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Abstract
Machine Learning (ML) is a fast-evolving field, integrated in many of today’s scientific disciplines. With the recent

development of neural ordinary differential equations (NODEs), ML provides a new tool to model dynamical systems in

the field of pharmacology and pharmacometrics, such as pharmacokinetics (PK) or pharmacodynamics. The novel and

conceptionally different approach of NODEs compared to classical PK modeling creates challenges but also provides

opportunities for its application. In this manuscript, we introduce the functionality of NODEs and develop specific low-

dimensional NODE structures based on PK principles. We discuss two challenges of NODEs, overfitting and extrapolation

to unseen data, and provide practical solutions to these problems. We illustrate concept and application of our proposed

low-dimensional NODE approach with several PK modeling examples, including multi-compartmental, target-mediated

drug disposition, and delayed absorption behavior. In all investigated scenarios, the NODEs were able to describe the data

well and simulate data for new subjects within the observed dosing range. Finally, we briefly demonstrate how NODEs can

be combined with mechanistic models. This research work enhances understanding of how NODEs can be applied in PK

analyses and illustrates the potential for NODEs in the field of pharmacology and pharmacometrics.

Keywords Pharmacometrics � Pharmacokinetics � Machine learning � Neural ordinary differential equations �
Neural networks

Introduction

Pharmacology and pharmacometrics play an important role

in research, development, and application of therapeutics

[1]. Pharmacometric analyses, including pharmacokinetic

(PK) and pharmacodynamic (PD) analyses, are usually

based on describing clinical data through mathematical-

statistical models with well-defined differential equations

based on law-of-mass action and first principles [2–4].

Recent research papers propose machine learning (ML)

as a tool complementing conventional pharmacometric

methods [5–10]. Several ML approaches were applied to

develop predictive models, e.g., to forecast risk of

phototherapy in newborns with hyperbilirubinemia [10], to

differentiate between diabetes insipidus and primary

polydipsia [11], and to facilitate covariate screening and

selection [12, 13]. A main method in ML is a neural net-

work (NN), which is basically an approximation approach

for non-linear functions. Due to their capability to

approximate various input–output relationships, NNs were

applied in different scenarios such as (i) data imputation of

missing covariates [14], (ii) covariate selection [15], and

(iii) model reduction of quantitative systems pharmacology

models [8]. Other publications discuss the use of NNs to

approximate PK functions for concentration–time profiles

and the possibility to perform PK simulations [16].

The substantially different character of most ML

approaches compared to conventional PK approaches

impede their broad application in pharmacometrics.

Therefore, the recently presented approach of neural ordi-

nary differential equations (NODE) [17] gained special

attention. In this approach, ordinary differential equations

(ODE) are combined with NNs. Although their function-

ality is similar to ODEs, the right-hand side of an NODE is
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no longer a mechanism developed by the modeler but an

NN that learns the mechanism solely based on available

data. It has been shown that NODEs are able to fit PK and

PD data as well as other dynamic systems from health

sciences well [18–22]. However, despite the shared con-

cepts between ODEs and NODEs, several aspects of

NODEs differ from classical modeling with ODEs. Com-

pared to previous publications utilizing NODEs in PK, we

aim at developing a pharmacometric based ML model and

present a low-dimensional NODE approach related to PK

principles.

This research work includes three major parts. First, we

build a theoretical concept for our NODEs. To this end, we

developed an NODE structure explicitly based on PK

principles. This approach differs significantly from most

conventional ML approaches, where the structure is

developed empirically [23]. With our development, we

ensure that the NNs in the NODEs can describe various PK

scenarios. Additionally, we discuss opportunities to com-

bine partially known mechanisms with NNs, a discipline

called scientific ML [24, 25]. Second, we develop a

methodological setup for applying our NODE structures in

pharmacometrics. Here, we face common ML challenges,

such as avoiding overfitting and performing simulations for

unseen data, and provide practical solutions to these chal-

lenges. Third, we utilize previously elaborated concepts

and setups for the application of our NODEs in pharma-

cometrics and present the results for various PK scenarios.

The overarching goal of this research work is to provide

a general insight into NODEs to further stimulate research

and applications in the field of pharmacology and phar-

macometrics. The presented low-dimensional NODE con-

cept differs significantly from other NODE

implementations including e.g., encoder-decoder structures

[19, 26]. It does not include inter-individual variability and

covariate effects, which will be subject of further

investigation.

Theoretical

The aim was to develop an NODE structure that is tailored

to handle various linear and non-linear PK behavior

including distribution processes and potentially delayed

absorption. As this paper aims at introducing a general

concept, we currently only focus on fitting the average

profile of a population and no covariate effects were

included. In this section, we focus on theoretical concepts

of NODEs in pharmacometrics, particularly PK analyses,

which will be presented in five sections. First, a brief

introduction to NNs and their characteristic as function

approximators is provided. Second, the concept of substi-

tuting the right-hand side of an ODE with an NN is pre-

sented. Third, the reduction of multi-dimensional ODE

systems to a one-dimensional system is presented. This

means that there are no assumptions about the mechanism

required (e.g., number of peripheral compartments).

Fourth, specific NODE structures based on PK principles

are developed such that they can be applied to various PK

scenarios. Fifth, the concept of combining partially known

mechanisms with NNs is briefly addressed. Throughout all

presented concepts, single-dose scenarios were considered.

Possible adjustments for multi-dose scenarios are provided

in the discussion. In addition to the presented NODE

related concepts, general ML concepts, such as hyperpa-

rameter tuning and cross-validation should be applied if

required in specific real-life projects [27, 28].

