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Abstract
Dose personalization improves patient outcomes for many drugs with a narrow therapeutic index and high inter-individuality 
variability, including busulfan. Non-compartmental analysis (NCA) and model-based methods like maximum a posteriori 
Bayesian (MAP) approaches are two methods routinely used for dose optimization. These approaches vary in how they esti-
mate patient-specific pharmacokinetic parameters to inform a dose and the impact of these differences is not well-understood. 
Using busulfan as an example application and area under the concentration–time curve (AUC) as a target exposure metric, 
these estimation methods were compared using retrospective patient data (N = 246) and simulated precision dosing treat-
ment courses. NCA was performed with or without peak extension, and MAP Bayesian estimation was performed using 
either the one-compartment Shukla model or the two-compartment McCune model. All methods showed good agreement on 
real-world data (correlation coefficients of 0.945–0.998) as assessed by Bland–Altman plots, although agreement between 
NCA and MAP methods was higher during the first dosing interval (0.982–0.994) compared to subsequent dosing intervals 
(0.918–0.938). In dose adjustment simulations, both NCA and MAP estimated high target attainment (> 98%) although true 
simulated target attainment was lower for NCA (63–66%) versus MAP (91–93%). The largest differences in AUC estimation 
were due to different assumptions for the shape of the concentration curve during the infusion phase, followed by how the 
methods considered time-dependent clearance and concentration–time points collected in earlier intervals. In conclusion, 
although AUC estimates between the two methods showed good correlation, in a simulated study, MAP lead to higher target 
attainment. When changing from one method to another, or changing infusion duration and other factors, optimum estimated 
exposure targets may require adjusting to maintain a consistent exposure.
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Introduction

Methods of estimating area under the concentration–time 
curve (AUC) based on measured drug concentrations 
can be broadly grouped into non-compartmental analysis 
(NCA) and compartmental approaches. This latter group 
includes both regression methods of fitting an assumed 

pharmacokinetic (PK) model to the available measure-
ments and Bayesian methods of balancing the assumed PK 
model priors with available measurements. NCA allows 
for estimation of certain exposure parameters and PK char-
acteristics with fewer assumptions, but still assumes that 
elimination between samples in the elimination phase is 
first-order, that the half-life can be obtained by regression 
from the last few samples in the elimination phase, and 
that concentrations rise linearly during infusion (when 
using log-linear NCA) [1]. For drugs like busulfan with 
narrow therapeutic AUC ranges, dose adjustments based 
on AUC estimation have become a part of routine clinical 
practice [2] however dose adjustment recommendations 
for a given clinical scenario vary considerably from site 
to site due, in part, to differences in AUC estimation meth-
ods [3, 4]. With the growing availability of precision dos-
ing software and other computational tools, model-based 
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Bayesian methods are increasingly being adopted in clini-
cal practice, although NCA remains a widely used stand-
ard. Because these two methods vary in the assumptions 
they make and in how they leverage patient data to inform 
their calculations, they vary in their estimations of AUC, 
and these differences could impact dose selection and 
patient outcomes.

While NCA does not make explicit assumptions about 
how drugs distribute within and are cleared from the body, 
when implemented using the “log-linear” method it still 
assumes first-order decay for parts of the curve not described 
by samples. Consider the hypothetical patient in Fig. 1, who 
received a three-hour infusion of busulfan as part of a Q24 
dosing regimen, and then provided eight serum samples, the 
first of which was collected 20 min after the end of infusion, 
and the last of which was 8 h after the last dose. AUC for the 
sampled regions of the curve is calculated using trapezoids, 

assuming logarithmic decay between samples. Typically, 
the AUC for the portion of the concentration–time curve 
after the final measurement is estimated by fitting a linear 
regression model on the log-transformed final three or four 
concentrations, then extrapolating to the time of the next 
dose (CTau) or to infinity (to calculate cAUC after all doses 
are administered) [1]. The infusion portion of the curve is 
modeled linearly, rising from 0 (or some other pre-dose 
measurement) to the maximum concentration, Cmax. There 
are two ways to define Cmax: this value can either be the first 
measured concentration (Fig. 1: NCA-no-peak) or it can be 
estimated by extrapolating backwards from the first meas-
ured level to the end of infusion using the same regression 
principles for CTau (Fig. 1: NCA-peak). These two methods 
for estimating Cmax will differ more the larger the time delay 
between the end of infusion and the first sample collection.

