})-3-cyclohexyl-1-ox-
idanylidene-1-[[(2 ~ {S})-1-oxidanylidene-3-[(3 ~ {S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-yl]
amino]propan-2-yl]-1 ~ {H}-indole-2-carboxamide; 11b ~ {N}-[(2 ~ {S})-3-(3-fluorophenyl)-1-oxida-
nylidene-1-[[(2 ~ {S})-1-oxidanylidene-3-[(3 ~ {S})-2-oxidanylidenepyrrolidin-3-yl]propan-2-yl]amino]
propan-2-yl]-1 ~ {H}-indole-2-carboxamide; 13b ~ {tert}-butyl ~ {N}-[1-[(2 ~ {S})-3-cyclopropyl-1-oxida-
nylidene-1-[[(2 ~ {S},3 ~ {R})-3-oxidanyl-4-oxidanylidene-1-[(3 ~ {S})-2-oxidanylidenepyrrolidin-3-yl]-
4-[(phenylmethyl)amino]butan-2-yl]amino]propan-2-yl]-2-oxidanylidene-pyridin-3-yl]carbamate; GRL-
0617 is naphthalene-based inhibitor, CC50 is the cytotoxic concentration of the extracts to cause death to 
50% of viable cells in the host; EC50 is half maximal effective concentration; IC50 is half maximal inhibi-
tory concentration, NA not available; SD is standard deviation, CI95 confidence interval 95%

Compound SARS-CoV-2 Other CoVs References

CC50 EC50 IC50 IC50

3CLpro inhibitor candidates
N3  > 133 μM 16.77 μM – 4.0 μM (HCoV-229E)

8.8 μM (FIPV)
2.7 μM (MHV-A59)

[41, 51, 61, 63]

Ebselen  > 30 μM 4.67 μM 0.67 μM - [41, 51, 61, 63]
Cinaserin  > 200 μM 20.61 μM 124.93 μM 31 μM (SARS-CoV)

19 μM (HCoV-229E)
[41, 51, 61, 63]

11a  > 100 μM 0.53 μM 0.053 μM – [42]
11b  > 100 μM 0.72 μM 0.04 μM –
13b NA 4–5 μM 0.67 μM 0.9 μM (SARS-CoV)

0.58 μM (MERS-CoV)
[44]

Carmofur 133.4 μM 24.30 μM 1.82 μM NA [43]
Mean (SD)
CI95

10.3 (9.23)
66.41

21.36 (46.31)
173.49

9.56 (10.57)
81.88

PLpro inhibitor candidate
GRL-0617 – – 1.5 μM 0.6 μM (SARS-CoV) [49, 84]
RdRp inhibitor candidate
Remdesivir  > 100 μM 0.72 μM – – [59]
Antiprotozoal drug
Cloroquine  > 100 μM 1.13 μM – – [59]
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state onto the catalytic dyad [65, 66]. Although the cata-
lytic mechanism of CoV 3CLpro is not fully understood, 
extensive studies that connected the structural, compu-
tational, and biochemical approaches of different wild-
type and mutated 3CLpro decipher important aspects of 
catalytic efficiency [67]. Thus, Wang et al. identify that, 
besides the cysteine from the catalytic dyad, the 3CLpro 
MERS-CoV has another cysteine nearby. The role of the 
second cysteine in catalysis is not fully understood. A con-
served motif GSCGS forms consecutive three turns when 
starting the catalysis. Two structural characteristics are 
essential for catalysis. The first characteristic is a partial 
negative cluster formed by Arg-Tyr-Asp. Secondly, there 
is a conserved water molecule that mediates remote con-
trol between the partial negative charged cluster and the 
Cys-His dyad. Also, a conserved pair (Glu-His) very well 
conserved in 3CLpro CoVs forms a stable hydrogen-bond. 
The glutamine substrate recognizes the Glu-His pair by a 
steric effect. Three more residues have an essential role in 

the glutamine substrate interactions—the His166 and the 
nearby Tyr164 and Phe143. The tyrosine residue forms 
a strong hydrogen bond with His and the phenylalanine 
residue employs a steric effect to restrain the rotation of 
His [67].

The multiple sequence alignment of the 3CLpro 
sequences from different CoVs allows an overall analysis. 
Thus seven 3CLpro from the following CoVs were aligned 
using Clustal Omega program: feline infectious peritonitis 
virus FIPV (PDB ID 5EU8), porcine epidemic diarrhea 
virus PEDV (PDB ID 5GWZ), human HCoV-NL63 (PDB 
ID 5GWY), SARS-CoV-2 (PDB ID 6LU7), SARS-CoV 
(PDB ID 3IWM), human HCoV-HKU1 (PDB ID 3D23), 
MERS-CoV (PDB ID 4RSP), and murine coronavirus 
(strain A59) MHV-A59 (PDB ID 6JIJ). The residues essen-
tial for catalysis—the Cys145-His41 dyad and the GSCGS 
motif highly conserved in CoVs—are shown in Fig. 2. The 
phylogenetic tree (cladogram) of the 3CLpro from different 
CoVs sequences analyzed confirms that SARS-CoV-2 is 
closer to the SARS-CoV (Fig. 3).

Fig. 2   The multiple sequence alignment of 3CLpro of CoVs of differ-
ent origin (using the Clustal Omega program). The Cys145 of SARS-
CoV-2 3CLpro that interact with the compounds 11a and 11b is shown 
in black background along with the Cys145-His41 catalytic dyad 
highly conserved in 3CLpro from CoVs [42, 44, 59, 65, 66]; in green 
are marked the cluster of Ser with high affinity for small molecule 
inhibitors [44, 55]; in green it is shown the GSCGS motif essential 
for starting the catalysis; in light blue are marked the Glu-His resi-
dues critical for substrate binding by means of steric effect; in yellow 
background is marked the triad Arg-Tyr-Asp that forms a partial neg-

ative charge cluster that, by a conserved water molecule, mediates the 
interaction with Cys-His catalytic dyad; in brown are shown the resi-
dues involved in the glutamine substrate recognition—the conserved 
His and the conserved Tyr and Phe that interacts with by the phenolic 
hydroxyl group with His and employs a steric effect to restrain the 
rotation of His, respectively; in bold-underline are marked the Glu 
and Ser residues that are demonstrated to be essential in the dimer 
interactions in SARS-CoV-2 [60]; with dot “.” are marked the semi-
conservative replacements; with colon “:” are marked the conserva-
tive replacements; with “*” are marked the identities of the residues
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5.2 � SARS‑CoV‑2 RNA‑Dependent RNA Polymerase 
Inhibitors

