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Abstract
Covariate identification is an important step in the development of a population pharmacokinetic/pharmacodynamic model.

Among the different available approaches, the stepwise covariate model (SCM) is the most used. However, SCM is based

on a local search strategy, in which the model-building process iteratively tests the addition or elimination of a single

covariate at a time given all the others. This introduces a heuristic to limit the searching space and then the computational

complexity, but, at the same time, can lead to a suboptimal solution. The application of genetic algorithms (GAs) for

covariate selection has been proposed as a possible solution to overcome these limitations. However, their actual use during

model building is limited by the extremely high computational costs and convergence issues, both related to the number of

models being tested. In this paper, we proposed a new GA for covariate selection to address these challenges. The GA was

first developed on a simulated case study where the heuristics introduced to overcome the limitations affecting currently

available GA approaches resulted able to limit the selection of redundant covariates, increase replicability of results and

reduce convergence times. Then, we tested the proposed GA on a real-world problem related to remifentanil. It obtained

good results both in terms of selected covariates and fitness optimization, outperforming the SCM.

Keywords Artificial intelligence � Machine learning � Genetic algorithm � Covariate selection � Automatic model building �
Population PK/PD model

Introduction

Pharmacokinetics (PK) and pharmacodynamics (PD) of a

drug can significantly vary among individuals and/or

groups of individuals. PK/PD modelling combined with a

population (non-linear mixed effect—NLME) approach

allows to account for the observed variability. The inclu-

sion and quantification of individual-specific covariates

increase the deterministic explanation of heterogeneity

among individuals and facilitate its understanding. There-

fore, covariate analysis is routinely performed during

population PK/PD model building [1]. Accordingly, sev-

eral algorithms for covariate selection are currently avail-

able [2–8]. Among them, stepwise approaches, in which

covariates are added one-by-one, are the most widely used

[9]. Although their application is widespread and entren-

ched in the pharmacometric field, this class of methods

presents some non-negligible limitations [10]. Stepwise

procedures are greedy algorithms which attempt to solve

optimization problems by making locally optimal choices

at each step. Consequently, they could return suboptimal

solutions in some cases [9]. Additional problems could

arise from the presence of moderate to high correlations

between covariates and from the fact that the number of

tested candidate covariates could affect the number of

covariate included in the model [11].

Artificial intelligence (AI) and machine learning (ML)

are strongly established in many research fields, and are

becoming popular also in pharmacometrics [12–16]. AI/

ML methods have been successfully adopted to support

different tasks during the drug discovery and development

process. For example, a plethora of quantitative structure–

activity or property relationship (QSAR and QSPR) models

based on ML has been proposed to predict physio-chemical

characteristics as well as in vivo properties of candidate
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drugs [17–20]. In addition, AI/ML approaches were

applied to identify complex associations and predict drug-

drug interaction [21], or to design optimal strategies for

precision dosing and medicine [22]. Among the successful

applications of AI/ML to pharmacometric problems, the

automatic model building and covariate selection is one of

the most promising [23, 24].

Genetic algorithms (GAs) are ML methods inspired by

the theory of natural selection [25], and they have been

proposed as a valid alternative to the standard stepwise

approaches for both automatic model building and

covariate selection [16, 26–28]. The strength of the GA is

that it is a global search method able to explore the entire

search space of the candidate models, which represents all

the hypotheses to be tested (e.g., number of compartments,

covariates, random effects). However, the actual applica-

tion of GAs during the PK/PD model building process is

yet limited due to the extremely high computational costs

and some convergence issues.

In this paper, we proposed a new GA for covariate

selection to cope with and overcome some challenges

associated with the current available algorithms

[16, 26–30]. In particular, several strategies specifically

designed to reduce computational times, improve conver-

gence and limit the selection of highly correlated covariates

were implemented. The proposed GA was applied on a

simulated case study and on a real-world one related to

remifentanil [31], demonstrating better performances

compared to both previous implementations of GA and

stepwise covariate modelling (SCM) as implemented in

Perl-speaks-NONMEM (PsN).