Model-based approaches, in contrast, assume some number 
of drug distribution compartments, and possibly other math-
ematical relationships describing distribution and clearance. 
Bayesian methods of updating model parameters to incorpo-
rate measured drug concentrations also assume distributions 
of inter-individual and residual variability. Maximum a pos-
teriori (MAP) Bayesian estimation uses these distributions 
to identify point estimates of each PK parameter based on 
maximum likelihood, while full Bayesian approaches, which 
we do not further explore here, would additionally consider 
parameter uncertainty and use the full posterior for inference. 
Using these Bayesian PK parameter estimates, AUC is then 
estimated by integrating the concentration–time curve. As a 
result, the sampled region will be described by a smooth curve 
instead of trapezoids (Fig. 1: MAP). For a one-compartmental 
model, the shape of the curve and AUC estimated approxi-
mates the logarithmic decay of NCA in the part of the curve 
extrapolated to Ctau. The two-compartment model shows 
some differences in concentration earlier during elimination. 
Differences between this PK model approach and the NCA 
methods are quite discernible in the infusion phase: model-
based methods assume drug clearance during the infusion 
time, resulting in a non-linear curve. This discrepancy will 
be more pronounced the longer the infusion time.

In addition to assumptions about the shape of the concen-
tration–time curve, these methods differ in what information 
is used to estimate the AUC for a given dose. NCA methods 
use only data collected within a single dosing interval, along 
with a pre-dose trough level. In contrast, Bayesian meth-
ods are informed by data from all prior dosing intervals, 
which may improve PK parameter estimation accuracy as 
additional data becomes available. Additionally, Bayesian 
methods incorporate some quantity of measurement error 
and other error in their likelihood estimates, providing some 
protection from background noise [7].

To better understand the practical implications of the dif-
ferences between these methods, we compared differences 
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Fig. 1   Comparison of two non-compartmental analysis (NCA) 
approaches with a compartmental model-based approach (MAP). The 
example patient was a fifteen-year-old male patient (weight: 72  kg, 
height: 183 cm) who received 229 mg of busulfan infused over 3 h 
as part of a once-daily 4-day regimen. Samples were collected at 
20 min, 40 min, 1 h, 2 h, 3 h, 4 h, 6 h, 8 h after the end of infusion. 
AUC was estimated using non-compartmental analysis without peak 
extension or with peak extension, or using maximum a posteriori 
(MAP) Bayesian estimation using a one-compartment model (1cmt) 
[5] or a two-compartment model (2cmt) [6]. The curve has been 
restricted to the first 12 h for clarity
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in AUC estimated using NCA and Bayesian model-based 
estimation in a routine clinical care data set. Then, because 
“true” AUC cannot be measured without prohibitively 
densely sampled curves, we evaluate the ability of these 
methods to bring patients to a target AUC by simulating the 
clinical implementation of both approaches.

Methods

Data source

All patients or their guardians provided informed written 
consent to routine collection of therapeutic drug monitor-
ing (TDM) of busulfan as part of pre-conditioning prior to 
stem cell transplantation. A waiver for informed consent to 
participation in this pharmacokinetic analysis was granted 
by the University of California, San Francisco (UCSF)’s 
Institutional Review Board because this retrospective review 
of de-identified data was assessed to involve no more than 
minimal risk to the subjects. Patients underwent autolo-
gous or allogeneic transplantation for a variety of malig-
nant and nonmalignant disorders. All preparative regimens 
were busulfan-based, with a cumulative AUC goal ranging 
from 15-90 mg·h/L, depending on disease and combination 
of pre-transplant agents. For seizure prophylaxis, all sub-
jects received levetiracetam beginning 24 h prior to the first 
dose of busulfan through 24 h post the last dose of busul-
fan. Moderate or potent enzyme inhibitors or inducers were 
not allowed during busulfan-based conditioning and dis-
continued prior to conditioning based on recommendations 
published by Winger et al. [8].

Patients with busulfan doses and TDM records were 
entered into the InsightRX Nova model-informed preci-
sion dosing software platform were included in this study. 
Patients were excluded from analysis if their dosing records 
could not be unambiguously interpreted or suggested unu-
sual deviation from standard protocol, including the follow-
ing reasons: multiple concurrent drug concentration–time 
points with discrepant values (N = 1), absence of samples 
collected within the first 150 min after the end of infusion 
(N = 1), doses administered less frequently than every 5 h 
(N = 1), or samples collected during infusion (N = 5).