Introduction to neural networks

An NN is a parameter-dependent function that character-

izes an input–output relationship. The input–output rela-

tionship is based on compositions of serial calculation

steps, referred as layers. Each layer consists of several

neurons and each neuron is a simple calculation step of

multiplication and addition [8]. We focus on NNs con-

sisting of one hidden layer H 2 RnHid with nHid neurons,

and an input feature X 2 RnIn that is mapped to an output

feature Y 2 RnOut with the NN f NN : RnIn ! RnOut . Hence,

the NN structure reads

f NN Xð Þ ¼ rð2Þ W ð2Þ � rð1Þ W ð1Þ � X þ bð1Þ
� �

þ bð2Þ
� �

ð1Þ

where W ð1Þ 2 RnHid ;nIn are the weights from the input layer

to the hidden layer, bð1Þ 2 RnHid the biases at the hidden

layer, W ð2Þ 2 RnOut ;nHid the weights from hidden layer to

output layer, bð2Þ 2 RnOut the biases at the output layer,

rð1Þ : RnHid ! RnHid the activation function from input to

hidden layer, and rð2Þ : RnOut ! RnOut the activation func-

tion from hidden to output layer. Both activation functions

are applied component-wise at the right-hand side of

Eq. (1). During the training of an NN, the parameters are

optimized in order to approximate the underlying function

characterizing the input–output relationship observed in the

training data. The advantage of an NN is that, based on

some assumptions, even an NN with one hidden layer is

capable of approximating any continuous input–output

[29].

For illustration purpose, we present an NN structure

with nIn ¼ 1 and nOut ¼ 1, the prominent non-linear ReLU

activation function from input to hidden layer
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r 1ð Þ zð Þ ¼ max 0; zð Þ;

and the identity from hidden to output layer

rð2Þ zð Þ ¼ z

The NN in Eq. (1) can be reformulated and the matrix

multiplications can be written as the following summation:

f NN xð Þ ¼
XnHid
i¼1

w
ð2Þ
1;i �max 0;w

ð1Þ
i;1 � xþ b

ð1Þ
i

� �
þ bð2Þ; ð2Þ

where the indices denote the entries of the matrices (e.g.,

w
ð1Þ
i;1 the i’th entry of the weight matrix W ð1ÞÞ. We observe

that an NN is basically a summation of activation functions

and that in this case, the output is a stepwise linear

function.

In Fig. 1A, we present a schematic NN with nHid = 5. In

Fig. 1B, we show an example of the unit activations in the

hidden layer and its resulting NN output.

Introduction to neural ODEs

The basic concept of NODEs is based on ODEs expressing

the derivative of a variable x as an explicit function f xð Þ as
follows:

d

dt
x ¼ f xð Þ; x 0ð Þ ¼ x0: ð3Þ

In the previous section, NNs were presented as function

approximators. In NODEs, NNs are utilized to approximate

the right-hand side of an ODE. Hence, the function f xð Þ
from Eq. (3) is now substituted with an NN, namely

f NN xð Þ. This results in
d

dt
x ¼ f NN xð Þ; x 0ð Þ ¼ x0: ð4Þ

The NODE in Eq. (4) can then be solved with any ODE-

solver, like the ODE in Eq. (3), and the NN parameters of

f NN xð Þ are optimized based on training data. Thus, NODEs

are a data-driven approach to approximate the dynamics

observed in training data, such as PK concentration–time

data.

Reduction of multi-dimensional systems
to a non-autonomous one-dimensional system

PK models are usually autonomous multi-dimensional

ODE systems, meaning the right-hand side of the ODE is

time-independent. The reason for this multi-dimensionality

is the characterization of the underlying pharmacological,

physiological, and biological mechanism based on first

principles and law-of-mass action. For example, a two-

compartment intravenous (IV) model consists of two

equations, one for the central compartment fitted against

the measured concentration data, and one for the peripheral

compartment. Another example are oral (PO) models with

delayed absorption, i.e., including one or multiple transit

compartments. An even more complex example is the

target-mediated drug disposition (TMDD) IV model [30]

with three equations (central compartment, receptor, and

drug-receptor complex).

In contrast, the advantage of NODEs is that they are a

data-driven approach. Thus, no assumptions about the

mechanistic model, e.g., the number of transit or peripheral

compartments, should be required. To this end, we reduced

multi-dimensional ODE systems to a one-dimensional

ODE system. As shown for example for linear ODE sys-

tems in Appendix A1 and A2, this dimensional reduction of

autonomous multi-dimensional systems results in non-au-

tonomous systems, i.e., the function on the right-hand side

is time-dependent, as indicated in step 1 of Fig. 2.

Fig. 1 In panel A, the structure of an NN with a one-dimensional

input, one hidden layer with five neurons, and a one-dimensional

output is shown. Arrows denote multiplication with weights, plus

signs denote addition of biases and ReLU and Id indicate the applied

activation function from input to hidden layer and from hidden to

output layer, respectively. In panel B, outputs of the neurons in the

hidden layer and the final output of the NN in panel A is illustrated
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Basic NODE structure of a non-autonomous one-
dimensional system

As indicated in step 2 of Fig. 2 and based on the reduction

of autonomous multi-dimensional systems to a non-au-

tonomous one-dimensional system, our basic NODE

structure, e.g., capable to fit IV PK data without assump-

tions about the number of peripheral compartments, reads

d

dt
xC ¼ f CNN xC; tð Þ; xC 0ð Þ ¼ d

V
; ð5Þ

where we emphasize with xC the ‘‘central compartment’’,

i.e., the state variable that is fitted against the concentration

measurements. In addition, t denotes the explicit time, d

the dose and V the volume of distribution. The volume of

distribution V can be considered as a special PK parameter

since it can appear in the initial condition of the PK model,

compare Eq. (5), and basically scales the PK profile.

Therefore, the estimated parameters are the NN parameters

and V , if not stated otherwise.

Development of our NODE based on PK
principles

In this section, several PK principles are utilized to adjust

and simplify our NODE structure for the application of

NODEs tailored to PK scenarios.