Theoretical

Genetic algorithm

GA is an iterative and heuristic solution-search, inspired to

evolutionary processes, to identify solutions to a given

optimization problem [32]. GA is based on the metaphor of

the Darwinian theory of evolution: an individual within a

population must adapt itself to the environment to survive;

similarly, a solution within a set of possible solutions must

be adapted to solve the optimization problem to which it is

associated [33]. The terminology used to describe the

characteristics of genetic algorithms draws parallels with

biology. The set of possible solutions is referred to as

population and its size, which is defined beforehand, is

referred to as population size. Each possible solution in the

population, called individual, is represented by a unique

codification, called chromosome, that summarizes all the

characteristics of the individual. A chromosome is com-

posed by genes, each of which codes for a specific somatic

trait. The term genotype refers to the particular set of genes

that characterize an individual and it is closely related to

the concept of phenotype, which represents the corre-

sponding set of somatic features. Each iteration of a GA is

called generation. At each generation, only a subset of the

population manages to survive and reproduce, creating new

individuals by randomly recombining and mutating their

genes. In this process, new features can emerge from the

population, that prove to be beneficial for the survival of

the individuals. These advantageous characters will there-

fore tend to be preserved and passed on to the offspring.

After many generations, the population will evolve towards

better individuals, which will be characterized by a higher

fitness, i.e. a higher ability to adapt to the environment [32].

Genetic algorithm for covariate selection
in population PK/PD modeling

In the context of covariate selection for population PK/PD

modelling, the solution space of a GA is defined as the set

of all possible PK/PD models with a different covariate

structure. Each chromosome represents a candidate

covariate model, and a population of chromosomes (set of

models) is evaluated at each generation. The algorithm

iteratively combines different covariate structures to find

which covariate model better describe the data, trying to

find the best trade-off between describing the data and

limiting the number of selected covariates. The use of GA

for covariate selection in population PK/PD modelling was

first proposed by Bies et al. in 2006 [29], whose work

become a reference in the field. Its application was further

investigated to perform both covariate selection and auto-

matic full model building in several subsequently works

[16, 26–28, 30, 34], many of which from the same group.

GA showed good performances when compared to other

automatic model selection algorithms in all the tested case

studies. However, up to now its use in the daily work is still

limited due to some relevant disadvantages. Although GAs

are able to find a very good solution (local optimum), it

cannot guarantee to identify the best one (global optimum)

in a reasonable time due to the extent of the search space.

This limitation could be outdated by increasing the popu-

lation size to explore a broader portion of the search space.

However, increasing the number of chromosomes in the

population leads to an increase of the already high com-

putational load that represents another relevant disadvan-

tage of GA. Indeed, at each generation for each

chromosome of the population the corresponding model

has to be estimated on a given dataset to compute the value

of the fitness function, which could require a lot of time. In

this work, several strategies to address these challenges

have proposed and successfully implemented.
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Methods

Starting from the algorithm proposed by Bies et al. [29], we

developed a new GA specifically designed for covariate

selection. The elements composing our GA as well as the

implemented strategies are described in the following.

Briefly, a configuration file, has to be defined by the user,

then, the GA can be executed. First of all, the algorithm

creates an initial population of chromosomes coding for the

candidate covariate models (generation 0). Chromosomes

are encoded with a suitable NM-TRAN script file of

NONMEM and estimated on a given dataset through PsN.

The outputs of the identification process are used to com-

pute the value of the fitness function. Accounting for fitness

values, a new generation of chromosomes is created

applying a set of genetic operators. The process is repeated

until the stop criteria are satisfied. A flowchart summariz-

ing the steps of the proposed GA is reported in Fig. S1 of

Supplementary Materials S1.

Implementation details are reported in Supplementary

S1. In addition, GA scripts are available and can be freely

downloaded for academic research purposes at http://

aimed11.unipv.it/GAscript/.

Elements of the genetic algorithm

The chromosome

Chromosomes, representing the possible covariate models,

are coded by a binary representation. Every chromosome is

comprised of several genes, each identifying a specific

parameter-covariate pair. The length of each gene is given

by lgene ¼ log2N (rounded up to the higher integer) where

N is the number of parameter-covariate relationships being

tested. As in the SCM function of PsN, for continuous

covariates the linear, exponential, piece-wise linear and

power relationships were considered. Differently for, for

categorical covariates the options are not included or lin-

early included with an extra parameter added for each but

the most common category. Therefore, genes coding for

categorical covariates are always composed by 1 bit

(0 = ‘‘no relationship’’, 1 = ‘‘linear relationship’’). Instead,

the bits composing genes for continuous covariates range

from 1 to 3 depending on the number of possible covariate

models that the user wants asks to test through the con-

figuration file: {0, 1} for two types of parameter-covariate

relationship, {00, 01, 10} for three types, {00, 01, 10, 11}

for four types and {000, 001, 010, 011, 100} for five.