Clinical characteristics

Clinical characteristics of patients were calculated using 
the open-source R package clinPK [9]. Ideal body weight 
(IBW) was calculated according to the Devine equation for 
patients over the age of 18 years [10]. For patients under the 
age of 1 year, IBW was calculated as the patient’s weight. 
For patients between the age of 1 and 18 years with a height 
under 5 feet, IBW was calculated as 0.165 times the height 

in meters. For patients of this age range over 5 feet in stature, 
IBW was calculated as 39 kg (males) or 42.2 kg (females) 
plus 2.27 kg per inch over 5 feet. Fat-free mass was calcu-
lated using the Al-Sallami equation for patients under the 
age of 18 years [11] and the Janmahasatian equation [12] for 
patients over the age of 18 years. Fat mass was calculated as 
the difference between weight and fat-free mass.

Pharmacokinetic modeling

NCA was performed using clinPK, with the option to extrap-
olate C

max
 backwards to the end of infusion either set to true 

(“peak extension”) or false (“no peak extension”). Model-
based PK parameter estimation was performed using two 
population pharmacokinetic models for busulfan (Supple-
mentary Table 1): the McCune model is a two-compartment 
model developed on a data set of 1610 pediatric and adult 
patients [6] and the Shukla model is a one-compartment 
model developed on 199 pediatric and young adult patients 
that included some of the patients in the data set reported 
here [5]. The published McCune model reported inter-
occasion variability (IOV) on clearance, both volumes of 
distribution and intercompartmental transfer, however our 
experience in using this model in clinical settings indicates 
that this level of flexibility leads to instability during MAP 
estimation. As a result, IOV was included only on clearance 
and the central volume of distribution. Model files are avail-
able open source at github.com/InsightRX/PKPDsim.

AUC was estimated iteratively for each dosing interval 
for which concentration–time points were available. For PK 
model approaches, maximum a posteriori (MAP) Bayesian 
estimation of the individual’s PK parameters was performed 
with the BFGS algorithm implemented in R’s stats::optim 
function [13], using the package PKPDsim for simulation 
of the concentrations and calculation of the likelihood [14]. 
These estimates were made using all samples collected up 
to and including that dosing interval in its posterior distribu-
tions, and these PK parameters were then used to estimate 
AUC by integrating the concentration–time curve.

Simulated treatment

The impact of AUC estimation method on dose selection and 
cumulative AUC (cAUC) was evaluated using simulation. 
Simulated patients were given an initial dose of 3.2 mg/kg, 
and doses were adjusted to achieve a cAUC of 90 mg⋅h/L 
divided across four doses given every 24 h, infused over 
3 h. After the first dose, new doses were calculated based on 
AUC estimates obtained either using NCA with peak exten-
sion or using MAP Bayesian estimation with the Shukla 
model. Concentration–time curves arising from selected 
dosing regimens were simulated using the McCune model, 
intentionally resulting in model misspecification between 
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the simulation model and estimation model. Because the 
McCune model was used for simulation, we refer to AUC 
estimates extracted from these simulated curves as the 
true AUC within the analysis. Covariates for the simulated 
patients were mimicked from the actual patient data set, pro-
ducing a realistic distribution of covariates. Pharmacoki-
netic parameters were created for the simulated patients by 
randomly sampling the interindividual variability and inter-
occasion distributions described by the McCune model ten 
times, creating a data set of patients tenfold greater than the 
real data set. The same simulated patients were used for all 
experiments, for both NCA and MAP. TDM collection was 
simulated by extracting the concentration at standard collec-
tion times (15 min, 1 h, 3 h, 5 h after the end of infusion), 
and adding random noise, according to the proportional and 
additive residual error described by the McCune model. As 
before, IOV was included only for the central compartment 
parameters. True cAUC was calculated by integrating under 
the simulated concentration–time curve from the start of 
the first dose to 120 h after the final dose (at which point 
concentration approaches zero). Estimated cAUC was calcu-
lated using estimated PK parameters to simulate a concentra-
tion–time curve and then integrating under it from the first 
dose to 120 h after the final dose.