The RNA-dependent RNA polymerase (RdRp) (UniProtKB 
P0DTD1), also known as nsp12, is responsible for the rep-
lication and transcription of the viral genome. The RdRp 
complex is composed of the nsp12, nsp7, and nsp8. The 
nsp12 is the catalytic subunit and needs the nsp7 and nsp8 
(eight subunits of each) to fulfill the replication process. 
The RdRp is considered an important target for new/already 
known drugs because of its evolutionary stability compared 
with the S glycoproteins that are more prone to mutations 
under selections of host immunity [48, 68]. A recent study 
investigated the feasibility of the RdRp to be targeted by 
novel nucleoside inhibitors or small molecules [69]. One 
previous work has shown that nsp7 and nsp8 of feline CoV 
form a 2:1 heterodimer (PDB ID 3UB0). The nsp7 and nsp8 
from the SARS-CoV form an 8:8 hexadecamer (PDB ID 
6NUR) and act as primase during viral replication [70–72].

Remdesivir (GS-5734) (PubChem CID 121304016) 
(DrugBank DB14761) is a prodrug of adenosine triphos-
phate (ATP) analog. Remdesivir is metabolized into the 
active form remdesivir-triphosphate (remdesivir-TP) (NCI 
Thesaurus GS-441524). The antiviral activity of the rem-
desivir-TP consists of the competition with ATP for RNA 
incorporation thus inhibiting viral RdRp. Remdesivir is a 
valuable therapeutic agent against Ebola virus infections 
[73]. Many studies investigated the potential therapeutic 
use of remdesivir against other viral infections including 
COVID-19 [74–77]. The therapeutic potency of the remde-
sivir in COVID-19 needs much more well-conducted stud-
ies and a thorough analysis of the clinical results [78]. The 
SARS-CoV-2 RdRp structure provides important struc-
tural details about RdRp -RNA interactions (PDB ID(s) 
6YYT, 7BTF, 6M71, and 7BV1) [31, 37, 38]. The struc-
tures co-crystallized with remdesivir further advances the 
understanding of the mechanisms of viral RNA replication 
(PDB ID 7BV2) [37]. Yin et al. demonstrates that RdRp 
inhibition depends on the low remdesivir-triphosphate 
(RTP) concentration and low RTP/ATP ratio. Only RTP 
inhibits the RdRp polymerization activity. The structural 

studies have shown that the Asn691, Ser682, and Asp623 
in the RdRp complex explain the binding of the RTP to 
the NTPs site [38]. However, the structural studies should 
be interpreted according to biochemical studies to further 
elucidate the incorporation of RTP into the growing RNA 
chain [38, 77, 79, 80].

The recent structural works provide insight into the nucle-
otide analog inhibitors’ ability to hamper SARS-CoV-2 RNA 
replication. The pre-translocated and post-translocated RdRp 
complex structures (PDB ID(s) 7C2K and 7BZF) show that 
an efficient inhibitory strategy could be the blocking of the 
interaction between nsp8 and nsp12 [45]. The biochemical 
and structural works of Peng et al. (PDB ID 7BW4) demon-
strate that SARS-CoV-2 RdRp enzymatic activity is lower, 
about 35% for RNA synthesis than its SARS-CoV coun-
terpart. The reason is the residue substitution in nsp12 and 
nsp8. Also, the thermal stability of the SARS-CoV-2 RdRp 
is lower compared to that of SARS-CoV RdRp The thermal 
stability of RdRp could advance the understanding of the 
adaptive evolution of SARS-CoV-2 in the human host that 
have a lower body temperature than bats [3, 48, 81].

5.3 � SARS‑CoV‑2 Papain‑Like Protease Inhibitors

The papain-like protease (PLpro) is a cysteine protease. PLpro, 
RNA binding domain, and membrane-anchoring domain 
form the non-structural protein 3 (nsp3). PLpro from differ-
ent HCoVs has been screened for a large panel of chemi-
cals because it is involved in CoV replication [82, 83]. The 
biochemical, structural, and functional studies advance the 
development of new inhibitors against SARS-CoV-2 PLpro. 
The naphthalene-based inhibitor GRL-0617 (PubChem CID 
44828571) is an effective inhibitor of the SARS-CoV PLpro 
(Table 1) [84]. Shin et al. advances the hypothesis that the 
GRL-0617 has two effects against SARS-CoV-2 PLpro. First, 
the GRL-0617 binding to the amino acid Y268 was con-
firmed by the reduction of the inhibitory effect in mutated 
PLpro Y268T and Y268G. Second, the GRL-0617 promotes 
the antiviral interferon pathway and reduces viral replication 
(PDB ID 6YVA) [50].

Fig. 3   The phylogenetic tree (cladogram) of seven 3CLpro sequences 
of CoVs with different origin. feline infectious peritonitis virus 
(FIPV), porcine epidemic diarrhea virus (PEDV), HCoV-NL63, 

SARS-CoV-2, SARS-CoV, HCoV-HKU1, and coronavirus (strain 
A59) MHV-A59; performed by Clustal Omega program
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5.4 � SARS‑CoV‑2 Nucleocapsid Protein Inhibitors

