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formation also depends on variables specific to the patient/
disease, product, or treatment [3, 4]. For instance, concomi-
tant methotrexate (MTX), may reduce the incidence of ADA 
formation [5]. Route of administration, frequency and dose 
are examples of treatment specific factors, where ADA for-
mation may be minimized by frequent administrations and/
or larger doses of the drug [6].

Biologics and ADA have traditionally been measured 
using sandwich enzyme-linked immunosorbent assays 
(ELISA) where high concentrations of the drug can inter-
fere with ADA detection, resulting in false negatives [7]. 
The characterization of assay drug tolerance is therefore 
of relevance. Furthermore, some assay methods may not 
be selective enough for ADA against the drug of inter-
est, resulting in false positives. Although improvements 
in assay techniques allow for better ADA characterization 
with higher sensitivity (i.e., drug tolerant, more selective, 
etc.), the development of such assays may still not add to the 
interpretation of the ADA in the context of PK and efficacy 

Introduction

The administration of biological drugs can invoke an 
immune response where anti-drug antibodies (ADAs) are 
formed [1]. Since ADA formed against biological drugs 
may cause treatment failure, characterization of immuno-
genic response is important. Formed ADAs may differ with 
respect to their clinical impact, e.g., not all binding antibod-
ies are neutralizing and some may affect the disposition of 
biologics via formation of drug-ADA complexes, which may 
be eliminated differently from the unbound drug [2]. ADA 
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Abstract
Biological therapies may act as immunogenic triggers leading to the formation of anti-drug antibodies (ADAs). Population 
pharmacokinetic (PK) models can be used to characterize the relationship between ADA and drug disposition but often 
rely on the ADA bioassay results, which may not be sufficiently sensitive to inform on this characterization.

In this work, a methodology that could help to further elucidate the underlying ADA production and impact on the 
drug disposition was explored. A mixed hidden-Markov model (MHMM) was developed to characterize the underlying 
(hidden) formation of ADA against the biologic, using certolizumab pegol (CZP), as a test drug. CZP is a PEGylated Fc 
free TNF-inhibitor used in the treatment of rheumatoid arthritis and other chronic inflammatory diseases.

The bivariate MHMM used information from plasma drug concentrations and ADA measurements, from six clinical 
studies (n = 845), that were correlated through a bivariate Gaussian function to infer about two hidden states; produc-
tion and no-production of ADA influencing PK. Estimation of inter-individual variability was not supported in this case. 
Parameters associated with the observed part of the model were reasonably well estimated while parameters associated 
with the hidden part were less precise. Individual state sequences obtained using a Viterbi algorithm suggested that the 
model was able to determine the start of ADA production for each individual, being a more assay-independent method-
ology than traditional population PK. The model serves as a basis for identification of covariates influencing the ADA 
formation, and thus has the potential to identify aspects that minimize its impact on PK and/or efficacy.
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influence, e.g. ADA are reliably measured but no charac-
terization to classify them as neutralizing available, in such 
case the occurrence of ADA may add to explain variability 
in PK but may not have use for clinical interpretation due 
to the lack of information on whether the ADA is neutraliz-
ing or not [8, 9]. Even if improvements in assay techniques 
result in an increase in the sensitivity of the assay to detect 
ADA, the priority should be to identify ADA with a clinical 
impact and to determine thresholds for ADA levels that are 
clinically relevant. Such determinations can often be sus-
ceptible to bias, particularly when the frequency of positive 
ADA is low and common statistical methods cannot be used 
to determine a clinically relevant threshold [10].

Methods to characterize ADA dynamics and patient 
response to ADA are of value given the potential conse-
quences on clinical outcome. Population pharmacokinetic 
(PK) and pharmacodynamic (PD) analyses are frequently 
used to characterize the disposition of drugs and several 
have been published for anti-TNFα therapeutics [11–13]. 
To account for immunogenicity in such analyses, ADAs 
are often included as covariates on the clearance (CL) of 
the therapeutic. However, due to the aforementioned assay 
aspects, some ADA measurements may be classified as 
being false positive or false negative. Further, patients are 
commonly not considered ADA positive until the ADA 
measurement reaches a threshold level, afterconsequences 
for drug disposition may already have occurred. Therefore, 
alternative methods accounting for the masked (or hidden) 
nature of ADA dynamics and discerning ADA production 
that influences the PK of the drug may be of interest.

Mixed hidden-Markov models (MHMMs) can be used 
to determine the relationship between observed and unob-
servable stochastic processes on a population level [14]. 
MHMMs allow for the characterization of unobservable 
processes in patients using one or more observed variables. 
They have been applied in various areas, including draw-
ing inference about relapse in multiple sclerosis (hidden 
variable) given observations of brain lesions in patients and 
determining exposure-response in epilepsy where epileptic 
activity is the hidden variable [14, 15]. An MHMM using 
measurements of PK and ADA to inform the immunogenic 
response (hidden variable), may enable the characterization 
of the underlying ADA production in patients [16].