General NODE structure with separated time-
and concentration-dependent right-hand side

As presented in Eq. (5), a one-dimensional NODE to fit IV

PK data must be non-autonomous. In contrast to the for-

mulation in Eq. (5), however, the concentration-dependent

and time-dependent functions are additively separated,

according to Appendix A1 and A2. Therefore, and with

Fig. 2 A schematic overview of

the major concepts to build our

NODE for PK. The first step

towards our NODE for PK is to

reduce autonomous (time-

independent right-hand side)

multi-dimensional ODE systems

to a non-autonomous (time-

dependent right-hand side) one-

dimensional system since the

general NODE should be

applicable without mechanistic

assumptions. The second step is

to substitute the right-hand side

of an ODE with an NN. In a

third step, the concentration

variable and time variable were

separated into two NNs with

one-dimensional input and

output. In a fourth step,

generally known structures such

as drug administration with

absorption process can be

included in the NODE. In a fifth

step, the NODE can optionally

be combined with a known

mechanistic part, if prior

knowledge is available
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additional motivation in Appendix A4, the inputs concen-

tration and time were separated into two NNs with one-

dimensional input and output in our NODE structure. As

indicated in step 3 of Fig. 2, this results in our general

NODE structure with a concentration-dependent NN,

f C1NN xCð Þ, and a time-dependent NN, f C2NN tð Þ, according to

d

dt
xC ¼ f C1NN xCð Þ þ d

V
� f C2NN tð Þ; xC 0ð Þ ¼ d

V
: ð6Þ

Like observed, e.g., after the completion of distribution

processes, and to assure that for t ! 1 the state variable

xC does not increase infinitely, the time-dependency in the

NODE should vanish. To this end, we restrict the weights

from input to hidden layer in f C2NN to be as w
ð1Þ
i;1 \ 0, such

that lim
t!1

max 0;w
ð1Þ
i;1 � t þ b

ð1Þ
i

� �
¼ 0 and therefore

lim
t!1

f C2NN tð Þ ¼ bð2Þ. This was achieved by applying w0 ¼
�ðw2Þ where w indicates the original weight and w0 the
restricted weight applied in the NN. The term d

V in Eq. (6)

is required to fit different dose levels with the same NODE.

NODE structure with absorption

In principle, Eq. (6) can produce non-monotonic behavior,

as observed e.g., for PO administered drugs. Since the

route of administration is known from the clinical setup,

we apply the typical absorption structure and add an

additional absorption compartment xA to Eq. (6), as illus-

trated in step 4 of Fig. 2. Hence, we obtain the two-di-

mensional NODE

d

dt
xA ¼ d � f A1NN tð Þ � f A2NN xAð Þ; xA 0ð Þ ¼ 0; ð7Þ

d

dt
xC ¼ f A2NN xAð Þ � f C1NN xCð Þ � d � f C2NNðtÞ; xC 0ð Þ ¼ 0; ð8Þ

where we set the weights from input to hidden layer as w
ð1Þ
i;1

\0 in f A1NN and f C2NN . In case of an absorption compartment,

we omit V since scaling can take already place in f A2NN .

Motivated by Appendix A2, the time-dependent NN in the

absorption compartment f A1NN tð Þ allows to also model PO

administered drugs with delayed absorption.

NODE structure with infusion

Like the NODE structure with absorption, IV infusion can

be explicitly built into the NODE since the route of

administration, the infusion rate kin, and infusion time tinf
are known from the clinical setup. Thus, Eq. (6) can be

modified like a conventional ODE for IV infusion

d

dt
xC ¼ kin

V
� 1 t� tinf
� �

þ f C1NN xCð Þ þ d

V
� f C2NN tð Þ; xC 0ð Þ ¼ 0:

ð9Þ

Note that V must be estimated since the input to the

central compartment is explicitly built in with kin and in

contrast to the absorption in Eq. (8), the scaling cannot be

approximated by an NN. Dose d is calculated as the

amount of total drug applied, i.e., d ¼ kin � tinf .

Combining partially known mechanisms
with neural networks

NODEs can be combined with partially known mecha-

nisms, as illustrated in step 5 of Fig. 2. Combining known

mechanistic parts with NNs that are supposed to learn the

unknown parts, called scientific machine learning [24, 25],

is currently strongly evolving. Here, we only scratch on the

surface of this discipline and present for illustration pur-

pose two potential PK examples.

NODE structure with mechanistic elimination

Even though an NODE with Eqs. (7, 8) can fit various oral

PK models, prior knowledge of the drug of interest can be

leveraged. Assuming a one-compartment model, e.g., from

a previous IV study, with a known elimination mechanism

and an unknown absorption mechanism, Eqs. (7, 8) can be

modified to

d

dt
xA ¼ d � f A1NN tð Þ � f A2NN xAð Þ; xA 0ð Þ ¼ 0; ð10Þ

d

dt
xC ¼ f A2NN xAð Þ � kel � xC; xC 0ð Þ ¼ 0: ð11Þ

Note that this would also be applicable, if linear elimi-

nation with unknown distribution mechanism is assumed,

replacing the concentration-dependent NN f C1NN xCð Þ in

Eq. (6) by �kel � xC.

NODE structure with mechanistic absorption

Like Eqs. (10, 11), a known linear absorption mechanism

but with unknown distribution and elimination mechanism

can be assumed by modifying Eqs. (7, 8) to

d

dt
xA ¼ �ka � xA; xA 0ð Þ ¼ d

V
; ð12Þ

d

dt
xC ¼ ka � xA � f C1NN xCð Þ � d

V
� f C2NN tð Þ; xC 0ð Þ ¼ 0: ð13Þ
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Methods

In this section, essential concepts and setups for NODE

applications in pharmacometrics are discussed and solved.

The aim is to develop a methodological setup for the

application of previously presented low-dimen-

sional NODE structures in various PK analyses. To this

end, we address four concepts for NODEs. First, we pre-

sent how the derivative versus state plot can be utilized to

assess properties of trained NODEs. Second, the phe-

nomenon of overfitting is discussed and a solution to avoid

overfitting when applying NODEs to PK data is suggested.

Third, the challenge of performing simulations with

NODEs for unseen data, so-called extrapolation, is inves-

tigated and corresponding scenarios are discussed. Fourth,

two loss functions utilized in further applications are

presented.