The CoV nucleocapsid (N) is a highly immunogenic multi-
functional protein. The CoV N binds the viral RNA strand 
into a long helical structure attached to the membrane (M) 
protein [85]. There are nine SARS-CoV-2 X-ray structures 
of N protein, but only one crystal structure is published 
until now (PDB ID 6M3M) [33]. Similar to the N proteins 
of other CoVs, the SARS-CoV-2N protein consists of the 
N-terminal RNA-binding domain (N-NTD), the C-terminal 
dimerization domain (N-CTD), and a Ser/Arg rich linker 
[86]. The ribonucleotide binding site of the CoV N-NTD 
domain was subject to structural studies to develop inhibi-
tors that specifically reduce the RNA-binding affinity, thus 
altering the viral replication. The SARS-CoV-2N struc-
tures available are not co-crystallized with any inhibitor, 
but the Kang et al. structural study demonstrated that the 
SARS-CoV-2N employs a unique pattern for ribonucleotide 
binding, the residues Arg89 being one reason for the weak 
guanosine base recognition (KD for guanosine monophos-
phate GMP is 8 mmol/L) [33]. The Kang et al. claimed that 
these structural characteristics could be exploited for further 
investigation of inhibitor compounds, mainly the inhibitor 
PJ34 of the HCoV-OC43 N-NTD (PDB ID 4KXJ) which 
reduces the N protein’s RNA-binding affinity by 10% [86]. 
The PJ34 or N ~ 2 ~ ,N ~ 2 ~ -dimethyl-N ~ 1 ~ -(6-oxo-5,6-di-
hydrophenanthridin-2-yl)glycinamide (PubChem CID 4859, 
DrugBank DB 08,349) has the molecular weight 295.34 g/
mol and molecular formula C17H17N3O2. The X-ray crystal 
structure deposited by Kang et al. (PDB ID 6M3M) was not 
co-crystallized with the inhibitor PJ34.

Herein, a further molecular docking of the inhibitor 
PJ34 with the SARS-CoV-2N-NTD (PDB ID 6M3M) was 
made. PJ34 interactions with SARS-CoV-2N proteins’ 
N-terminal domain (NTD) were compared with those of the 
HCoV-OC43 co-crystallized with the PJ34 inhibitor (PDB 
ID 4KXJ). The molecular docking of the compound PJ34 
with the PDB ID 6M3M shows the following parameters: 

∆G =  − 5.66 and Ki = 71.34 μM. The interactions involved 
the residues that bind the PJ34 are different from the resi-
dues previously described at its counterpart from HCoV-
OC43 (Fig. 4) [86]. The molecular docking offers only a 
quick view about ligand–protein interaction, deeper theoreti-
cal analysis, and experimental validation should be made. 
Sequence comparison of the N proteins’ N-terminal domain 
(NTD) of the HCoV-OC43 and SARS-CoV-2 reveals some 
particularities that are worth further investigation. The 
sequence positions 48 to 51 (48-NNTA-51) allows easier 
access of the nucleotides. The threonine T55 and alanine 
A56 increase the steric clash with ribonucleotide phosphate 
moiety. The arginine R89 increases the polar features in the 
nitrogenous base binding site. (Fig. 5) [33].

6 � SARS‑CoV‑2 Cell Entry

There are many works about the cell entry of CoVs because, 
on the one hand, this step is crucial for tissue and cell tro-
pism, and on the other hand, it gains insight into the ability 
for interspecies transmission. The viral entry is crucial for 
viral replication. Therefore its deep understanding explains 
the SARS-CoV-2 pathogenesis and speeds up the finding of 
a specific treatment. The cell entry is a different multi-step 
process for each CoV. The first step of any viral infection is 
the presence of at least one suitable host receptor. The spike 
(S), a heavily glycosylated type I transmembrane glycopro-
tein, is the same to all HCoVs, but the host receptor is differ-
ent [87]. Similar to the SARS-CoV and human coronavirus 
NL63 (HCoV-NL63), the SARS-CoV-2 attaches to host 
receptor ACE2 by S glycoprotein [3, 88, 89]. In contrast, 
the MERS-CoV uses cellular receptor dipeptidyl peptidase-4 
(DPP4), known as CD2 receptor [90–92].

The S glycoprotein (UniProtKB P59594) is a homotrimer 
and each monomer contains two distinct functional subu-
nits—S1 and S2—that are subject to proteolytic cleavage by 
cellular proteases. The host factors involved in priming the S 

Fig. 4   The interactions of 
SARS-CoV-2 nucleocapsid 
(N) (PDB ID 6M3M) with the 
inhibitor PJ34. a 3D display 
of PJ34 interaction as ligand 
with the 6M3M residues; b 
2D interactions diagram; the 
molecular docking results were 
visualized by Dassault Systèmes 
BIOVA program—Discovery 
Studio Modeling Environment, 
Release 2017, San Diego: Das-
sault Systèmes, 2016 (https​://
accel​rys.com)

https://accelrys.com
https://accelrys.com
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glycoprotein are the type II transmembrane serine protease 
2 (TMPRSS2) and furin [30, 93–95]. The TMPRSS2 is pre-
dominantly expressed in the prostate. Thus, the demonstra-
tion that its expression is androgen-dependent could explain 
the gender differences in the COVID-19 outcome. Also, 
the TMPRSS2 has a crucial role in other viral infections 
explaining the pneumotropism of H7N9 and some subtypes 
of influenza viruses [96]. The furin (E.C. 3.4.21.75) (PDB 
ID(s) 4OMC, 4OMD, etc.) (UniprotKB P09958) is a ubiq-
uitous endoprotease that belongs to the family of propro-
tein convertases. The furin mediates the priming of various 
proteins—some bacterial toxins, H7N1and H5N1 influenza 
virus haemagglutinin [97, 98]. The proprotein convertases 
(PPC) cleave at single or paired basic residues within the 
motif R/K-(X)0,2,4,6-R/K (where X means any residue) [93, 
99]. There is one cleavage at the S1/S2 boundary and the 
second one S2′ is within S2 upstream of the putative fusion 
protein [94, 96]. Some researchers claim that there are three 
cleavage sites (S1, S2, and S2′) [100]. The S1 subunit har-
bors the receptor binding domain (RBD) which contains the 
core and receptor-binding motif (RBM) [101]. The S1 subu-
nit binds the peptidase domain of the human ACE2. Then, 
the internalization of the virus particle into the endosomes 
causes conformational changes of the S1 [35, 102]. The pro-
teolysis by the cathepsin CTSL (E.C. 3.4.22.15; UniProtKB 
P07711) reveals the S2 subunit which mediates the virus-cell 
membrane fusion [2, 103–105].