The aim of this work was to explore a novel method 
to characterize ADA dynamics, through the development 
of a bivariate MHMM accounting for drug PK and ADA 
measurements to predict the most likely ADA dynamics in 
an individual, using certolizumab pegol (CZP) data as an 
example. CZP is a PEGylated Fc-free antibody fragment, 
which minimizes its potential for complement-dependent 
cytotoxicity and antibody dependent cell-mediated cytotox-
icity [17]. Pegylation combats the relatively short half-life 

caused by the removal of the Fc region, resulting in a well-
tolerated molecule that has a half-life of approximately 14 
days [18]. CZP binds to both soluble and membrane-bound 
TNFα, blocking the TNFα mediated inflammatory cascade 
and reducing the clinical symptoms of RA and other chronic 
inflammatory diseases [19]. In the current work, historical 
ADA binding data and PK was available based on the stud-
ies used. New ADA binding and PK assays have been devel-
oped for to test the drug in other indications, according to 
the state of the art and lifecycle management of the product 
however, for the purpose of the model development, the for-
mer historical assays were considered appropriate.

Methods

Studies

Data used for model building consisted of five phase II/
III trials and one phase I trial where CZP was adminis-
tered subcutaneously to patients with moderate to severe 
RA (summarized in Table 1 [18, 31]). PK and ADA were 
mostly measured simultaneously, see Table 1. Overall, a 
total of 840 patients with 6898 CZP plasma concentration 
measurements and 6557 ADA measurements were avail-
able for the analysis. The proportion of patients that were 
reported as being ADA positive (ADA level exceeding the 
threshold) was 9.8% in the data used for model building. 
Informed consent was obtained from all study subjects. The 
studies were conducted in accordance with the applicable 
regulatory and International Council for Harmonisation–
Good Clinical Practice requirements, the ethical principles 
that have their origin in the Declaration of Helsinki, and the 
local laws and regulations of the study sites.

Observed variables

Two observed variables were considered; individually 
weighted PK residuals (YPKRES ) and ADA measurements 
(YADAMES ), to jointly incorporate the information from (i) 
the PK exposure of CZP as predicted from a model assum-
ing no ADA production and (ii) information from the ADA 
assay, which is sensitive to the drug. EM-algorithms were 
used for estimation and parameters were MU-referenced.

To estimate the mode of YPKRES , the fit from a popu-
lation PK model to the available CZP concentrations was 
used. The model was a one-compartment model including 
covariate effects of weight on CL/F and ethnicity (Japa-
nese) on CL/F and apparent central volume (V/F). ADA 
was not part of the model. Inter-individual variability (IIV) 
was present on CL/F and V/F and a proportional residual 
error model was used. The model was initially fit (parameter 
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estimation) to data from the first dosing occasion, thereaf-
ter the obtained individual parameter estimates predicted 
the remaining dosing occasions. Good model performance, 
i.e. unbiased residuals, is expected at the first dosing occa-
sion, since patients were drug-naïve and unlikely to have 
formed ADA impacting the disposition of CZP at this time 
(last PK observation of first dosing occasion was at 23.6 
days [average]). For future dosing occasions and stationary 
PK characteristics, predictions are also expected to be unbi-
ased resulting in residuals centred around zero. However, in 
the presence of ADA, the model is expected to over-predict 
the observed CZP PK at subsequent dosing occasions, due 
to the absence of a covariate effect of ADA in the model, 
resulting in negative YPKRES with a distribution deviating 
from the expected. Using the YPKRES  instead of the actual 
PK observations of CZP as an observed variable was moti-
vated by two factors: YPKRES have an expected distribution, 
which can be incorporated in the developed model, and, 
YPKRES  give an objective measure of when model perfor-
mance indicates deviation from stationarity, expected when 
ADA are formed and not accounted for in the model.

In the studies included, ADAs were measured using a 
validated ELISA according to standards at the time of the 
bioanalysis [18, 31], since that time of analysis the ADA 
assay method has followed the lifecycle management and 
has been updated in later indications according to the state 
of art bioassay evolution for ADA detection. Subjects were 
classified as ADA clinically positive when at least one ADA 

sample was found to be above a set threshold of 2.4 U/mL. 
The threshold of 2.4 U/mL was derived based on its apparent 
clinical relevance where individuals in a phase II study with 
antibody measurements > 2.4 U/mL had lower CZP sys-
temic exposure than those with measurements < 2.4 U/mL 
[18, 31]. Following this identification of clinically positive 
ADA, individuals were further classified as being persis-
tent or transient ADA producers by individual subject pro-
file inspection. The lower limits of quantification (LLOQ) 
of the CZP and ADA assays were 0.41 µg/mL and 0.6 U/
mL, respectively, and all measurements that were below the 
quantification limit were set to their respective limits.