Utilizing the derivative versus state plot
to assess simulation properties of a trained
NODE

NNs are optimized only on the data they were trained on

and caution is necessary when utilizing NODEs for

extrapolation, i.e., simulations beyond the properties

available in the trained data. To understand and assess the

simulation capability of applied NODEs, we utilize the

derivative versus state plot. In this plot, the x-axis corre-

sponds to concentration xC and the y-axis is the right-hand

side/derivative d
dt xC. Hence, this plot allows to assess the

learned mechanism in a trained NODE.

To motivate the derivative versus state plot, we consider

two ODE-based examples, a linear one-compartment IV

model, and a linear two-compartment IV model. In

Fig. 3A, the concentration versus time profile is shown for

the one-compartment ODE model. In Fig. 3B, the deriva-

tive versus state plot is shown, and we observe the expected

linear relationship between xC and d
dt xC. In Fig. 3C, the

concentration versus time profile of the two-compartment

ODE model is visualized, and in Fig. 3D we observe the

expected stepwise linear derivative versus state behavior

with a steep slope in the distribution phase transitioning

into a flatter slope of the terminal elimination phase.

Hence, plotting the derivative versus state of a trained

NODE allows to assess how well the mechanism was

learned. In the following, the derivative versus state plot is

applied to identify overfitting and to reveal simulation

performance for concentrations outside the training range.

Fig. 3 In panel A and C, simulated concentration–time data is shown for a linear one- and a two-compartment ODE model, respectively. In panel

B and D, the corresponding derivative versus state plots are presented, illustrating the derivative against the concentration

128 Journal of Pharmacokinetics and Pharmacodynamics (2024) 51:123–140

123



Dealing with overfitting in NODEs

In this section, an example of overfitting and a solution to

overcome this problem is presented. The term overfitting is

used when a statistical/mathematical model fits the training

data well but does not generalize well to new data. Over-

fitting is more likely to happen when a method has a high

degree of freedom, i.e., high number of model parameters

compared to available data points.

The highly flexible NODE might not only characterize

the underlying mechanism in the data but it might assume

that the observed noise (i.e., residual errors) in the training

data is part of the mechanism as well. As an example,

single concentration measurements at 5 time points were

generated with a one-compartment ODE model where the

elimination rate was kel = 0.1, the volume of distribution

V = 2 and the dose d = 1. This data was refitted twice, first

with the original ODE model, and second, with the general

NODE Eq. (6). The number of parameters in the NODE is

much larger with respect to the classical approach and

hence, the chance for overfitting is higher.

Utilizing the NODE, we had a smaller mean squared

error of MSENODE= 1e-5 compared to the original ODE

model with MSEPK = 8e-4, as can be observed in Fig. 4A.

This is a classical overfitting phenomenon. Basically, the

NODE fits not only the data but also the residual errors.

This becomes even more clear in Fig. 4B, where the dif-

ference of the derivative of the NODE compared to the

derivative of the original ODE model is visualized. In a

one-compartment ODE model, an approximately linear

derivative with constant slope is expected. However, we

observe that the NODE produced a derivative deviating

completely from the expected derivative and shows unre-

alistic behavior for a PK scenario. This explains the

‘‘better’’ fit in terms ofMSE and highlights the flexibility of

NODEs. However, this results in the undesired overfitting.

There are two main solutions to avoid overfitting:

reducing the number of parameters in the model or using

more data such as multiple measurements per time point.

Following the first approach, a strong reduction of the

flexibility of the NODE can be obtained by strongly

reducing the number of hidden neurons. Hence, we

obtained an MSE which is rather comparable to the MSE of

the fit with the original ODE model, indicating that the

overfit on the data was reduced. However, also the capa-

bility of the NODE to handle more intricate PK profiles

Fig. 4 In panel A, the fit of the NODE Eq. (6) (red solid line) and the

original one-compartment ODE model (green dotted line) to training

data (red circles) from single measurements is shown. In panel B, the
corresponding derivative versus state plot is presented, highlighting

the flexibility and indicating overfitting for the NODE. In panel C and

D, pooled training was performed for the NODE Eq. (6), indicating

reduced overfitting
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was strongly impaired. The second approach, which is the

one that we are going to focus on in the following, was to

use more data with similar sampling scheme and perform

pooled training for the NODE. Due to the similar sampling

scheme and the pooled training, the residual errors from

multiple data points cancel each other out so that the

NODE only fits the underlying mechanism. This can be

nicely seen in Fig. 4C, where the data and fit of the NODE

Eq. (6) is shown for nHid = 20 and no overfitting was

observed, i.e., the NODE behaves like the original ODE

model, compare Fig. 4D. Note that deviations in the

derivative versus state plot may appear large but only small

deviations are observed in the predictions. Hence, the

learned mechanism is closer to the underlying mechanism

and not falsified by overfitting. In all following examples,

the solution to utilize pooled training is applied to avoid

overfitting. Note that with the pooled training approach,

there are still only the average dynamics modeled and no

information about inter-individual variability is gained.

Whether it is feasible to collect more data might be project-

dependent and reducing the number of parameters might be

preferred in some analyses.

Performing simulations with NODEs for unseen
data (extrapolation)

In this section, the limited ability of NNs to generalize to

data outside of the training range and consequently the

impact on NODEs is demonstrated. This means for PK

applications that simulations of concentrations outside the

trained range can lead to incorrect results.

To illustrate this phenomenon, we apply the trained

NODE Eq. (6) based on the data for one dose level, d = 1,

from the previous paragraph. But now, we compare sim-

ulations of the NODE for a new dose, d = 20, with the

original ODE model. The discrepancy between the ODE

and NODE simulations are shown in Fig. 5A, where

unrealistic concentrations even with negative values were

generated. In Fig. 5B, the difference of the derivative

between the NODE fit and the original ODE model is

shown. As expected, the NODE learned the mechanism

only for the dose it was trained on.