Herein, a comparison of the S1/S2 and S2′ cleavage sites 
of the CoVs and SARS-CoV-2 was made [93]. The mul-
tiple sequence alignment of the different SARS-CoV-2 S 
glycoprotein with their counterparts of CoVs described by 
the Millet et al. allows the comparison of the furin cleav-
age sites. The following sequences were analyzed: nine 
SARS-CoV-2 sequences (PDB ID(s) 6XR8, 7C2L, 6VXX, 
6WPS, 6VYB, 6XCN, 6XEY, 6X6P, and 6VSB), SARS-
CoV [NP_828851.1], MERS-CoV [AFS88936.1], HCoV-
HKU1 [AAT98580.1], HCoV-OC43 [AAA03055.1], 
HCoV-NL63 [AAS58177.1], HCoV-229E [BAL45637.1], 
canine CoV (CCoV-Elmo/02)[AAP72149.1], feline 
CoV (FCoV-RM)[ACT10854.1], Rousettus bat CoV 

(BatCoV-HKU10)[YP_006908642.1], Porcine epidemic 
diarrhea virus (PEDV-CV777)[AAK38656.1], TGEV Miller 
M60 [ABG89306.1], Murine hepatitis virus (MHV-A59)
[AAA46455.1], Tylonycteris bat coronavirus HKU4 (Bat-
CoV-HKU4)[YP_001039953.1], Pipistrellus bat coronavirus 
HKU5 (BatCoV-HKU5)[YP_001039962.1], and Infectious 
bronchitis virus (IBV-Beaudette)[NP_040831.1] (Figs. 6, 7).

The first striking difference between the analyzed S’ 
SARS-CoV-2 concerns the S1/S2 cleavage site. Thus, only 
some PDB entries (6XR8/6XRA, 7C2L, and 6XCN/6XCM) 
show the PPC or furin cleavage motif RRAR↓ [106]. Moreo-
ver, the furin cleavage motif from the S1/S2 sequence of the 
SARS-CoV-2 is more similar to its HCoV-OC43 counterpart 
than to furin cleavage motif of the SARS-CoV and MERS-
CoV. In contrast, the S2′cleavage site sequence of all SARS-
CoV-2 PDB entries analyzed has the furin cleavage motif 
similar to its SARS-CoV counterpart. The phylogenetic 
tree (cladogram) of the S sequences analyzed shows that 
the SARS-CoV-2 S is closer to SARS-CoV S, but the differ-
ences observed between the nine SARS-CoV-2 S sequences 
are reflected in the evolutionary relationship (Fig. 8).

There are 22 published structures of SARS-CoV-2 S 
glycoprotein retrieved from the PDB. Among them, seven 
are S glycoprotein structures (PDD ID(s) 6VXX, 6VYB, 
6VSB, 6LXT, 6Z97, 6XR8, and 6RA) and four structures are 
co-crystallized with the human ACE2 receptor (PDB ID(s) 
6M0J, 6LZG, 6M17, and 6VW1). Out of 32 SARS-CoV-2 
S glycoprotein structures co-crystallized with neutralizing 
antibodies, eleven has been published (PDB ID(s) 6W41, 
7BZ5, 7C01, 7BWJ, 7BYR, 6XCM, 6XCN, 6XCA, 7C2L, 
6XDG, and 6YOR) (Fig. 9).

Cai et al. (PDB ID(s) 6XR8 and 6XRA) assume a pro-
tective role of the S2 post-fusion structure that could elicit 
the non-neutralizing antibodies to evade the host immune 
system [40]. Also, the authors identify a fusion peptide 
proximal region (FPRP) with a critical role in rearrange-
ments of S protein and membrane fusion, demonstrated 
by a mutation D614G that lead to more efficient cell entry. 
The aspartic acid (D614) forms a salt bridge with the lysine 
(K854) belonging to FPRP [40, 107–109]. Barnes et al. 

Fig. 5   The multiple sequence alignment of SARS-CoV-2 nucle-
ocapsid (N) (PDB ID 6M3M) and HCoV-OC43 (PDB ID 4KXJ) 
sequences (using the Clustal Omega program). The residues that 
interact with the compound PJ34 are shown in gray background, 
according to molecular docking results for 6M3M and accord-
ing to Lin et  al. findings 4KXJ; are considered all types of interac-
tions—van der Waals, hydrogen bonds, carbon hydrogen bonds, and 

hydrophobic interactions; the striking differences between the two 
N sequences observed by the Kang et al. are marked in yellow back-
ground; the AMP-binding residues are underlined; in red is marked 
the Tyr residue whose mutation Y110A leads to a significant decrease 
of Kd for RNA binding [33]; with dot “.” are marked the semi-con-
servative replacements; with colon “:” are marked the conservative 
replacements; with “*” are marked the identities of the residues
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study demonstrates that the mutation D614G, a mutation 
that enhances the SARS-CoV-2 transmissibility, is unlikely 
to affect antibodies from recovering COVID-19 patients 
included in the study.[24].

The ACE2 (E.C.3.4.17.23; UniProtKB Q9BYF1) is 
a homodimer that catalyzes the reaction: angiotensin 
II + H2O = angiotensin-(1–7) + L-phenylalanine [39, 110]. 
The human ACE2 gene is expressed in a large panel of 
organs—lungs (type II pneumocytes), heart, kidney, intes-
tine, cerebral neurons—or immune cells—alveolar mono-
cytes/macrophages. The ACE2 expression is up-regulated 
by interferon and influenza A virus in human nasal epithelia 
and lung cells [111, 112]. Shang et al. recently published 
the structure of the complex SARS-CoV-2 RBD/human 
ACE2 (PDB ID 6VW1). A comparison with the SARS-CoV 
highlighted that SARS-CoV-2 RBM forms larger binding 
interface and more contacts with human ACE2. The authors 
focused on the receptor-binding motif (RBM) of the viral 
RBD (S1 subunit) and the two virus-binding hotspots—31 

and 353—of the human ACE2 that are stabilized by the viral 
residues Q493 and L455 and N501, respectively. The study 
successfully determined that the tight SARS-CoV-2 bind-
ing onto the human ACE2 due to a four residue motif 482 
GVEG 485 and to the mutation L486F in the RBM sequence 
[101].