The length of the chromosome lchr depends on the length

of the genes and on the number of covariate-parameter

pairs to be tested. For example, let’s consider having two

parameters, p1 and p2, two continuous covariates, c1 and c2,

and a categorical covariate, c3, to test on both p1 and p2
with all the possible relationships. Thus, a possible chro-

mosome for a candidate solution is reported in Fig. 1, and

lchr is 14 bits. The specific combination of the 14 bits is the

genotype.

Genotype–phenotype mapping and NM-TRAN control
stream creation

As exemplified in Fig. 1, each chromosome is decoded in a

set of specific covariate-parameter relationships, the phe-

notype. The genotype–phenotype mapping (i.e., the trans-

lation of genes composing a chromosome into the

corresponding covariate-parameter relationships) is not

defined by default, but it depends on the instructions given

by the user through the configuration file.

The decoded chromosome is then translated into a NM-

TRAN control stream file of NONMEM that includes the

base model and the covariate model. Based on information

containing in the configuration file where the user specifies

the covariate-parameter relationship to consider, the

implemented workflow automatically writes the file. For

each parameter of interest, first the algorithm considers the

covariates to be test, distinguishing between continuous

and discrete covariates, as different types of relationships

are available for the two cases. Then, the effect of multiple

covariates on a single parameter is implemented through a

multiplicative model.

The model fitness function

In order to avoid overfitting, the GA search has to be

guided by the trade-off between the goodness of data fit

and the parsimony of model parameters. In particular,

highly correlated covariates on the same model parameter

have to be avoided. Accordingly, the fitness function is

composed by three components:

Fig. 1 Example of a chromosome coding for a covariate model in

which 2 continuous and 1 categorical covariates are included on first

parameter and 1 continuous covariate on the second parameter
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• the objective function value (obj) resulting from model

identification that represents the ability of the model to

describe the data;

• a penalty term proportional to the number of covariates,

N, included in the model;

• a penalty term, ic, that summarizes the correlations

between continuous covariates on the same parameter

and that is defined as

ic ¼ 1

2

Xnpar

k¼1

Xncov;k

i 6¼j¼1

corri;j

where npar is the number of parameters affected by a

covariate, ncov, k the number of covariates included on

parameter k and corri,j the correlation between i-th and j-th

continuous covariates included on parameter k :

The fitness of the cth chromosome is, thus, defined as:

fitc ¼ � objc þ 3:84 � Nc þ iccð Þð Þ

where Nc represent the number of parameters required by

the covariate relationships included in the cth chromosome

and the weight 3.84 is selected because it represents the

value of Chi Square distribution for a significance level of

0.05 and one degree of freedom.

Genetic operators

The algorithm is guided towards a solution to the given

problem through the application of a set of genetic opera-

tors: selection, cross-over, mutation and elitism. The

operators act stochastically, i.e., each is applied with a

given probability.

Selection This operator selects the individuals within a

population which will form the mating pool for the

reproductive process. Chromosomes with a higher fitness

value have a higher probability to be selected to generate

the new offspring, therefore focusing the research on

promising regions of the search space. In this work, the

tournament selection [35], characterized by the selection

pressure parameter ps 2 ½0; 1�; has been chosen. According

to this selection strategy, first, two individuals are ran-

domly sampled with re-entry within the population. Then,

the two chosen chromosomes participate in a tournament: a

random number between 0 and 1 is generated; if the value

is lower than ps the chromosome with the greatest fitness

wins, otherwise, the other one is selected. The winner

becomes one of the two parents which will create two

offspring for the next generation. The process is repeated

nchr=2 times (where nchr is the number of chromosomes in

the initial population), so that the new population will have

the same size of the previous one. This type of operator,

unlike other methods, does not restrict the possibility of

recombination to only chromosomes with a high fitness.

This is advantageous especially when the variance of the

fitness is very high, to avoid losing potential well per-

forming solutions from the combinations of individuals

with a low fitness.

Crossover To generate the new offspring, the chromo-

somes in the mating pool undergo potential recombination

processes with probability pc. A single-point crossover has

been applied: the two parent chromosomes are cut in a

single randomly selected position and the two resulting

parts of the parents are exchanged to form the new

individuals.

Mutation Once an offspring has been created, it under-

goes the mutation process in which, with very low proba-

bility pm, each bit of the chromosome could switch (single-

bit inversion mutation). The mutation operator represents

the main variation tool.

Elitism Through the elitism process a given percentage

(% e) of the best individuals in the population of the ith-

generation is copied and inserted directly into the (i ?1)th

generation. This strategy ensures that the best chromo-

somes are not lost throughout generations.