Results

Data collection

The final data set included 246 patients, who contributed 
2455 busulfan concentration–time points from 568 busul-
fan administrations, summarized in Table 1. Patients were 
treated according to several conditioning regimens: busul-
fan/clofarabine/fludarabine (14% of patients), busulfan/
fludarabine/cyclophosphamide, busulfan/fludarabine/thi-
otepa, or busulfan/melphalan. A more precise breakdown of 
conditioning regimens was not available in the data. Follow-
ing the recent implementation of Bayesian forecasting soft-
ware, standard practice at UCSF is to collect four samples 
per dosing interval (77% of dosing intervals); more densely 
sampled intervals were relatively rare (16% of intervals had 
six or more samples collected).

AUC Estimation in real patients

The mean AUC estimated per dosing interval across all 
methods was 15.0 mg⋅h/L, and the four methods of AUC 
estimation showed good agreement in their estimation, as 
assessed by Bland–Altman plots (standard deviation of 
differences (SD) of 0.44–1.83 mg⋅h/L (i.e., 3–12% of mean 
AUC); Fig. 2a) and by correlation in estimates (correla-
tion coefficients of 0.945–0.998; Fig. 2b). The two NCA 

methods showed the closest agreement (mean difference in 
AUC estimation of 0.53 mg⋅h/L, SD of 0.44 mg⋅h/L, and 
correlation coefficient of 0.998), which is to be expected 
since these methods differ only in how they estimate the 
shape of the concentration–time curve up until the time of 
the first sample collection. NCA with peak extension will 
always be higher than NCA without peak extension (see 
Fig. 1), explaining the bias observable in the Bland–Alt-
man plot. The two PK models also showed close agreement 
(mean difference of 0.15 mg⋅h/L, SD of 0.96 mg⋅h/L, cor-
relation coefficient of 0.985), suggesting that the two mod-
els arrive at similar PK parameter estimates despite differ-
ences in model structure and inter-individual variability. 
When comparing MAP estimates to NCA approaches, 
agreement was better for the first dosing interval (mean 
difference of 0.8–1.96, SD of 0.61–1.34, correlation of 
0.982–0.994), but lower for subsequent dosing intervals 
(mean difference of 0.99–2.0, SD of 1.85–2.12, correlation 
of 0.918–0.938), with NCA methods consistently estimat-
ing lower exposures than MAP methods.

Table 1   Patient characteristics of the final data set

Characteristic Median (range) 
or N

Inter-quartile 
range or %

Number of patients (% < 18 years) 246 69%
Number of TDM samples 2455
Conditioning regimen:

  Busulfan/Clofarabine/ 
Fludarabine

  Other

35
211

14%
86%

Age (years) 6.9 (0.2–65.7) 1.7–30.5
Sex

  Female
  Male

95
151

39%
61%

Total body weight (kg) 23 (5–155) 11–65
Height (cm) 118 (55–201) 81–165
Body mass index (kg/m2) 17 (12–55) 16–24
Body mass index (kg/m2) – adults 

only
   < 18.5
  18.5–24.9
  25–29.9
  30–34.9
  35–39.9
  40 + 

26 (17–55)
2
28
31
10
2
4

24–29
2.6%
36.4%
40.3%
13.0%
2.6%
5.2%

Weight category – children only
  < 9 kg
  9–15.9 kg
  16–22.9 kg
  23–33.9 kg
  > 34 kg

49
45
30
19
26

29%
26.6%
17.8%
11.2%
15.4%

Ideal body weight (kg) 23 (4.9–94) 11–58
Fat-free mass (kg) 18 (4.0–80) 8.6–47
Fat mass (kg) 4.9 (0.8–91) 2.2–18
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Treatment simulations

In the simulated treatment courses, since initial dosing was 
weight-based, the first dose was the same for both the NCA 
and MAP arms. AUC estimates arising from the first dose 
across the full dosing interval varied by estimation method 
(Fig. 3a). The mean AUC estimated by NCA was 17.6 mg⋅h 
/L while the mean AUC estimated by MAP was 18.3 mg⋅h/L, 
compared to a true mean AUC of 19.7 mg⋅h /L. However, 
the majority of the variation arose from differences in AUC 
estimation during infusion: the mean AUC during infu-
sion was 4.97 mg⋅h /L for NCA and 5.93 mg⋅h /L for MAP 
compared to 7.02 mg⋅h/L true AUC. In contrast, AUC esti-
mates after infusion were similar (NCA: 12.6 mg⋅h/L, MAP: 
12.3 mg⋅h/L, true: 12.7 mg⋅h/L). This trend was true for 
later dosing intervals too, with NCA underestimating AUC 
by 28% during infusion and 0.4% after infusion, and MAP 
underestimating AUC by 13% during infusion and 1.31% 
after infusion (Fig. 3b). (The differences in estimated and 

true AUC have been expressed as proportions and not in 
absolute AUC values as they cannot be compared between 
methods after dose adaptation has been performed.) That 
the two-compartment model (designated the true AUC in 
this experimental design) produces a higher AUC than the 
one-compartment model and the NCA method is consistent 
with the sharp peak visible in Fig. 1.

