Skip to main content
Log in

Binding of Lipoic Acid Induces Conformational Change and Appearance of a New Binding Site in Methylglyoxal Modified Serum Albumin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The binding of lipoic acid (LA), to methylglyoxal (MG) modified BSA was studied using isothermal titration calorimetry in combination with enzyme kinetics and molecular modelling. The binding of LA to BSA was sequential with two sites, one with higher binding constant and another comparatively lower. In contrast the modified protein showed three sequential binding sites with a reduction in affinity at the high affinity binding site by a factor of 10. CD results show appreciable changes in conformation of the modified protein as a result of binding to LA. The inhibition of esterase like activity of BSA by LA revealed that it binds to site II in domain III of BSA. The pH dependence of esterase activity of native BSA indicated a catalytic group with a pKa = 7.9 ± 0.1, assigned to Tyr411 with the conjugate base stabilised by interaction with Arg410. Upon modification by MG, this pKa increased to 8.13. A complex obtained by docking of LA to BSA and BSA in which Arg410 is modified to hydroimidazolone showed that the long hydrocarbon chain of lipoic acid sits in a cavity different from the one observed for unmodified BSA. The molecular electrostatic potential showed that the modification of Arg410 reduced the positive electrostatic potential around the protein-binding site. Thus it can be concluded that the modification of BSA by MG resulted in altered ligand binding characteristics due to changes in the internal geometry and electrostatic potential at the binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6 
Fig. 7

Similar content being viewed by others

Abbreviations

AGES:

advanced glycation end products

BSA:

bovine serum albumin

CD:

circular dichroism spectroscopy

GA:

genetic algorithm

HSA:

human serum albumin

ITC:

isothermal titration calorimetry

LA:

lipoic acd

MEP:

molecular electrostatic potential

MG:

methylglyoxal

NMR:

nuclear magnetic resonance

PDB:

protein data bank

UV:

ultraviolet

References

  1. Ahmed N, Dobler D, Dean M, Thornalley PJ (2005) J Biol Chem 280:5724–5732

    Article  CAS  Google Scholar 

  2. Baxter CA, Murray CW, Clark DE, Westhead DR, Eldridge MD (1998) Proteins 33:367–382

    Article  CAS  Google Scholar 

  3. Bourdon E, Loreau N, Blache D. (1999) FASEB 13:233–244

    CAS  Google Scholar 

  4. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  5. Chen RF (1976) In Chen RF, Edelhoch H (eds) Biochemical fluorescence: concepts, Marcel Dekker, Inc, New York, pp 573–606

  6. Eftink MR, Ghiron CA (1977). Biochemistry 16:5546–5551

    Article  CAS  Google Scholar 

  7. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) J Comput-Aided Mol Des 11:425–445

    Article  CAS  Google Scholar 

  8. Fan X, Subramaniam R, Weiss MF, Monnier VM (2003) Arch Biochem Biophys 409:274–286

    Article  CAS  Google Scholar 

  9. Gao Y, Wang Y (2006) Biochemistry 45:15654–15660

    Article  CAS  Google Scholar 

  10. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) J Mol Biol 353:38–52

    Article  CAS  Google Scholar 

  11. Gribskov M, Mclachlan AD, Eisenberg D (1987). Proc Natl Acad Sci USA 84:4355–4358

    Article  CAS  Google Scholar 

  12. Gudiksen KL, Gitlin I, Yang J, Urbach AR (2005) J Am Chem Soc 127:4707–4714

    Article  CAS  Google Scholar 

  13. Halgren T (1990) J Am Chem Soc 112:4710–4723

    Article  CAS  Google Scholar 

  14. Kawabata T, Packer L (1994) Biochem Biophys Res Commun 203:99–104

    Article  CAS  Google Scholar 

  15. Kellogg GE, Joshi GS, Abraham DJ (1992) Med Chem Res 1:444–453

    Google Scholar 

  16. Kumar SM, Mrudula T, Mitra N, Bhanuprakash Reddy G. (2004). Exp Eye Res 79:577–583

    Article  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  18. Luthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85

    Article  CAS  Google Scholar 

  19. McLellan AC, Thornalley PJ, Benn J, Sonksen PH (1994) Clin Sci 87:21–29

    CAS  Google Scholar 

  20. Means GE, Bender ML (1975) Biochemistry 14:4989–4994

    Article  CAS  Google Scholar 

  21. Murata-Kamiya N, Kamiya H (2001) Nucleic Acids Res 29:3433–3438

    Article  CAS  Google Scholar 

  22. Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T, Otagiri M. (2003). Biochim Biophys Acta 1623:88–97

    CAS  Google Scholar 

  23. Otagiri M (2005) Drug Metab Pharmacokinet 20:309–323

    Article  CAS  Google Scholar 

  24. Packer L, Witt EH, Tritschler HJ (1995) Free Radic Biol Med 19: 227–250

    Article  CAS  Google Scholar 

  25. Ramasamy R, Yan SF, Schmidt AM (2006) Cell 124:258–260

    Article  CAS  Google Scholar 

  26. Schepkin V, Kawabata T, Packer L (1994). Biochem Mol Biol Int 33:879–886

    CAS  Google Scholar 

  27. Thornalley PJ (1993) Mol Aspects Med 14:287–371

    Article  CAS  Google Scholar 

  28. Thornalley PJ, Edwards LG, Kang Y, Wyatt C, Davies N, Ladan MJ, Double J (1996) Biochem Pharmacol 51:1365–1372

    Article  CAS  Google Scholar 

  29. Watanabe H, Tanase S, Nakajou K, Maruyama T, Kragh-Hansen U, Otagiri M (2000) Biochem J 349:813–819

    CAS  Google Scholar 

  30. Westwood ME, Thornalley PJ (1995) J Protein Chem 14:359–372

    Article  CAS  Google Scholar 

  31. Yang AS, Gunner MR, Sampogna R, Sharp K, Honig B (1993) Proteins 15:252–265

    Article  CAS  Google Scholar 

  32. Yao D, Taguchi T, Matsumura T, Pestell R, Edelstein D, Giardino I, Suske G, Ahmed N, Thornalley PJ, Sarthy VP, Hammes HP, Brownlee M (2006) Cell 124:275–286

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sivakami.

Electronic supplementary material

Below is the link to the electronic supplementary material.Figures for the molecular electrostatic potentials on the surface of BSA and modified BSA.

(DOC 2091 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suji, G., Khedkar, S.A., Singh, S.K. et al. Binding of Lipoic Acid Induces Conformational Change and Appearance of a New Binding Site in Methylglyoxal Modified Serum Albumin. Protein J 27, 205–214 (2008). https://doi.org/10.1007/s10930-008-9126-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-008-9126-3

Keywords

Navigation