Hidden-Markov model development

A two-state MHMM related the observed variables (YPKRES  
and YADAMES ), to the unobserved (hidden) underlying ADA 
production and the dependency of the observations on pre-
vious observations. A subject with a high measurement of 
ADA will likely have a high measurement at the next time 
point, thus a first-order Markov element was considered in 
this work. Production of ADA (SADA) and no production of 
ADA (SNOADA) were the two underlying states that were set 
as a representation of the immune response and the prob-
ability of transition between states were estimated. The 
transition probabilities sum up to 1 and only two elements 
of the transition probability matrix were estimated: prob-
ability of transitioning to SADA given that the previous state 

Table 1 Data used in the analysis
Studya CDP870-004 RA006 CDP870-011 CDP870-014 C87041 PHA001
Phase II III III III III I
nb 239 116 111 124 239 16
Dosesc(mg) 50, 100, 200, 

400, 600, 800
400 
LD + 200

400 400 200, 
400, 400 
LD + 200, 
200 
LD + 100

400

Dosing frequency Q4W Q2W Q4W Q4W Q2W Single dose
PK
observations/patient (median [range])

10 [2–10] 7 [4–8] 10 [2–11] 8 [3–11] 7 [2–9] 22 [22–23]

ADA observations/patient (median [range]) 10 [2–10] 7 [5–8] 10 [2–11] 8 [3–11] 7 [3–9] Missing
Planned sampling times (days) pre-dose, 7, 14, 

28, 35, 42, 56, 
63, 70, 84

7, 14, 28, 
42, 56, 84, 
follow-up

7, 14, 28, 56, 
84, 112, 140, 
147, 154, 168

7, 14, 28, 56, 
84, 112, 140, 
168

7, 14, 28, 
42, 56, 84, 
168

0.02, 0.04, 
0.08, 0.17, 
0.25, 0.33, 
0.5, 1, 1.5, 
2, 3, 4, 5, 
6, 7, 13, 
20, 27, 34, 
41, 48, 55

ADA, anti-drug antibody; LD, loading dose; PK, pharmacokinetics; Q2W, every second week; Q4W, every fourth week
aHave been included in a PKPD meta-analysis previously
bNumber of patients with CZP concentrations. 2 subjects in CDP870-004 were excluded due to lack of information
cIn studies CDP870-004, CDP870-011 and CDP870-014, no loading dose was administered. Study PHA001 was a single dose study. In studies 
RA006 and C87041, loading doses were administered at weeks 0, 2, and 4 and followed by the maintenance doses
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First, the bivariate MHMM for PKRES and ADAMES, was 
developed. Thereafter, the bivariate model was decoupled 
into two univariate models for the observed variables to 
determine the impact of incorporating both observed vari-
ables in the model. The individual state sequences resulting 
from the bivariate model and two univariate models were 
compared to the clinical ADA classification.

Parameter estimation and software details

Analysis of the data was performed in NONMEM and con-
sisted of model estimation using maximum likelihood and 
importance sampling (IMP), followed by a post-hoc step in 
which the most likely state sequence in every individual was 
obtained using the Viterbi algorithm. The Viterbi algorithm 
was obtained as a downloadable subroutine for NONMEM 
available on the developer’s website [21, 22]. Perl-speaks-
NONMEM (PsN) was used for execution and intermediate 
inspection of runs [23].

The likelihood of the first observation record in the 
model (assuming just one individual) is calculated as the 
probability of the observations (both at the same time in the 
bivariate model) in SNOADA (Eq. 1). The individual contribu-
tion of the states to the entire likelihood is kept and used 
for the next record. For the second record the likelihood is 
calculated as follows:

ΦNOADA =
(ΦNOADA • πNOADA−NOADA + ΦADA • πADA−NOADA) • P (PKRES, ADAMES|S = SNOADA)

Likelihood  (4)

ΦADA =
(ΦNOADA • πNOADA−ADA + ΦADA • πADA−ADA) • P (PKRES, ADAMES|S = SADA)

Likelihood  (5)

Likelihood = ΦNOADA + ΦADA  (6)

where P(PKRES, ADAMES) is the bivariate Gaussian PDF 
(in the bivariate model) and πADA−NOADA

 and πADA−ADA
 

are the transition probabilities. The individual contribu-
tion of the states to the likelihood, ΦNOADA  and ΦADA , are 
updated at each record and are defined as the entire like-
lihood divided by the likelihood of SNOADA and SADA, for 
the two respective states. Therefore, when estimating the 
model parameters, the likelihood of the data is maximized 
with respect to the transition probabilities and parameters 
describing observed variables.