Following the first dose, subsequent doses were adjusted 
based on AUC estimates to attain a cAUC of 90 mg⋅h/L 
(Fig. 3c, expressed normalized to the initial dose to control 
for differences in patient weight). The weight-based starting 
dose of 3.2 mg/kg per day, which is more aggressive than the 
FDA label recommendation of 3.2 mg per kilogram adjusted 
body weight (the minimum of IBW and total body weight) 
divided over four doses, led to underexposure during this 
first dosing interval (Fig. 3d, e). Both estimation methods 
correctly identified this underexposure and increased dosing 
accordingly. However, the value of the second dose greatly 
varied between the two methods (Fig. 3c): the second dose 
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Fig. 2   Agreement between AUC estimation methods. a Bland–Alt-
man plots showing agreement between AUC estimation approaches. 
Each point representsan AUC estimate made by the corresponding 
method for a single dosing interval. Dashed lines indicate mean dif-
ference and the limits of agreement (mean difference ± 1.96 standard 

deviations). b Correlation coefficient describing correlation between 
AUC estimates for each dosing interval. NCA: non-compartmental 
analysis. MAP: maximum a posteriori estimation with either the one-
compartment Shukla model (1cmt) or the two-compartment McCune 
(2cmt) methods on real patient data
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was on average 63% higher than the first dose for NCA, and 
28% higher than the first dose for MAP (paired t-test com-
paring NCA versus MAP: p-value < 0.0001). In part, this 

difference is related to how the PK models describe clear-
ance over time. Busulfan clearance is reported to decrease 
over time [5, 6, 15], and both PK models incorporate this 
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Fig. 3   Differences between non-compartmental analysis (NCA) and 
maximum a posteriori Bayesian estimation (MAP) in AUC esti-
mation and dose adjustment in a simulated trial. a AUC estimated 
following the first weight-based dose during infusion (t = 0–3  h), 
after infusion (t = 3–24  h), or across the full first dosing interval 
(t = 0–24  h). b  Ratio of estimated AUC to true AUC across dosing 
intervals. c Doses selected by dosing interval, normalized to the ini-
tial dose to account for body-size dependence in doses. d AUC by 
dosing interval using NCA estimates for dose adjustment. e AUC by 

dosing interval using MAP for dose adjustment. Shaded grey region 
indicates a target AUC of 22.5 mg⋅h/L per day ± 15%. Concentration–
time curves were simulated with the McCune model (true AUC) and 
estimated with NCA or with MAP using the Shukla model. Samples 
were collected at 3.25, 4, 6, and 8 h after the start of infusion. Box-
plot indicates the median (bold line), 25th-75th percentiles (outer rec-
tangle) and 1.5 × the interquartile range from the 25th-75th percentiles 
(whiskers)
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change in clearance. In the McCune model, clearance 
decreases by 6.8% after 6 h of therapy and by 8.1% after 36 h 
of therapy relative to initial clearance, while in the Shukla 
model, clearance decreases by 13.5% after 24 h of therapy. In 
contrast, NCA does not incorporate time-dependent changes 
in clearance. As a result, this method overpredicted busul-
fan clearance on day 2 of therapy, resulting in too high of 
a dose and too high an exposure (Fig. 3c–d). To balance 
out this overexposure, doses and exposures for day 3 and 
day 4 were, on average, lower. Because the Shukla model 
expects a larger decrease in clearance from day 1 to day 2 
than described in the model used for simulation (McCune), 
it resulted in a smaller dose than necessary to make up the 

underexposure from day 1, and as a result, doses and expo-
sures were higher for day 3 and day 4 (Fig. 3c,e).