Yan et  al. have recently published the cryo-electron 
microscopy structures of the full-length human ACE2-
B(0)AT1 complex and RBD-ACE2-B(0)AT1 (PDB ID 
6M17, 6M1D, 6M18) [39]. The authors have shown that 
two S glycoprotein trimers simultaneously bind to an ACE2 
homodimer. Moreover, the authors highlighted some resi-
dues that could explain the difference between the cell entry 
of SARS-CoV-2 and SARS-CoV. Two mutations (Val404 
to Lys317 and Leu472 to Phe486) are responsible for an 
enhancement interaction of SARS-CoV-2-RBD and ACE2. 
In contrast, the mutation Arg436 to Asn439 weakens the 
SARS-CoV-2-RBD and hACE2 interaction [39]. The 
sodium-dependent neutral amino acid transporter B(0)AT1 

Fig. 6   The multiple sequence 
alignment of spike (S) S1/S2 
cleavage site sequences using 
the Clustal Omega program. 
The S1/S2 sequences are bolded 
and the basic arginine and 
lysine residues are marked in 
red [93]
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(SLC6A19) (UniProtKB Q695T7) mediates absorption of 
neutral amino acids across the membrane of the renal and 
intestinal epithelial cells and mutations in B(0)AT1 (such as 
A69T and R240Q) may cause Harnup disorder [113–116]. 
The B(0)AT1 expression onto the small intestinal cells 
depends on the co-expression of the ACE2 and is enhanced 
by aminopeptidase N (CD13) [117]. The aminopeptidase N 
(E.C. 3.4.11.2; UniProt UK P15114) mediates other viral 
infections—transmissible gastroenteritis virus responsible 
for diarrheal disease in piglets, cytomegalovirus or human 
CoV-229E [118–120]. Lan J. et al. compared the SARS-CoV 
and SARS-CoV-2 RBD bound to hACE2 and suggested a 
convergent evolution between the two coronaviruses. They 
further suggest that a unique “RRAR” cleavage site at the 
S1/S2 boundary of the SARS-Cov-2 has a crucial role in 
rapid inter-human transmission (PDB ID 6M0J). The authors 
emphasize the importance of neutralizing antibodies in the 
evolution of SARS-CoV-2 infection. Their structural study 
suggests that the lack of cross-reactivity by m396 and 80R 

antibodies that neutralizes SARS-CoV resides in several 
residue changes in the SARS-CoV-2 RBD [121].

Wang et al. firstly identify that S1 C-terminal domain 
(SARS-CoV-2 S-CTD) is the key region that interacts with 
the human ACE2. A comprehensive comparison between 
SARS-CoV-2 (PDB ID 6LZG) with similar SARS-CoV, 
reveals that the former has a higher affinity for the recep-
tor hACE2. Moreover, the authors advance the hypothesis 
of the “hotspot” region in S for receptor binding. Further 
experiments with the polyclonal antibodies, confirm the 
differences between SARS-CoV-2 and SARS-CoV’ S gly-
coprotein [36].

7 � SARS‑CoV‑2 and Host Immune System

The COVID-19 is the disease due to the interaction of 
the pathogen SARS-CoV-2 with the human host. Conse-
quently, all aspects of this interaction draw the picture of 

Fig. 7   The multiple sequence 
alignment of spike (S) S2′ 
cleavage site sequences using 
the Clustal Omega program. 
The S1/S2 sequences are bolded 
and the basic arginine and 
lysine residues are marked in 
red [93]; in yellow background 
are marked the cysteine residues 
that form an internal disulfide 
bond (C840 and C851) and the 
residues that form a salt bridge 
that reinforces the previous 
disulfide bond (K835-D848); 
in light blue is shown the lysine 
(K854) that form a salt bridge 
with the aspartic acid (D614) 
(not shown) [40, 107–109]
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the COVID-19. The interaction of SARS-CoV-2 with the 
human host is dynamic and has new features compared 
to other pandemics in human history. First, immunity 
developed after the SARS-CoV-2 infection is not yet well 
understood [6, 122, 123]. Then, the mechanisms of tissue 
damage in COVID-19 are not fully understood. The most 
striking characteristic of COVID-19 is the storm of pro-
inflammatory cytokines that ultimately is responsible for 
the vast majority of the death [124]. The biggest challenge 
is the best protocol to treat critically ill patients. Methyl-
prednisolone has already been reported to reduce the worst 
outcomes (https​://advai​tabio​.com/news/covid​19-analy​sis/) 

[125]. The managing of the hyper-inflammatory process 
in COVID-19 proved to be crucial for the evolution of the 
disease. In SARS-CoV infections, some pro-inflammatory 
cytokines (IP-10, IL-8, and MCP-1) are elevated. Mean-
while, there is no antiviral (IFN) response [126]. In many 
diseases associated with systemic inflammatory response 
syndrome, the control of damage-associated molecular 
patterns (DAMPs) by their counteracting molecules sup-
pressing/inhibiting DAMPs (SAMPs) is crucial [127]. Pre-
vious studies on the crystal structures of SARS-CoV S gly-
coprotein mutants neutralized by 80R-specific antibodies 
have been considered a hope for the immunotherapeutic 

Fig. 8   The phylogenetic tree 
(cladogram) of the CoVs Spike 
(S) sequences of CoVs with 
different origin. feline infec-
tious peritonitis virus (FIPV), 
porcine epidemic diarrhea virus 
(PEDV), HCoV-NL63, SARS-
CoV-2, SARS-CoV, HCoV-
HKU1, and coronavirus (strain 
A59) MHV-A59; performed by 
Clustal Omega program

Fig. 9   The crystal structures 
co-crystallized with neutralizing 
antibodies. The epitopes of the 
SARS-CoV-2 spike are NTD (N 
terminal domain), RBD (recep-
tor binding domain, quaternary 
epitopes, and ectodomain; there 
are indicated the PDB entries 
and in parenthesis the neutraliz-
ing antibody; * the most potent 
neutralizing antibodies from 
convalescent patients according 
to Liu et al. work [16]

https://advaitabio.com/news/covid19-analysis/
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strategy for the future outbreak of SARS (PDB ID 2GHV) 
[128].