As a solution we suggest to train the NODE with data

produced with a low dose (d = 1) and a high dose (d = 50)

and to exploit the interpolation capability of NNs. As

Fig. 5 In panel A, simulated data (blue triangles) for dose d = 20 with

the original ODE model and the NODE Eq. (6) trained on a dose d =

1 (dashed blue line) is shown. In panel B, the corresponding

derivative versus state plot indicates the inability of NNs to

extrapolate which inherits to the NODE. In panel C and D, simulated

data for different unseen doses (d = 5, 10, 20 and 35) with the original

ODE model and the NODE Eq. (6) trained on two dose levels d = 1

and d = 50 is shown and the corresponding plots indicate the

interpolation capability of NNs
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presented in Fig. 5C, simulations with the NODE for doses

in this range, i.e., d = 5, 10, 20 and 35 very well coincide

with the original ODE model even though theses doses

were not explicitly introduced to the NODE (compare

Fig. 5D). This suggests that the mechanism in this dose

range was learned. This approach of fitting two doses to

cover the range between them will be followed in the next

examples.

Applied loss functions for data fitting

The loss function (in classical approaches usually referred

as objective function) describes the difference between the

prediction and the observed data. Using the loss function,

the gradients for the model parameters (weights and biases)

are computed in the process of backpropagation. As

NODEs are a data driven approach, the choice of the loss

function strongly influences what part of the data is the

main driver of the optimization. If the observed values are

in a similar range and no outliers are observed, one of the

most common loss functions is the Mean Squared Error

(MSE)

MSE ¼ 1

m � n
Xm
i¼1

Xn
j¼1

xC tið Þ � xji
� �2

; ð14Þ

where m denotes the number of measurement time points, n

the number of measurements per time point, xCðtiÞ the

predicted value at time point ti and xji the j‘th observed

value at time point ti.

In the case of larger ranges, the NODE with an MSE as

loss function would poorly learn smaller observations

because the residual errors of the high values would

dominate the MSE. In such cases, the Weighted Mean

Squared Error (WMSE) was applied according to

WMSE ¼ 1

m � n
Xm
i¼1

Xn
j¼1

xC tið Þ � xji
� �2

xji
: ð15Þ

In the following applications of NODEs, the MSE was

applied for data fitting, if not indicated otherwise.

Note that another approach for dealing with large ranges

would be to fit data in log-scale. This would bring the

additional benefit of restricting the predictions to the pos-

itive value range. However, for simplicity, especially when

combining the NN with mechanistic parts as described in

step 5 of Fig. 2, we decided to stay in the normal scale in

the following applications.

Remarks about numerical implementation
of NODEs

All calculations were done within Python. The training data

was generated by numerically integrate the ODE using the

package Scipy [31] and by adding a proportional residual

error. For the NN framework, the package PyTorch [32]

was applied and for the optimization of these NNs within

an ODE-solver the package Torchdiffeq [17] was utilized.

Note that in our implementation, the classical approach of

sequential matrix multiplications was used, as shown in

Eq. (1), and not the summation form in Eq. (2). In all

examples, the Adam optimizer [33] was used with cycling

learning rates [34]. The default initial learning rate of 10�3

was applied. If not otherwise mentioned, ReLU was used

as activation function r 1ð Þ, identity as activation function

r 2ð Þ. Since the presented NODEs are tailored to PK sce-

narios and thus the functions that the NN has to learn are

very limited compared to other applications, NNs with only

one hidden layer were used and the number of hidden

neurons was set to nHid ¼ 20. This setup exceeds the

required number for most PK scenarios. Since a general

NODE concept is presented that should not be project

specific, no hyperparameter tuning concerning learning rate

or NN structure was performed. Graphs were generated

using the package Matplotlib [35]. In Appendix A5 a

shortened but documented code example fitting an NODE

to data from a one-compartment IV ODE model is pre-

sented and in the Supplemental Material the full code is

deposited.

Results

In the following sections, the previously elaborated NODE

structures, concepts and setups for applications were uti-

lized in various PK scenarios. First, an NODE was applied

to fit multi-compartmental behavior. Second, an applica-

tion of an NODE to fit data with absorption and delayed

absorption is presented. Third, data based on an IV infusion

administration was fitted. Fourth, the capability of NODEs

to fit highly intricate PK profiles originating from non-

linear behavior such as TMDD [36–38] is illustrated.

Finally, the application of NODEs with known mechanistic

parts combined with NNs are presented.

Application of an NODE to data with a multi-
compartmental behavior

Consider the typical PK situation of multi-compartmental

behavior, e.g., data consisting of a distribution and elimi-

nation phase. Pooled training was performed on data sim-

ulated with the two-compartment IV ODE model at 5 time

points for two training doses (d = 1 and d = 10). The same

model parameters as in the previous paragraph were

applied with the additional peripheral transfer rates k12 =

0.2 and k21 = 0.2.
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Fig. 6 Data applied for training (red circles) with doses d = 1 and d =

10 and simulation (blue triangles) with d = 5 were generated with a

two-compartment IV ODE model, see panel A. Furthermore, fits of

the trained NODE Eq. (6) for the two training doses (solid red line)

and simulation (dashed blue line) are presented. In panel B, the

corresponding derivative versus state plot indicates that the NODE

learned the two-compartmental behavior from the training data

Fig. 7 Data applied for training (red circles) with doses d = 5 and d =

15 and simulation (blue triangles) with d = 10 were generated with a

one-compartment PO ODE model either without transit compartments

(panel A), 4 transit compartments (panel B) or 8 transit compartments

(panel C). Fits (solid red line) and simulation (dashed blue line) of the

NODE Eqs. (7, 8) are presented

Fig. 8 Data applied for training (red circles) and simulation (blue

triangles) generated with a one-compartment IV infusion ODE model,

see panel A. Furthermore, fits of the trained NODE Eq. (9) for the two

training doses (solid red line) and simulations (dashed blue lines) are

presented. In panel B, the corresponding derivative versus state plot

indicates that the NODE learned the mechanism well
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Data was well fitted with the NODE Eq. (6) and a

simulation for an unseen dose d = 5 coincide with the

original ODE, see Fig. 6A. As demonstrated in Fig. 6B, the

original mechanism was well learned.