The variation in dose recommendations and estimated 
AUC was substantially narrower in MAP-guided dose 
adjustment, consistent with prior prospective trials [5]. 
MAP-guided dose adjustment also led to less variation in 
true AUC (Fig. 3d–e).

Attainment of the cAUC target also varied by estimation 
method. Simulated patients were deemed “on target” if their 
cumulative exposure was within 15% of the target cAUC 
of 90 mg⋅h /L. For both estimation methods, estimated tar-
get attainment following all four doses was high: 98.7% for 
NCA and 99.9% for MAP (Fig. 4 and Table 2, “4 samples”). 

Fig. 4   Cumulative AUC target 
attainment in a simulation study 
using either non-compartmental 
analysis (NCA) or maximum 
a posteriori Bayesian estima-
tion (MAP) to estimate AUC 
and personalize doses. a True 
AUC versus estimated AUC by 
method, with shaded regions 
indicating the target AUC 
(90 mg⋅h/L) ± 15%. b Per-
centage of simulated patients 
achieving a true cumulative 
AUC within 15% of the target
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Table 2   Summary statistics of true and estimated area under the concentration–time curve (AUC) by estimation method and sampling times. 
Values are in mg·h/L unless otherwise indicated

nRMSE normalized root mean square error, MPE mean percent error, SD standard deviation, NCA non-compartmental analysis, MAP maximum 
a posteriori Bayesian estimation

Sampling Method Estimation error Percent on target Median (range) Mean (SD)

nRMSE MPE Estimated True Estimated True Estimated True

3 samples
t = 3.25, 4, 6 h

NCA 12.9% −11.1% 98.6% 66.0% 90 (79–126) 101 (84–153) 91 (4.5) 102 (8.2)
MAP 8.4% −6.3% 99.9% 92.2% 89 (77–104) 95 (81–135) 89 (3.2) 96 (6.1)

3 samples
t = 3.25, 5, 8 h

NCA 12.2% −10.7% 98.5% 62.6% 90 (79–127) 100 (86–155) 91 (4.5) 102 (7.6)
MAP 7.8% −6.1% 100% 90.8% 89 (77–106) 95 (81–127) 89 (3.3) 95 (5.6)

4 samples
t = 3.25, 4, 6, 8 h

NCA 12.3% −10.7% 98.7% 65.0% 90 (79–129) 101 (87–156) 91 (4.5) 102 (7.6)
MAP 7.9% −6.1% 99.9% 92.1% 89 (76–107) 94 (81–130) 89 (3.3) 95 (5.7)

5 samples
t = 3.25, 4.5, 6, 8, 11 h

NCA 12.0% −10.5% 98.7% 66.2% 90 (79–127) 100 (87–157) 91 (4.5) 102 (7.4)
MAP 7.6% −5.9% 99.8% 93.0% 89 (76–107) 94 (78–128) 89 (3.3) 95 (5.6)

dense, full interval NCA 3.6% −3.1% 98.5% 67.6% 90 (82–119) 93 (84–127) 91 (3.9) 94 (4.4)
MAP 5.1% 3.1% 99.8% 91.3% 89 (78–105) 87 (62–107) 89 (3.1) 87 (4.8)

dense, post-infusion only NCA 11.8% −10.3% 99.3% 97.3% 90 (79–128) 100 (87–156) 91 (4.4) 101 (7.4)
MAP 8.1% −6.2% 99.9% 96.6% 89 (77–107) 94 (82–138) 89 (3.4) 96 (6.0)
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However, both methods overestimated target attainment 
compared to true target attainment. This misestimation was 
considerably larger for NCA (65.0% true target attainment) 
than for MAP (92.1% true target attainment). Variability in 
estimated cAUC was higher for simulated patients dosed 
using NCA (standard deviation: 4.5 mg⋅h/L) compared to 
MAP (standard deviation: 3.3 mg⋅h/L), consistent with find-
ings in real patients [5]. True variability was higher than 
estimated variability in both methods (standard deviation, 
NCA: 7.6 mg⋅h/L; MAP: 5.7 mg⋅h/L).