Model evaluation and model predictions

Model parameter estimates were compared to their prior 
expectations (Table 2). Furthermore, model performance 
with regards to termination properties was considered, and 
models that terminated successfully in NONMEM without 
errors were considered to perform better than those that did 
not. Models with successful covariance steps resulting in 

was SNOADA (πNOADA−ADA) and probability of transitioning to 
SNOADA given that the previous state was SADA(πADA−NOADA). 
he probabilities of remaining in the same state could be 
derived (πNOADA−NOADA and πADA−ADA.) All subjects were 
assumed to be drug naïve according to the studies criteria 
and therefore, the stationary distribution vector was not 
estimated, but rather the model was set up so that everyone 
started in SNOADA. The general description of an MHMM 
and its implementation in NONMEM has previously been 
described in Brekkan et al. [20]. The emission probabilities, 
which relate the probabilities of the observed variables to 
the hidden state at that time, were modeled as continuous 
random variables that could be correlated through a bivari-
ate Gaussian probability density function (PDF):

P
(
YPKRES

, YADAMES
|S = s

)
=

1

2π
√
σ2
PKRESs

σ2
ADAMESs

(1− ρ2s)
e

− 1
2(1−ρ2s)

((
YPKRES

−PKRESsi
σPKRESs

)2

−2ρs

(
YPKRES

−PKRESsi
σPKRESs

)(
YADAMES

−ADAMESsi
σADAMESs

)
+

(
YADAMES

−ADAMESsi
σADAMESs

)2
) (1)

whereYPKRES  and YADAMES  are observed variables of 
interest, s is the current state (hidden), which can be either 
SNOADA or SADA, PKRESsi and ADAMESsi  are state spe-
cific individual model predictions of the variables, σ2

PKRESs
 

and σ2
ADAMESs

 are state-specific variances of the variables 
(residual error) and ρs is the correlation between the vari-
ables. Two emission probability functions were required, 
one for each hidden state.

The model was extended to include IIV on several param-
eters. The individual values for the parameters were mod-
eled assuming a normal distribution, exemplified for PKRES:

PKRESsi = PKRESs + ηPKRES  (2)

where i denotes an individual,PKRESsi  is individual esti-
mate of PKRES in a certain state (s), PKRESs  is the popula-
tion estimate of the mode of the PKRES, and ηPKRES  is a 
random effect assumed N(0, ω2

PKRES
) describing the devia-

tion between the individual and typical values. A logit func-
tion was included on all probabilities to prevent individual 
probabilities exceeding 1 and then back converted to the 
probabilities using the logistic function, exemplified for 
πNOADA−ADA:

πNOADA−ADAi
=

exp(LogitπNOADA−ADA
+ ηπNOADA−ADA

)

1 + exp(LogitπNOADA−ADA
+ ηπNOADA−ADA

)
 (3)

where πNOADA−ADAi  is the individual transition probability 
of going from SNOADA to SADA and ηπNOADA−ADA  is a random 
effect assumed N(0, ω2

πNOADA−ADA
).

The population parameters to be estimated in the model 
and their expected estimates are presented in Table 2 and the 
model structure is presented in Fig. 1.
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However, in study PHA001 no ADA measurements were 
available as it was a single dose administration study.

Bivariate models with different degree of complexity 
were developed:

 ● Model (1) Modes of PKRES and ADAMES estimated. IIV 
estimated on modes and transition probabilities.

 ● Model (2) Modes of PKRES estimated. ADAMES modes 
fixed to clinically relevant values of 0.6 and 2.4 U/mL in 
SNOADA and SADA, respectively. IIV estimated on modes 
and transition probabilities.

 ● Model (3) Modes of both PKRES and ADAMES estimated. 
IIV estimated on transition probabilities.

 ● Model (4) Modes of PKRES estimated. ADAMES modes 
fixed to 0.6 and 2.4 U/mL in SNOADA and SADA, respec-
tively. IIV estimated on transition probabilities.

 ● Model (5) Modes of PKRES and ADAMES estimated. No 
IIV estimated.

 ● Model (6) Modes of PKRES estimated. ADAMES modes 
fixed to 0.6 and 2.4 U/mL in SNOADA and SADA, respec-
tively. No IIV estimated.