Application of an NODE to data with absorption
and delayed absorption

Drugs often have an absorption phase, e.g., due to orally or

subcutaneous administration. Occurrence of absorption can

also be delayed. Pooled training was performed on data

simulated with a one-compartment PO ODE model without

(7 time points) and with transit compartments (10 time

points) for two training doses (d = 5 and d = 15). Model

parameters were as in the previous examples but now

additionally with ka = 0.2 and in case of transit compart-

ments we set ntr = 4 or 8 with ktr = 0.1.

Data was well fitted with the NODE Eqs. (7, 8), see

Fig. 7A–C. In all three examples, NODE simulations for an

unseen dose d = 10 matched well with simulation from the

original ODE.

Application of an NODE to data with an IV
infusion administration

We consider simulated data based on a one-compartment

IV infusion ODE model. Pooled training was performed on

data for two infusion rates (kin = 1 and kin = 10) with an

infusion time of tinf = 6 and kel = 0.1.

Data was well fitted with the NODE Eq. (9), compare

Fig. 8A. The trained NODE could also simulate data for

unseen infusion rates (k
ð1Þ
in = 7 and k

2ð Þ
in = 5) with unseen

infusion times (t
1ð Þ
inf = 4 and t

2ð Þ
inf = 8) if the concentrations

and total doses were in range of the training concentrations.

The derivative versus state plot illustrates the properly

described derivative of the model, including the drop in the

derivative when infusion stops at tinf = 6, compare Fig. 8B.

Fig. 9 Data applied for training (red circles) with doses d = 50 and d
= 200 and simulation (blue triangles) with d = 100 were generated

with the original TMDD model, see panel A. Furthermore, fits of the

trained NODE Eq. (6) for the two training doses (solid red lines) and

simulation (dashed blue line) are presented. In panel B, C, and D, the
corresponding derivative versus state plot indicates that only

mechanisms that are observable in the data can be learned. Since

the measurement time-points are not dense enough to picture the

initial rapid binding, this mechanism is not learned by the NODE, as

can be seen in panel B. However, the linear elimination, transition,

and terminal elimination phase were learned well
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Application of an NODE to non-linear
pharmacokinetics

Monoclonal antibodies often exhibit non-linear kinetics.

The TMDD model in the original formulation [36–38] is an

intricate ODE, consisting of three state variables. We

consider an IV bolus administration and no distribution to a

peripheral compartment. Pooled training was performed on

data simulated with the original TMDD model at 7 time

points for two training doses (d = 50 and d = 200). Model

parameters of the original ODE were kel = 0.1, kon = 0.25,

koff = 0.01, ksyn = 0.5, kdeg = 0.25 and kint = 0.1.

The s-shaped TMDD concentration–time curve, visible

in semi-log scale, was well fitted with the NODE Eq. (6),

shown in Fig. 9A. Note that the rapid binding of the ligand

to the receptor in the original PK model was not captured

by the NODE as the simulation time points are not dense

enough to picture this drop, compare Fig. 9B. However,

linear elimination phase, transition phase, and terminal

elimination phase were well described by the NODE,

compare Fig. 9C and D. NODE simulation for an unseen

dose d = 100 matched well with simulation from the

original model. As observed concentrations range between

102 and 10-3, the WMSE Eq. (15) was applied in this

example.

Application of an NODE with known mechanistic
parts

Here, we demonstrate the power of NODEs to leverage

prior knowledge and assumptions from classical PK mod-

eling. In a first example, we assume, that a drug is elimi-

nated linearly with a first-order elimination rate. However,

no assumptions about the absorption of this drug were

made. Pooled training was performed on data from the one-

compartment PO ODE model with 8 transit compartments

for the NODE in the previous example, compare Fig. 7C.

This data was fitted with the NODE Eqs. (10, 11), compare

Fig. 10A. In a second example, first-order absorption

together with a complex, non-linear elimination is

assumed. For this scenario, pooled training was performed

on data generated with the TMDD model with extravas-

cular administration for two doses (d = 50 and d = 200).

The same TMDD parameters were used as in the IV

TMDD example with an absorption rate constant kabs =

0.15. The NODE Eqs. (12, 13) was fitted to the data and the

trained NODE was applied to simulate data for an unseen

dose d = 100, compare Fig. 10B and C.

Discussion

In this section, we discuss developed concepts and evalu-

ated applications of NODEs in pharmacometrics with the

special focus on PK analyses.

In the ‘‘Theoretical’’ section, we presented concepts for

our low-dimensional NODEs. We introduced NODEs,

where the explicit function, i.e., the right-hand side, of an

ODE is substituted with an NN. In contrast to classical PK

modeling, where an explicit mechanism is applied, NODEs

are mainly data-driven and therefore differ substantially in

two points. First, the classical approach allows to obtain

information about PK properties, e.g., interpretable PK

parameters are derived, such as clearance. An NODE does

not provide similar information. Second, all mathematical

properties of the PK model are known or can be derived

from dynamical systems theory. Therefore, it is qualita-

tively known how the developed PK model will behave for

Fig. 10 In panel A, fits (solid red lines) and simulation (dashed blue

lines) of the NODE with Eqs. (10, 11) trained on data (red circles)

generated with the one-compartment PO ODE model with 8 transit

compartments for different dose levels is shown. In panels B and C,

fits and simulation of the NODE with Eqs. (12, 13) trained on data

generated with the original TMDD model with extravascular admin-

istration for different doses is shown in linear and in semi log scale,

respectively
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simulations, e.g., for different doses or varying model

parameters where no data is available. With NODEs, the

application for simulations is more restricted, as discussed

later.