There are 32 structures of SARS-CoV-2 about the 
immune system published in peer-reviewed papers (PDB 
ID9s) 6W41, 7BZ5, 7C01, 7BWJ, 7BYR, 6XCM, 6XCN, 
7C2L, 6XDG, 6YOR, 7CAH, 6XEY, 6ZCZ, 6ZDH, 6ZDG, 
6ZER, and 6ZFO). More than eight months after the onset of 
the pandemic, health care professionals and researchers are 
able to analyze the clinical evolution of many patients. The 
host immune response to SARS-CoV-2 infection is perhaps 
the most controversial issue. Most of the last PDB entries are 
about the SARS-CoV-2 neutralizing antibodies. The patients 
recovered with COVID-19 rapidly advanced studies with 
plasma samples from convalescents. Numerous research 
teams already identified numerous potent neutralizing anti-
bodies against multiple epitopes on the SARS-CoV-2 spike 
(Fig. 9). Yuan et al. published the cryo-EM crystal structure 
of the SARS-CoV-2 S1 with the CR3022 antibody as an 
effort to understand the antigenicity of the SARS-CoV-2 
(PDB ID 6W41). Their results show that CR3022 Fab binds 
to SARS-CoV RBD with higher affinity (Table 2). In the 
selection process of the selection of the neutralizing anti-
bodies against SARS-CoV-2, Ju et al. provide evidence that 

binding affinity does not predict ACE2 competing capac-
ity [20]. The CR3022 antibodies fail to neutralize SARS-
CoV-2 in vitro. The CR3022 epitope does not overlap with 
the ACE2 binding site in SARS -CoV-2 S-RBD. However, 
SARS-CoV and SARS-CoV-2 have a conserved, but cryp-
tic epitope that could be worth considering for a vaccine 
[14]. Moreover, the Huo et al. suggest that CR3022 binding 
facilitates conversion to the fusion-incompetent post-fusion 
state (PDB ID 6YOR) [15]. These findings offer promis-
ing perspectives on COVID-19 therapy with neutralizing 
antibodies.

The challenge of the therapy with neutralizing antibodies 
is to overcome the virus mutants. The therapeutic cocktail 
of neutralizing antibodies against SARS-CoV-2 is an effi-
cient approach. The Hansen et al. team discovered a pair 
of non-competitive neutralizing antibodies that simultane-
ously bind to S-RBD SARS-CoV-2 (namely REGN10933 
and REGN10987) (PDB ID 6XDG) [23]. The mapping of 
the SARS-CoV-2 epitopes targeted by potent neutralizing 
mAbs demonstrated the diversity of the neutralizing antibod-
ies directed against the S-RBD, S-NTD, and the epitopes 
that do not map to the S-RBD or S-NTD. Even though the 
authors Liu et al. do not establish the role of S-NTD in 

Table 2   Comparison of the neutralizing antibodies against SARS-CoV-2 and SARS-CoV

* pseudovirus neutralization assay, NA- not available

Antibody/epitope SARS-CoV-2 SARS-CoV References

IC50 KD KD

S-RBD epitope
CR3022 Fab NA 115 ± 3 nM 1.0 ± 0.1 nM [14]
CR3022 Ig NA  < 0.1 nM  < 0.1 nM [14]
CB6 0.036 ± 0.007 μg /ml 2.49 ± 1.65 nM NA [19]
C105 0.0261 μg /ml NA NA [24]
B38 0.177 μg/ml NA NA [18]
H4 0.896 μg/ml NA NA [18]
B5 1.375 μg/ml NA NA [18]
H2 1.000 μg/ml NA NA [18]
H014 3 nM* NA NA [17]
4A8 0.39 μg/ml 92.7 nM NA [25]
REGN10933
REGN10987

0.0374 nM
0.0421 nM

0.56 nM NA [23]

EY6A 20.7 μg/ml 2 nM NA [22]
2–15, 1–57, 2–7, 4–20, 2–36,

1–20, 2–38, 2–4, 2–30
0.0007 to 0.209 μg/ml NA NA [16]

BD-217, BD-218, BD-236, BD-361, 
BD-368, BD-368–2, BD-395

0.015 to 1.6 μg/ml 0.039 to 2.8 nM NA [21]

S-NTD epitope
5–24, 4–18, 4–8, 5–7, 4–19,
  1–87, 2–17, 1–68

0.007 to 0.109 μg/ml NA NA [16]

Other epitopes (quaternary epitopes)
2–43
2–51

0.003 μg/ml
0.007 μg/ml

NA NA [16]
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blocking SARS-CoV-2 infection, these findings are crucial 
for vaccine development [16].

The studies about the host immune system are, on the one 
hand, about the production of neutralizing antibodies, and on 
the other hand, about the virus’s ability to hamper defense 
immunity. The CoVs have an impressive ability to suppress 
the IFN response. An antagonist of the IFN response is the 
nsp15 [129]. The viral nsp3 has an active role in suppress-
ing innate immunity by blocking the interferon regulatory 
factor (IRF3) (Gene ID 3661) and altering the NF-kappaB 
signaling, which controls the expression of some inflamma-
tory cytokine genes [130, 131]. The nsp3 has a crucial role 
in damaging the host’s first line of defense against SARS-
CoV-2. Nsp3 probably has a role in producing the unusual 
inflammation described in patients with severe COVID-19 
[132]. The SARS-CoV-2 nsp3 has no crystal structures 
published until now. The nsp3 (~ 200 kDa) is a large multi-
domain protein (E.C. 3.4.19.12) (UniProtUK P0DTD1) 
responsible for the cleavage of the replicase polyprotein 1ab 
at the N-terminus [133]. The papain-like protease (PLpro) 
domain of the viral nsp3 exhibits deubiquitinating activity 
[134]. A recent study has shown that deubiquitinating/deIS-
Gylating (DUB/deISG) nsp3 deficient mutants (H1652R, 
V1691K, and V1691R) result in attenuating the MERS virus 
[135]. A recent study identified specific mutations in nsp3 
corroborated with nsp2 that suggest potential mechanisms 
that explain higher contagiousness of SARS-CoV-2 com-
pared to SARS-CoV [136].