Model 6 was the best performing model as indicated by 
individual state sequence predictions (Fig. 2) and param-
eter estimation. Parameter estimates of the final model are 

parameter standard errors (SEs) were also considered to 
perform better than those that did not provide any param-
eter SEs. Individual state sequences were obtained from 
the MHMM and compared to the clinical classification of 
ADA in a random subset of individuals (n = 12) from study 
CDP870-004, since this study had the most consistent 
sampling within the individuals. Simulated (n = 100 simu-
lations) distributions of the observed variables (YPKRES  
and YADAMES ) from the final model were compared to the 
observed distributions.

In individuals that tested positive for ADA via the assay, 
the time to positive measurement was calculated and com-
pared with the model predicted first time being in SADA. The 
best performing model, with regards to individual state pre-
diction and estimation properties, was transferred into two 
univariate models and re-estimated. The performance of the 
resulting univariate models was compared with the bivari-
ate model.

Results

A total of 6898 CZP plasma concentration measurements 
and 6557 ADA measurements were available for the anal-
ysis. For most records, both ADA and PK were available. 

Parameter Description Prior 
expectation

Rationale for prior expectation

Observed variable parameters
PKRES|SNOADA Mode of the PK residual 

in the no production of 
ADA state

~ 0 When no ADA are produced the PK model 
should perform well and result in reason-
ably unbiased residuals.

PKRES in SADA Mode of the PK residual 
in the production of 
ADA state

< 0 When ADA are produced the model 
should over-predict the PK and thus the 
resulting residuals should be negative.

ADAMES in 
SNOADA

Mode of ADA in the no 
production of ADA state 
(U/mL)

~ 0.6 When no ADA are produced ADA should 
be undetectable and thus the estimate 
should be the LLOQ of the ADA assay.

ADAMES in 
SADA

Mode of ADA in the 
production of ADA state 
(U/mL)

≥ 2.4 When ADA that influence PK are pro-
duced the ADA assay measurement should 
be ≥ 2.4 as this is the clinical threshold for 
ADA positivity.

σ2
PKRES

Variance of PK residual ~ 1 The expectation for well performing 
weighted residuals is that they should have 
a standard deviation of 1.

σ2
ADAMES

Variance of ADA 
(U/mL2)

None The SD of ADAMES is untransformed and 
thus there is no expectation for this value.

ρSNOADA Correlations of the 
observed variables in 
their respective states.

~ or < 0 When ADA measurements are high then 
the PK residuals should be highly nega-
tive, thus there should be a negative corre-
lation between the two observed variables.

ρSADA

Hidden-state parameters
πNOADA−ADA Transition probability 

from SNOADA to SADA.
~ 0.05 The total number of clinically positive 

ADA records was 368 out of 6898 obser-
vations (368/6898 = 0.05).

πADA−NOADA Transition probability 
from SADA to SNOADA.

~ 0 The data did not indicate the strong pres-
ence of transient ADA formation.

Table 2 Parameters in the devel-
oped bivariate hidden-Markov 
model
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general, for models including IIV, estimation of imprecision 
in parameters was unsuccessful. The estimation of ADAMES 
(models 1, 3 and 5) was associated with poor individual 
state sequence predictions as these models did not predict 
a transition to SADA in individuals 5, 7, 9 and 12 despite 
the indication of ADA formation based on the PK data 
(Supplemental 3, Figures S3-1, S3-3, S3-5). Models 2 and 
5 also performed poorly for these individuals, as expected 
given the lower boundary estimate of πNOADA−ADA (model 
2) while less so for model 5 which resulted in relatively well 

presented in Table 3. Simulations of the dependent variables 
from model 6 are presented in Fig. 3 and in Supplemental 
4 and show that YPKRES were well captured while YADAMES  
were not as well captured.

All models performed well with regards to the observed 
variable parameter estimates, which were consistent with 
the expectations (Supplemental 2). However, models 1 to 
3 resulted in estimates of πNOADA−ADA at the lower bound-
ary (i.e., ~ 0). Models 4 to 6 had more realistic estimates 
with πNOADA−ADA of 0.04, 0.02 and 0.03 for these models. In 

Fig. 2 Individual state predictions in twelve individuals resulting from 
model 6 and the same model only considering univariate observed 
variables (either PK residuals [middle panels] or ADA measurements 
[lower panel]). CZP concentration measurements (green), individual 
CZP PK model predictions (green dashed line) and ADA measure-
ments (red) are presented for 12 selected individuals. Each individual 

is represented in one panel. The black horizontal dashed line indicates 
the threshold for clinical positivity (2.4 IU/mL) for the ADA measure-
ment and the red dashed line is the lower limit of quantification for 
ADA (0.6 IU/mL). The black tick marks are dosing events. The grey 
shaded area shows when the model predicted a state associated with 
the production of ADA (SADA).