To make NODEs applicable for various PK scenarios,

we developed a tailored concept, including NODE struc-

tures derived from known principles of PK modeling. Since

the mechanism is solely learned from the data, the neces-

sary multi-dimensionality originating from modeling the

underlying mechanism is not known. Therefore, a key

concept in the presented NODE approach is the reduction

of multi-dimensional systems to a non-autonomous one-

dimensional system, compare Eq. (5). Motivated by

Appendix A1–A4, the presented basic NODE structure was

further adjusted and the inputs concentration and time were

separated into two different NNs, compare Eq. (6). As a

result, the general NODE has the advantage that the

question about the number of necessary peripheral com-

partments does not exist anymore. Further, an absorption

process was included into the NODE. Since, it is known

whether absorption process takes place or not, we extended

the NODE structure with an additional compartment for the

absorption, compare Eqs. (7, 8). The time-dependent NN in

Eqs. (7, 8) allows to also characterize strongly delayed

absorption processes. With the resulting separation of

absorption and distribution processes in the NODE, the

required NN size might be reduced and thus the potential

risk of overfitting can be mitigated. Again, as a result, the

typical question about the number of transit compartments

[39] does no longer exist with this NODE. This approach

might impact cases when one state influences the dynamics

of another state, e.g., when biliary excretion of a drug into

the absorption compartment is observed. Since this work

aims at giving a basic insight into NODEs, no such cases

were considered. Summarizing, the proposed NODEs are

partially motivated by PK principles from linear multi-di-

mensional compartmental ODE models. However, we

remark that these principles are also applied in a non-linear

NN setting. We also scratched on the surface of combining

partially known mechanisms with an NN. This further

reduces the complexity of the NODE and the number of

parameters in the NODE drastically. Hence, the potential

risk of overfitting and thus the amount of training data

required might be reduced.

In the ‘‘Methods’’ section, we presented a setup for

applications of our NODE structures in pharmacometrics.

Hence, we investigated typical NN related aspects such as

the phenomenon of overfitting and extrapolation to unseen

data, which are unfortunately inherited when applying

NNs, also in the context of NODEs. First, while an NODE

is a much more flexible approach than a classical ODE, it

also results in an increased risk of overfitting and the

potential inaccuracy when performing simulations for

unseen data. For both problems we suggested a practical

solution that proves itself in all scenarios discussed in this

manuscript. We demonstrated, that with pooled training of

the NODE, overfitting can be reduced, and the NODE

learns the underlying mechanism instead of individual PK

curves. Since we present a general approach not related to a

specific project, we did not perform hyperparameter tuning

and thus no cross validation. In addition, we assumed PK

datasets to be rather small in general and the separation

into training and validation set might even negatively

impact the model. Second, we illustrated, that NODEs can

perform simulations for unseen data, if the simulations lay

in the range of the training data, i.e., the NODEs are able to

interpolate between two training doses. However, the

inherent inability of NNs to make reasonable simulations

for data outside of the observed range represents a clear

limitation of NODEs compared to classical modeling

approaches. Although we focus on PK analysis, the pre-

sented solutions in the ‘‘Methods’’ section are of a broader

applicability for general pharmacometrics.

In the ‘‘Results’’ section, we utilized previously elabo-

rated concepts and setups for application of our NODEs in

various PK scenarios. First, our NODE structure could

describe well PK data with IV bolus administration. Due to

the high flexibility, our NODE structure can be applied to

PK data with multi-compartmental behavior or intricated

data such as PK data generated by a TMDD model. Sec-

ond, the structural changes to apply an NODE with an

absorption compartment accurately fitted PK data from an

extra vascular administration including delayed absorption.

Additionally, the NODE structure could also be adjusted to

IV infusion administration. Finally, the application of an

NODE structure with a combination of known mechanistic

parts and an NN can simplify the fit of intricated data, such

as data with TMDD behavior and extra vascular adminis-

tration. Incorporating prior knowledge mechanistically

could allow to reduce the flexibility of NODEs, e.g.,

compare Eqs. (12, 13) with Eqs. (7, 8). Therefore, this

might also decrease the risk of overfitting. In all scenarios,

the NODEs not only fitted well the PK data, but they were

able to perform accurate simulations for unseen doses

within the dose range observed in the training data.

One limitation of the presented case-studies is that we

only considered single-dose scenarios. However, due to the

implementation of our NODEs, a transition to multi-dose

scenarios would be possible with some adjustments.

However, this requires further investigation and will be

covered in a separate paper. Further limitations of the

presented work are that no covariates were included and

that only average fitting was performed, i.e., no inter-in-

dividual variability was taken into account. Both limita-

tions are topics for future work.
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A general consideration with NODEs is that with very

sparsely sampled data, no information is available between

measurements. In this case, NODEs cannot learn the entire

dynamics and might provide unrealistic predictions in

between measurement time-points while still give good

predictions for the measurements. Consequently, NODEs

might not be applicable straightforward in such scenarios.

Overall, we conclude that NODEs substantially differ

from classical PK modeling and may not substitute the task

of a classical PK analysis, where e.g., gaining information

about PK properties is one essential part. We also

emphasize that we considered a specific representation of

the NN, namely, only one hidden layer, a small number of

neurons, a one-dimensional form of our NODE structure,

and specific activation functions for basic applications. A

relaxation of this representation might even increase the

flexibility of NODEs resulting in successful modeling of

much more complex phenomena, such as drug-drug inter-

actions or metabolites with competing elimination. Hence,

the presented applications are not exhaustive and further

research work is warranted to expand use of NODEs to

other pharmacometrics situations.

Based on the present evaluation of NODEs applications

in this research work, we anticipated that future applica-

tions of NODEs will differ from typical PK analyses, e.g.,

they can be applied in situations where it is more important

to perform automated modeling tasks and handle intricate

profiles, and where no PK parameters, such as the clear-

ance, should be obtained. We further speculate that the

future of NODEs lies in the combination of mechanistic

components with neural networks, particularly in the con-

text of complex pharmacodynamic and physiology-based

modeling and simulation.

In conclusion, this research work hopefully contributes a

part to enhance understanding of how NODEs can be

applied in PK analyses and illustrates the potential for

NODEs in the field of pharmacology and pharmacometrics.