This simulated trial used the sampling strategy that is 
standard practice at UCSF. Increasing the number of sam-
ples to five samples per interval (collected at sample times 
described by Yeh et al. [16]) to include a final sample at 11 h 
improved true target attainment slightly for both estimation 
methods (Supplementary Fig. 1 and Table 2, “5 samples”. 
NCA: 66.2%, MAP: 93%). Reducing the samples per inter-
val to three did not adversely impact true AUC estimation 
when the final sample at 8 h was retained but did lead to 
lower true target attainment when the final sample was at 6 h 
(Supplementary Fig. 1 and Table 2). Because the McCune 
model has two compartments, this later time point is likely 
quite informative for estimating clearance during the elimi-
nation phase. This model also includes mid-interval changes 
in clearance (at 6 and 36 h after the first dose), and so later 
collection points (samples at 8 h, 11 h) would also allow 
better capture of these dynamics.

Interestingly, increasing sample density to every 
30 min starting 15 min after the end of infusion did not 
substantially improve true target attainment (Supplemen-
tary Fig. 1 and Table 2, “dense, post-infusion”: NCA: 
67.6%, MAP: 91.3%). Hypothesizing that this differ-
ence between NCA and model-based AUC may be due 
to mis-estimations of AUC during infusion (Fig. 3a–b), 
we repeated this experiment with samples during infu-
sion and observed a marked increase in target attainment 
for both estimation strategies (Supplementary Fig.  1 
and Table 2, “dense, full interval”: NCA: 97.3%, MAP 
96.6%).

In the real-world data, NCA and MAP showed greater 
disagreement after the first dosing interval (Fig. 2). Hypoth-
esizing that this difference was because NCA uses samples 
only from the most recent dosing interval while MAP can 
leverage all samples collected to-date, we lastly assessed 
the impact of using MAP with only samples from the most 
recent dosing interval (Supplementary Fig. 2). Overall, the 
difference in error in estimating true AUC was relatively 
minor, dropping to a mean absolute percent error of 6.1% 
when only samples from the most recent interval were used 
compared to 5.8% in standard MAP. This difference in esti-
mation error resulted in a decrease in true target attainment 
to 90.3%, a reduction of 1.8 percentage points.

Discussion

With busulfan as a case study, we examined how algorith-
mic differences between NCA and MAP impact AUC esti-
mation and target attainment, using a combination of real-
world data and simulated trials. We identified three key 
sources of differences: how concentration–time dynamics 
during infusion are modeled, how time-dependent clear-
ance is modeled, and which samples are considered during 
estimation of AUC after the first dosing interval.

NCA models infusion linearly, assuming elimina-
tion during this phase is negligible. PK model-based 
approaches include elimination during infusion, although 
differences in the shape of this phase arise due to assump-
tions about model structure (i.e., one-compartment, multi-
compartment). In the simulated trial, both NCA and MAP 
estimated true AUC between the end of infusion and the 
end of the dosing interval accurately and with minimal 
bias. However, there were substantial differences in esti-
mation of AUC during the infusion phase. These differ-
ences translated to sizable differences in AUC estimates 
across the overall dosing interval, and impacted dose 
adjustment and true simulated AUC target attainment. 
When samples were collected during infusion, target 
attainment improved substantially for both methods.

Simulations of sample collection during infusion are 
likely over-optimistic: residual variability is likely higher 
during infusion due to factors that most popPK models do 
not account for, such as incomplete distribution or non-
linear drug delivery. Our simulations assumed doses were 
fully administered at a consistent rate; clinical considera-
tions like method of infusion can lead to non-linearity in 
drug delivery [17], which would increase error in esti-
mation of true AUC for both estimation methods. Still, 
our results indicate AUC during infusion as an important 
source of variability between estimation methods. For 
drugs dosed over relatively long time periods, the AUC 
during infusion can make up a significant portion of the 
total AUC, so this error can be quite clinically meaningful; 
in our study, AUC during the 3-h infusion comprised about 
a third of the total AUC. For drugs dosed by bolus or over 
shorter infusions, the two estimation methods would likely 
show better agreement. Despite our study’s relatively long 
infusion period, the two methods showed strong agreement 
on real data (R2 of 0.982–0.994) during the first dosing 
interval, in which the same number of samples are used to 
inform AUC estimation.