 

Fig. 1 The general model structure of the bivariate hidden-Markov 
model given pharmacokinetic (PK) observations (YPKRES ) and anti-
drug antibody measurements (YADAMES ). The two hidden states, 
SNOADA (grey) and SADA (orange) represent no production of ADA and 
production of ADA, respectively. The dashed vertical line separates 
the hidden part of the model from the observable part of the model. 
Observations were modeled using a bivariate Gaussian function. The 

probability of transitioning from SNOADA to SADA is πNOADA−ADA and 
the probability of transitioning from SADA to SNOADA is πADA−NOADA. 
The probabilities of staying in the respective states are given by 
πNOADA−NOADA and πADA−ADA. The dashed arrows represent the emis-
sion probabilities, i.e., the probabilities of the observations given the 
hidden state (for example P

(
YPKRES

, YADAMES
|S = SADA

)
 for 

the ADA producing state)
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observations and because the range of ADA measurements 
was large.

The mean time to first clinically positive ADA measure-
ment (ADA measurement > 2.4 U/mL) was 81.0 days. The 
developed models 1 to 6 predicted the mean first time points 
of a transition from SNOADA to SADA were 85, 78, 83, 64, 84 
and 63 days, respectively.

Reducing model 6 to two univariate models showed that 
the parameter estimates in the two univariate models were, 
in general, similar to those obtained in the bivariate model, 
apart from the hidden variable parameters for the univariate 
ADAMES model (Table 4). With respect to individual state 
sequence predictions Model 6 and the univariate PKRES 
model performed similarly. However, the univariate ADAMES 
model, did not predict a transition to SADA for six individuals 
although their PK indicated presence of ADA, and predicted 
an individual which may have a false-positive ADA record 
(occurring at ~ 28 h) as an ADA producer (Fig. 2).

Discussion

A common manifestation of immunogenicity is the forma-
tion of ADAs that bind to the therapeutic agent and may 
cause changes in the disposition of the drug and/or prevent 
binding to the target reducing the drug effect. ADA against 
biological therapeutics are routinely characterized and 
reported as they can be associated with treatment failure 
[24–26]. The characterization and interpretation of ADA 
effects on disposition and efficacy of biologics can be lim-
ited by the characteristics of the bioassay used to quantify 
ADAs. For instance, in the presence of excess drug, the 
commonly used ELISA sandwich assay, may not be drug 
tolerant resulting in inadequate detection of ADA in the 
presence of high concentrations of drug [32]. The pres-
ence of ADA needs to be put in the context of its effects 

estimated parameters (apart from ρSADA , RSE 110%). Mod-
els 4 and 6 performed the best with regards to the individ-
ual state sequence predictions, for model 6 predictions are 
shown in Fig. 2. The RSE of πADA−NOADA was high (111.5%) 
in model 6, which is plausible given the low parameter esti-
mate (0.003), indicates that transient ADA formation in the 
current dataset is unlikely and once an individual is in SADA 
they are unlikely to transition to SNOADA. Fixing the modes 
of ADA in both SNOADA and SADA to values associated with 
the clinical classification of ADA resulted in improved indi-
vidual state sequence predictions as indicated by the differ-
ence between the predictions from model 5 (Figure S2-4), 
where the parameters were estimated, and model 6 (Fig. 2), 
where they were fixed. Simulations from model 6 (Figure 
S4-1 and S4-2) indicated that YPKRES  were well captured 
while YADAMES  were not as well captured since the simu-
lated percentiles did not correspond with the same observed 
percentiles. This is likely due to the sparse nature of ADA 

Table 3 Parameter estimates of the final bivariate model. FIX indi-
cated parameters which were not estimated
Parameter Prior expectation Estimate 

(RSE%)
Observed variable parameters
PKRES in SNOADA ~ 0 0.3 (6)
PKRES in SADA < 0 -1.6 (3)
ADAMES in SNOADA ~ 0.6 0.6 FIX
ADAMES in SADA ≥ 2.4 2.4 FIX

σ2
PKRES

1 0.8 (13)

σ2
ADA

None 1.6 (19)
ρSNOADA < 0 or ~ 0 -0.1 (32)
ρSADA < 0 -0.07 (18)
Hidden variable parameters
πNOADA−ADA ~ 0.05 0.03 (12)
πADA−NOADA ~ 0 0.003 

(112)

Fig. 3 Violin plots of the 
observed variables (shaded areas 
and circles [indicate medians]) 
and simulations from the final 
model (model 6) (dashed lines 
and squares [indicate medians]) 
versus time intervals. Simulated 
ADA measurements below 0.6 
were set to 0.6 as LOQ.
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ADA observations, there is no appropriate distribution as a 
vast majority of them were below the LOQ and thus set to 
the LOQ value of 0.6 U/mL. Simulations of the observed 
variables from the model demonstrated appropriateness of 
the model for the PK residuals, but simulations of ADA 
measurements did not perform as well, and underprediction 
of the number of values associated with high ADA measure-
ments was seen. Since the two residual terms were shared 
for ADAMES, the very low variance of ADA in SNOADA may 
have contributed to the relatively low estimate of σ2

ADA , 
likely responsible for this behaviour. To correlate ADAMES 
with PKRES, a bivariate normal distribution was assumed. 
Further, it was assumed that all individuals start in SNOADA, 
since the individuals included in the trial data were drug 
naïve.