Appendix

A1: Reduction of a two-compartment model
to a one-dimensional non-autonomous system

As motivation for the reduction of the multi-dimensionality

to a one-dimensional non-autonomous system, we examine

without loss of generality a two-compartment model

d

dt
xC ¼ �kel�xC � k12�xC þ k21 � xP; xC 0ð Þ ¼ x0C; ð16Þ

d

dt
xP ¼ k12 � xC � k21 � xP; xP 0ð Þ ¼ 0: ð17Þ

The solution of the peripheral compartment Eq. (17),

see e.g., Gibaldi [40], can be substituted in Eq. (16)

resulting in

d

dt
xC ¼ �kel � xC � k12 � xC þ k21 � x0C

� k12
b� a

� exp �a � tð Þ � exp �b � tð Þð Þ
� �

; xC 0ð Þ

¼ x0C;

ð18Þ

with the usual meaning for a and b, compare e.g., Gab-

rielsson [4]. Hence, we see the concentration and time-

dependency in Eq. (18) which motivates Eq. (6).

A2: Reduction of a system with multiple transit-
compartments to a one-dimensional non-
autonomous absorption system

Consider a transit compartment structure [39, 41] for an

absorption delay, and we study without loss of generality a

two transit compartment situation:

d

dt
x1 ¼ �kt � x1; x1 0ð Þ ¼ d

V
; ð19Þ

d

dt
x2 ¼ kt � x1 � x2ð Þ; x2 0ð Þ ¼ 0; ð20Þ

d

dt
xA ¼ kt � x2 � ka � xA; xA 0ð Þ ¼ 0; ð21Þ

d

dt
xC ¼ ka � xA � kel � xC; xC 0ð Þ ¼ 0: ð22Þ

Substitution of the solutions for Eqs. (19, 20) in Eq. (21)

results in

d

dt
xA ¼ kt � kt �

d

V
� t � exp �kttð Þ � ka � xA; xA 0ð Þ ¼ 0;

ð23Þ
d

dt
xC ¼ ka � xA � kel�xC; xC 0ð Þ ¼ 0; ð24Þ

which motivates the structure in Eqs. (7, 8).

A3: Dimension reduction for general PK models

A general linear PK model can be expressed as

d

dt
xðtÞ ¼ A � x tð Þ; ð25Þ

with x ¼ x1; . . .; xNð Þ, A 2 RN;N and x 0ð Þ ¼ d
V ; 0; . . .; 0
� �

.

For the first compartment x1 the following initial value

problem can be obtained
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d

dt
x1ðtÞ ¼

XN
j¼1

a1j � xjðtÞ ¼ a11 � x1 tð Þ þ
XN
j¼2

a1j � xj tð Þ ð26Þ

and x1 0ð Þ ¼ d
V. Now we approximate the two terms in

Eq. (26) by two NNs, one in t and one in x, both with one-

dimensional input and output. Since xjðtÞ ¼ d
V � xj tð Þ, j ¼

1; . . .;N; holds with x(t) denoting the solution of Eq. (25)

with x 0ð Þ ¼ ð1; 0; . . .; 0Þ due to the linearity of Eq. (25)

[see also e.g., Eq. (18)], we obtain

x1 0ð Þ � f tNN tð Þ� x1 0ð Þ �
XN
j¼2

a1j � xj tð Þ ¼
XN
j¼2

a1j � xj tð Þ;

ð27Þ
f cNN x1ð Þ� a11 � x1 tð Þ:

This results in a general NODE structure

d

dt
x1ðtÞ ¼ f CNN x1ð Þ þ x01 � f tNNðtÞ; x1 0ð Þ ¼ x01 ¼

d

V
: ð28Þ

A similar dimension reduction process is possible for

nonlinear PK models. Consider

d

dt
x tð Þ ¼ f x tð Þð Þ

with x ¼ x1; . . .; xNð Þ, f : RN ! RN and

x 0ð Þ ¼ d
V ; 0; . . .; 0
� �

. We obtain for the first component

d

dt
x1 tð Þ ¼ f 1 x1 tð Þ; x2 tð Þ; . . .; xN tð Þð Þ

with x1 0ð Þ ¼ d
V. Let g tð Þ ¼ x2 tð Þ; . . .; xN tð Þð Þ, then we have

d

dt
x1 tð Þ ¼ f 1 x1 tð Þ; g tð Þð Þ ¼ h x1 tð Þ; tð Þ: ð29Þ

However, for general nonlinear PK models, there is no

additive structure, in contrast to linear PK models, compare

Eq. (26).

A4: Separation of concentration/state and time
dependent NNs

Consider Eq. (5) in its simplest form with nIn = 2, nOut = 1,

and nHid = 1, and with r 2ð Þ zð Þ ¼ z. Then we obtain

f NN xC; tð Þ ¼ w
ð2Þ
11 � r 1ð Þ w

ð1Þ
11 � xC þ w

ð1Þ
12 � t þ bð1Þ

� �
þ bð2Þ:

ð30Þ

We observe that both inputs, state and time, drive the

activation function r 1ð Þ. In our opinion, this introduces

disadvantageous restrictions e.g., in PK analysis, because

of three reasons: first, due to the different scales of the

input variables (time is continuously increasing while

concentration decreases with time), second, due to the

restriction of negative weights in the time-dependent NN,

and third because Eq. (18) in Appendix A1 and Eq. (23) in

Appendix A2 illustrated that also in classical modelling

concentration- and time-dependent terms are separated

when the system is reduced to a one-dimensional system.

For comparison, consider the right-hand side of Eq. (6)

in its simplest form with d ¼ V ¼ 1. Then we obtain

f C1NN xCð Þ þ f C2NN tð Þ ¼ w2
11 � r 1ð Þ w1

11 � xC þ b
1

� �
þ b

2 þ bw2
11

� br 1ð Þ bw1
11 � t þ bb1

� �
þ bb2:

A5: A brief example python code
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