Historically, busulfan was given four times per day, 
infused over two hours (one third of the dosing interval). 
Shifting to a proportionally larger dose administered once 
per day over three hours (one eighth of the dosing interval) 
was considered more convenient for patients and staff and 
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did not result in statistically different daily AUC, clear-
ance or clinical outcomes [18, 19]. However, these studies 
were relatively small; it’s possible that there were indeed 
differences in error in estimation of true AUC that could 
lead to differences in patient outcomes. Interestingly, the 
once-daily dose, with less of the dosing interval spent 
during infusion, may correspond to greater agreement 
between NCA and MAP. However, when changing from 
one estimation method to another, clinicians should be 
cautious about assuming AUC targets remain the same 
for the reasons we’ve shown here. In our own experience, 
the shift from NCA to MAP coincided with a change in 
AUC target from 72 to 90 mg⋅h/L, likely partially due to 
the discrepancies in AUC estimation described here [20]. 
This tendency of NCA to underestimate AUC relative to 
MAP has previously been reported [4].

Clearance of busulfan is widely reported to decrease over 
therapy [5, 6, 20]. The mechanism underlying this decrease 
is not well-known, however may arise due to glutathione 
depletion [15, 21]. NCA does not consider time-dependent 
changes in patient PK, and as a result, tended to overdose 
patients on day 2 of our simulated trial. PopPK-based meth-
ods can account for this decrease in clearance over time, 
potentially leading to more appropriate dose selection [22]. 
The models used for simulation and estimation differed in 
how they modeled this time-dependent clearance, resulting 
in slight under-dosing on day 2 in the MAP arm of our simu-
lated trial, and pinpointing a need for accurate description of 
time-dependent changes in clearance. The true physiological 
picture is likely more complicated than considered in our 
simulated trial: glutathione levels vary between individuals 
and decline with age [15], which neither of the two popPK 
models used here consider, and other metabolic pathways 
may be involved as well [23]. Additionally, both models 
use step functions to describe continuous physiological 
processes.

One benefit of MAP is that samples from the full treat-
ment course inform PK parameter estimates. For example, 
for selection of the fourth dose, MAP considers drug con-
centration–time points collected across three prior dosing 
intervals, while NCA considers only concentration–time 
points from the third dosing interval. When MAP estima-
tion was restricted to samples from the most recent dosing 
interval, AUC estimation became slightly more erroneous, 
and led to a slight decrease in target attainment. MAP also 
revises past estimates as new data becomes available, while 
NCA estimates are “set in stone”, which may improve esti-
mation accuracy.

Of these three sources of variation in AUC estima-
tion and target attainment between NCA and MAP, dif-
ferences in description of the infusion phase played the 
largest role. We also considered the impact of sample 

timing on AUC target attainment. This effect can be more 
intuitively understood knowing about these other sources 
of variability: a wider spread in sample collection times 
better captures time-dependent changes in clearance, while 
samples collected during infusion help inform estimates of 
AUC during infusion. Because of algorithmic differences, 
optimal sampling times likely vary between methods of 
estimation, although a full analysis of optimal sampling 
is outside the scope of this work.

There are some estimation methods we did not consider 
here. For example, MAP estimation with a reduced (“flat-
tened”) prior or least-squares estimation (essentially set-
ting the weight of the prior to zero) could be used [7]. Both 
these methods listen more closely to the data — like NCA 
— but like MAP, can incorporate covariate effects like 
time-dependent changes in clearance and leverage sam-
ples collected in all dosing intervals. We would therefore 
expect these estimation methods to behave more similarly 
to MAP, perhaps with more sensitivity to measurement 
error.

Although our work finds that MAP leads to higher 
AUC target attainment and reduced variability in doses 
in a simulated precision dosing trial, NCA will remain an 
important analytical tool. MAP requires a sufficiently fit-
for-purpose popPK model, which is not always available. 
NCA, due to its lack of compartmental assumptions, will 
remain the gold standard for estimation of drug exposure 
and regulatory reporting in early-phase drug develop-
ment. NCA could also be helpful for precision dosing 
of patients for whom no popPK model is suitable. Some 
under-served patient populations are typically excluded 
from model development, such as amputees and preg-
nant patients [24], and so having both estimation meth-
ods available may improve the equity and inclusivity of 
precision dosing.

This work used simulation with intentional model mis-
specification between the model used for simulation and 
estimation to assess the ability of these methods to deter-
mine true AUC, which cannot be empirically measured. It 
should be emphasized that both NCA and MAP estimate 
AUC; neither method can be considered “perfect”. How-
ever, our work here shows that due to underlying methodo-
logical differences and mathematical assumptions, MAP 
Bayesian estimation outperforms NCA for dose personali-
zation for busulfan dosing, and these findings will likely 
translate to other MIPD applications.
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