Thoms et al. published nine cryo-EM crystal structures 
of the SARS-CoV-2 nsp1 (PDB ID(s) 6ZLW, 6ZM7, 6ZN5, 
6ZON, 6ZP4, 6ZMI, 6ZMO, 6ZMT, and 6ZME). The nsp1 
(E.C. 3.4.19.12., UniProtKB P0DTD1) is a host transla-
tion inhibitor that interacts with the 40S ribosomal subunit. 
There are two consequences of the suppressing of the host 
gene expression: the viral gene expression and evasion of 
the virus from the host immune response. The SARS-CoV-2 
nsp1 prevents translation of the interferon, some pro-inflam-
matory cytokines, and interferon-stimulated antiviral ISGs 
[46].

8 � Other Non‑structural Proteins 
of SARS‑CoV‑2

The organization of the non-structural (nsp) proteins in CoV 
is not fully understood. The CoV has two overlapping open 
reading frames (ORFs) ORF 1a and ORF 1b, and by 1 ribo-
somal frameshifting—a translational regulation mechanism 
described in retroviruses—there is a regulation of relative 
ratio of structural to enzymatic proteins [137, 138]. The 
CoV synthesizes two polyproteins that are further cleaved 
by the viral proteases. The replicase polyprotein 1ab (Uni-
ProtKB P0DTD1) also contains the proteases responsible for 

the cleavage [139]. The viral protease 3CLpro is extensively 
studied for the designing of new drugs to control the spread 
of human and zoonotic CoVs [140].

The nsp9 is an RNA-replicase which binds the viral RNA 
and has a regulatory effect in viral replication [141]. Three 
unpublished crystal structures of nsp9 from SARS-CoV-2 
were retrieved from the PDB (PDB ID(s) 6W9Q, 6W4B, 
and 6WXD) (Litter et al., and Tan et al.). Previous stud-
ies focused on nsp9 from other CoVs, demonstrated that 
the residues from the dimer interface greatly influence their 
nucleic acid binding affinity [142]. According to Zeng et al. 
findings, the dimerization greatly depends on the N-fin-
ger and the two glycine residues from a conserved region 
GXXXG [142]. Eight nsp9 sequences were analyzed—
porcine coronavirus HKU15 [PDB D5YM8] (PDCoV); 
human coronavirus HKU1[YP_459943](HCoV-HKU1); 
murine hepatitis virus strain A59 [GeneBank ACO72881.1]
(MHV); porcine epidemic diarrhea virus CV777 [PDB ID 
5HIZ](PEDV); bat coronavirus CDPHE15/USA/2006 [Gen-
eBank YP_008439220.1] (BatCoV-CDPHE15); Middle 
East respiratory syndrome-related coronavirus [GeneBank 
AHI48749.1](MERS-CoV); Severe acute respiratory syn-
drome coronavirus 2 [PDB ID 6W4B](SARS-CoV-2); SARS 
coronavirus Shanhgai LY [GeneBank AAP82976.1](SARS-
CoV). The multiple sequence alignment of the eight nsp9 
proteins is slightly different to Zeng et al. findings in respect 
of the PDCoV nsp9. The N-finger sequence with the consen-
sus sequence with the polar residues NNE (Asn-Asn-Glu) is 
noticed in all nsp9 sequences except the PDCoV nsp9 (PDB 
D5YM8) (Fig. 10).

The nsp15 is uridylate-specific endoribonulcease (Nen-
doU) (E.C. 3.1.-.-) highly conserved among vertebrates 
coronaviruses. The nsp15 plays an important role in the life 
cycle of CoVs [143, 144]. The recent SARS-CoV-2 nsp15 
structures show that it is a hexamer and the catalytic site 
belong to the C-terminal domain (PDB ID(s) 6W01 and 
6VWW). The study concludes that the SARS-CoV-2 nsp15 
differs by MERS-CoV nsp15 by residues that coordinate the 
manganese ion [145].

9 � Discussion

The SARS-CoV-2 emerged at the late of the year 2019. The 
epidemiology of COVID-19 pandemic is beyond the subject 
of this paper. However, we can learn how other epidemics 
have been handled throughout history. There are many his-
torical records, but an episode about the plaque epidemic, 
brilliantly described by Irving Stone in The Agony and the 
Ecstasy, could be a school-case. In the Florence transformed 
in morgue and deserted by people, Michelangelo—Michel-
angelo di Lodovico Buonarroti Simoni (1475-1564)—chose 
to stay in the city and take care of his ill younger brother 
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until the last moment and doing the best for a decent funeral. 
Strikingly, in the XVI century, Michelangelo applied the rec-
ommendation for COVID-19 – hygiene and social distance. 
He thoroughly brushed himself into a bathtub with hot water 
and sent away his sister-in-law and his nephews. Even he 
was asymptomatic, in our days terms, he refused Granacci’s 
wine. Unlike the plague described by Irving Stone, COVID-
19 pandemic is considerably longer and for the time being 
there is no hope for its end soon.

Until the emergence of SARS-CoV in 2003 and MERS in 
2012, the CoVs infections do not pay much attention. Now, 
facing the SARS-CoV-2, the spectrum of re-emergence of 
the SARS-CoV-2 or the animal-human transmission of a 
new CoV strain is more real than ever. So, the understand-
ing of all aspects of the SARS-Cov-2 is of great interest. 
The rapid involvement of the scientific communities greatly 
advances the elucidation of some aspects of COVID-19 pan-
demic to be prepared in the event of a new contagious and 
fatal CoV disease.