Fixed effects parameter estimates for the observed vari-
ables in the tested bivariate models were as expected in 
most cases. In several of the models, the modes of ADAMES 
were fixed to clinically relevant values. A measurement that 
is LOQ is most likely associated with no ADA production, 
while a value greater than 2.4 U/mL is likely to be associ-
ated with a true ADA measurement. In our work, estima-
tion of the modes of ADAMES in the respective states were 
associated with poorer individual state sequence predictions 
than when fixing those parameter values. Consequently, by 
fixing the parameters in the developed models, a weight-
ing of the observations is made, as observations > 2.4 U/
mL are more likely to have come from SADAthan SNOADA. 
For instance, when µADA

 in SADA was fixed to 1000 U/mL 
in a model considering only ADA measurements (univari-
ate model), while estimating the rest of the model param-
eters, the model did not result in any transitions to SADA and 
thus any transitions in the bivariate model would be driven 
solely by PKRES (results not shown). Transition probabili-
ties in the model were generallylow, expected given the few 
observations associated with ADA formation. Furthermore, 

on clinical efficacy, safety and disposition of the drug [10]. 
A model, such as the one presented in this work, allows 
us to gain additional insight into the assessment and char-
acterization of ADA by using all sources of information. 
Similarly, the developed methodology was applied to ADA 
against CZP that does not distinguish between antibodies 
isotypes. In the case where specific isotypes against PEG 
are measured, the model could be extended to also account 
for different types of anti-drug antibodies. A caveat in the 
current analysis is that any discrepancies in PK resulting in 
changes in the PK residuals are assumed to be attributed to 
ADA formation; if the model was miss-specified, remain-
ing unexplained PK influences would still be attributed to 
ADA formation.The parameters of the model could be clas-
sified as “observed variable” and “hidden variable” param-
eters. Two modes were estimated for each of the observed 
variables, one for each state together, with a single residual 
term shared across states. A single residual term (per vari-
able) was used in order to reduce model flexibility and 
assumes that the distribution of the observations were not 
different depending on which state the observations arose 
from. If two residual terms would have been estimated for 
the ADAMES, the residual term related to SNOADA would have 
been estimated to ~ 0, as most observations would be equal 
to the LOQ and the other would be some large value, as 
measurements of ADA are highly variable. Thus, numerical 
issues arise as the likelihood would approach infinity due to 
the division of an increasingly small number in Eq. 3. This 
may be a consequence of the assumption of observations 
being equal to LLOQ, instead of recognizing that they are 
not measurable with the analysis instrument used. In this 
work, we assumed that the observed variables were nor-
mally distributed. The Gaussian distribution was deemed 
to be appropriate, since for well performing PK models the 
distribution of the residuals (which we used as the observed 
variable in the MHMM) are assumed to be normal. For the 

Estimated parameter Model 6 parameter 
estimates (RSE%)

Univariate (PKRES) model 
based on model 6 param-
eter estimates (RSE%)

Univariate (ADAMES) 
model based on 
model 6 parameter 
estimates (RSE%)

Observed variable parameters
PKRES in SNOADA 0.3 (6) 0.4 (4) NA
PKRES in SADA -1.6 (3) -1.4 (4) NA
ADA in SNOADA 0.6 FIX NA 0.6 FIX
ADA in SADA 2.4 FIX NA 2.4 FIX

σ2
PKRES

0.8 (13) 0.8 (14) NA

σ2
ADA

1.6 (19) NA 1.6 (19)
ρSNOADA -0.1 (32) NA NA
ρSADA -0.07 (18) NA NA
Hidden variable parameters
πNOADA−ADA 0.03 (12) 0.05 (8) 0.2 (9)
πADA−NOADA 0.003 (112) 0.005 (146) 1E-5 (0)