The structural studies focused on designing specific 
inhibitors to gain knowledge about the COVID-19 treat-
ment, and further studies involving biophysical methods 
will speed up the SARS-CoV-2 cure [146, 147]. Likewise, 
many research teams advance their studies on understanding 
the most subtle details of the virus-host cell interaction, the 
emergence of the neutralizing antibodies, or the designing 
of new inhibitors. The virus and host factors are both rel-
evant for the initiation and evolution of a viral infection. The 
SARS-CoV-2 shares epidemiological patterns with SARS-
CoV and MERS, but there are some structural differences. 
Thus, even though SARS-CoV and SARS-CoV-2 use the 
same host receptor, SARS-CoV-2 binds to the ACE2 with 
higher affinity [101].

Two main features are associated with the worst outcome 
in SARS-CoV-2 infection—co-morbidities and elderly. The 
traits of immune system at different ages could be a strong 
explanation about the accompanying symptoms of various 

viruses when they present with an underlying disease. For 
example, episodes of wheezing in young children have been 
observed in respiratory syncytial virus (RSV) infections. In 
contrast, in adults and older children, the episodes of wheez-
ing have been observed in human rhinoviruses (HRV) and 
HCoVs (HCoV-NL63 and HCoV-HKU1) infections [148]. 
Recent studies identify ACE-2 maturation stages, and the 
hypertension treatment with ACE inhibitors could be an 
explanation for mild disease in children [149, 150]. Thus, 
structural studies about spike -ACE-2 and ACE2-neutraliz-
ing antibodies are of great interest. The crystal structures of 
SARS-CoV-2 reveal important details about the viral infec-
tion. First, the full-length human ACE2 structure reveals that 
viral cell entry involves the simultaneous binding of two S 
glycoproteins to ACE2. Also, the use of B(0)AT1 in stabili-
zation of the full-length human ACE2 structure advances the 
hypothesis that B(0)AT1 may play a role in enteric infections 
of some CoVs [39].

Certain virus components trigger the immune system 
and limit the interspecies transmission of different CoVs. 
The structural studies greatly advance the selection of the 
best immunogens for SARS-CoV-2 prophylaxis. A com-
parison of the HCoV suggests that the spike’s SARS-CoV-
2-CTD domain could be a valid immunogen for a future 
vaccine [36]. The viral immune evasion depends on more 
than one factor and structural work of many research teams 
greatly advances the understanding of immune response. 
The SARS-CoV-2 nsp1 is one of the major immune factors 
that impedes the host immune clearance. A recent structural 
work demonstrated that SARS-CoV-2 nsp1 blocks RIG-I-
dependent innate immune response [46].

The hypothesis of the bats being at the origin of the 
SARS-CoV-2 is, until now, not either demonstrated or 
rejected. However, it is about 96% identity between the 
genome of SARS-CoV-2 and the genome of BatCov 
RaTG13 [3]. Even the genome identity between SARS-
CoV-2 and SARS-CoV is about 80%—recent studies claim 

Fig. 10   The multiple sequence 
alignment of nsp9 sequences 
using the Clustal Omega 
program. The N-finger (in 
red) and GXXXG motif (grey 
background) are important for 
dimerization. The conserved 
residues of N-finger are under-
lined
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a close evolutionary relationship between the two viruses 
[3, 101]. The results of the structural studies could bring 
valuable perspective of the host specificity. Thus, Ziegler 
et al. work about the human and mouse ACE2 demonstrated 
that different to mouse ACE2, the ACE2 is an interferon-
stimulated gene (ISG) in human primary upper airway epi-
thelial basal cells [112]. These results are useful not only for 
using an appropriate animal/cellular model in experimental 
research but for screening for the potential animal host of 
the SARS-CoV-2, which could elucidate the chain of the 
virus passing from the animal host to human. Also, the dif-
ferences of an essential step in CoVs replication, the priming 
of S glycoprotein by host cell proteases, could be exploited 
to elucidate the zoonotic potential of the SARS-CoV-2. The 
findings of Hoffmann et al. highlighted that the S1/S2 cleav-
age site sequence of SARS-CoV-2 S glycoprotein harbors 
several arginine residues (multibasic) on the contrary to its 
closely related the bat CoV RaTG13 [94].

Current theory holds that most of the deaths are due to an 
excessive level of pro-inflammatory cytokines in circulation. 
The humoral immune response is most studied and structural 
studies add important results that further explain biochemi-
cal findings [121]. The most optimistic outcome is to obtain 
a vaccine that elicits strong and long-term immunity. Until 
then, understanding the evolutions of phenotypic changes of 
the SARS-CoV-2 and elucidation of epidemiological aspects 
of the COVID-19 pandemic greatly depends on the analysis 
of all available research results.

10 � Conclusions

There is a huge effort in deciphering the SARS-CoV-2 pan-
demic, leading to many studies conducted around the world. 
The scientific work relies on observation, experiments, and 
structural studies to provide a deep view of SARS-CoV-2. 
The current structural analysis of the SARS-CoV-2 is mainly 
focused on three major lines—finding new hydrolase inhibi-
tors, the virus-host cell invasion, and the virus-neutralizing 
antibody interaction. There is an intense work on structural 
studies of SARS-CoV-2 proteins, mainly for S glycopro-
tein that is crucial for the pathogenesis of all CoVs, but 
Totum est majus sua parte (The whole is bigger than the 
part). The convalescent patients’ B cells demonstrated that 
not a single spike epitope elicits the neutralizing antibod-
ies. The host-virus interaction is a dynamic process, and 
the host ‘s defense mechanisms are crucial not only to cure 
the COVID-19 infection but to prevent further re-infection. 
In this sense, structural studies involving neutralizing anti-
bodies gain a perspective in deciphering the immunity of 
cured persons. Also, the works about the viral nsp(s) aid 
the understanding of the viral immune evasion. Despite the 
limits of X-ray/cryo-EM crystal structure studies – mainly 

the lack of information about the cell-mediated immunity 
and time-consuming experiments for clinical validation of 
the new inhibitors – the thorough analysis of the PDB entries 
is a powerful tool for further understanding of the human 
CoVs infections.
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