Table 4 Parameter estimates of 
the bivariate model and the two 
univariate models handling only 
PK residuals or ADA measure-
ments. Relative standard errors 
(RSE%) are reported when they 
were obtained using covariance 
step in NONMEM with default 
settings
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ADA measurements, and thus better relate ADA to potential 
clinical impact as well as limit the otherwise noise risked 
when classical population PK methods without charac-
terisation of the ADA is performed; whereas identifying 
false-positive measurements may not be as relevant if PK is 
unaffected. The model performed well to correct for some 
false-negative ADA measurements and was able to suggest 
false-positives as well. In the current work, ADA measure-
ments alone could not result in the observed state-sequence 
predictions. The model requires a second observed variable 
containing information about the impact of ADA on PK, 
which could then provide further information on potential 
clinical relevance (for example, if efficacy was impacted). 
Without the PK residual as a second observed variable in the 
current model, drawing any conclusions regarding clinical 
relevance would be difficult. Further work may be needed 
to elucidate what types of observations are most informative 
for clinical relevance purposes in the context of ADA assay 
results interpretation.

Conclusion

The immunogenic response to proteins is heterogeneous and 
depends on different factors inherent to the drug, patient, 
disease and others such as dose regimen and route of admin-
istration. Characterization of ADA and its impact on PK, 
efficacy and safety is key in drug development of new enti-
ties. PKPD models often focus on characterising the impact 
of ADA on PK and hence clinical consequences. However, 
they do not focus on what triggers the ADA response.

We developed a model able to characterise the hidden 
ADA production and state transitions using all the sources 
of information available (both PK and ADA). To our knowl-
edge, this is the first time that this methodology has been 
applied to characterize ADA, and this work has served 
as a basis for other posterior examples that have recently 
been published [33, 34]. The results presented in this work 
should serve as an example for the use of a MHMM in the 
analysis of immunogenicity that makes use of all available 
PK and ADA data, and is able to weigh in the information 
being more assay independent than traditional population 
PK analysis exploration of ADA. Although not explored 
here, future uses of the model may include the identifica-
tion of covariates influencing the transition probabilities in 
the model that would help in identifying trial design and 
treatment related aspects that would minimize the ADA for-
mation and thus minimize its impact on PK and/or efficacy. 
The methodology can be extended to other molecular enti-
ties and be used to inform on covariates that trigger immu-
nogenicity response. Further it can be linked back to the 
clinical implication on safety and efficacy, thereby inform 

the estimate of πADA−NOADA was in general much lower than 
πNOADA−ADA suggesting a lack of transient ADA formation 
going from SNOADA to SADA and back again for an individual.

The estimation of IIV was associated with both issues 
related to parameter estimation and worse individual state 
sequence predictions. Although inclusion of IIV on the tran-
sition probabilities makes sense, this was poorly estimated 
given the data, with only very few transitions in the total 
data, and very few individuals having transient ADA forma-
tion. This rendered the estimation of additional parameters 
(such as IIV) not possible. IIV on the transition probabili-
ties would allow covariates influencing the ADA status to 
be identified. This is of interest, to reduce the probability 
of transitioning to SADA, which is in turn associated with 
a more beneficial treatment outcome. For instance, MTX 
administration can reduce the incidence of ADA formation, 
and this may be tested in the MHMM. However, this would 
require a larger number of transitions within an individual 
to be viable. The current model was estimated to a large 
data set. Further research is required to determine the data 
requirements for state-sequence predictions in smaller data 
sets generated in clinical practice.

When ADA are included in population PK analyses, they 
are often included as a dichotomous or continuous covariate 
on drug CL [28–30]. These models often do not consider a 
time-course of ADA positivity since a subject who is ADA 
positive at a certain timepoint is assumed to remain positive 
throughout the analysis. It may be possible to use the infor-
mation obtained from the present model to infer the prob-
abilities of being in an ADA producing state and using those 
resulting probabilities as a covariate in the PK model. The 
time-course of ADA can be more readily incorporated since 
ADA are not the only component driving the PK response.

In the best performing model (model 6, Table 3; Fig. 2), 
the individual state sequence predictions obtained for a sub-
set of individuals was able to identify potential false posi-
tive and negatives, as well as to assign ADA positive status 
influencing PK before the ADA was detected, and therefore 
before the onset of ADA effects based on the combined 
information coming from the PKRES and ADAMES. This 
highlights that the present model, by using all the infor-
mation available, may fill the caveats related to the ADA 
bioassay that make it difficult to obtain a true characteriza-
tion of immunogenicity in some instances. The modelling 
results may suggest that ADA are formed earlier than the 
assay can detect them. In individuals that tested positive for 
ADA, the mean time to measuring ADA was 81 days while 
the mean model predicted time to transitioning to the ADA 
producing state was 63 days. These results depend on the 
number of observations available, where more observations 
would result in more individual state sequence predictions. 
This methodology may be able to identify false-negative 
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