Codification issues after recombination
and mutation processes

Crossover and mutation can produce chromosomes with

genes that do not encode for any type of covariate-pa-

rameter relationship. To overcome this problem, the non-

coding genes are replaced by the genes with the highest

frequency in the best chromosomes of the prior generation.

Initial population

In this step, the initial population of candidate solutions is

generated. Initialization is generally based on a random

generation of chromosomes. However, this may limit for

chance the search space explored by the GA and it may

affect the convergence performance, especially when the

population size is small with respect the search space. To

overcome this issue, in this work, a novel strategy based on

hierarchical clustering [36] has been proposed to maximize

the heterogeneity between the chromosomes of the initial

population, therefore maximizing the portion of the rep-

resented search space from the beginning, while keeping

the population size relatively small. The steps to generate

the initial population, represented in Fig. 2, are:

• randomly generate n=20*nchr chromosomes, where nchr
is the desired population size;
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• calculate the matrix of the distance between chromo-

somes. The Jaccard distance, Jd, is used. Given a pair of

binary vectors (i, j), Jd is defined as:

Jd i; jð Þ ¼ bþ c

aþ bþ c

where a is the number of bits equal to 1 in both i and j; b is

the number of bits equal to 0 in object i and to 1 in object j,

and c is the number of bits equal to 1 in object i and to 0 in

object j;

• perform the hierarchical clustering on the basis of that

distance matrix;

• cut the dendrogram at nchr clusters;

• randomly select one chromosome from each cluster;

• pool the nchr selected chromosomes to form the initial

population.

In Supplementary S2, an example of random and clus-

ter-based initial population distribution is reported as proof

of concept.

Stopping criteria and optimal solution selection

GA stops automatically when it reaches the pre-defined

number of generations (d). Then, the model with the

maximum fitness value among all the chromosomes that

has been assessed during the search is selected as optimal

model. Choosing the appropriate value of d can be chal-

lenging and depends on the complexity of the problem.

Therefore, a log-file reporting aggregate statistics of fitness

values, i.e., mean, range, variance, and standard deviation,

is available for monitoring purpose and updated at the end

of each generation. Monitoring the convergence dynamics

reported in the log file, at any time the user can choose to

stop or to continue the GA, also extending the number of

generations.

Improving GA efficacy: heuristics for time-issues

The computational cost is one of the major limitations of

GAs when applied to covariate selection or automatic

model building. In this work, three strategies have been

adopted to speed-up the execution. First of all, the algo-

rithm implementation allows the parallelization of the

chromosome processing in an arbitrary number of cores.

This design strategy is fundamental to leverage

cloud/cluster computing services or multi core architec-

tures and take full advantage of the computational power of

the selected infrastructure.

Further, preliminary results showed that, during the

search, the GA also tested covariate models with a very

complex structure that required a lot of time to be esti-

mated, also because the increased number of parameters.

Studying the correlation between the length of the model

execution and the optimality of the covariate structure, we

observed that models with the longest executions times

generally performed poorly, i.e., were characterize by low

value of fitness function. Therefore, the GA could be sig-

nificantly slowed down by executing models that are far

from the optimal solution. To overcome this issue, it was

decided to stop models with longer estimation times. The

timeout command-line utility in Linux was used to this

scope. Starting from the second generation, all the models

for which the estimation process is longer than a threshold

tth are forcefully terminated, and a very low fitness value is

assigned to the corresponding chromosomes. tth is set equal

to the 95th percentile of the execution times of the models

that have successfully converged in the previous genera-

tions and is updated at each generation.

Finally, the log-file containing information about the

composition of all generated chromosomes (updated at the

end of each generation) is used as a lookup table. The file is

consulted whenever a new chromosome is generated: if the

corresponding model has been already run, the estimation

process is not repeated, and the previously computed fit-

ness value is simply reused.

Evaluation of the new GA on two case studies

The proposed GA was first developed and tested on a

simulated case study. First, a data rich scenario was used to

assess all the new design options introduced in the

Fig. 2 Schematic representation of the hierarchical clustering process

to generate the initial population
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algorithm. In particular, the effects of including the icc
penalty in the fitness function, of the clustering population

initialization and of the timeout utility were evaluated. To

this aim, four different implementations of GA designed

with an incremental approach were considered. Starting

from a base version of the algorithm (Base GA) that

mimicked the GA originally proposed in the literature

[26, 28], the icc penalty, clustering initialization and

timeout utility were included incrementally. The different

design options were evaluated in terms of (i) optimality of

selected covariate model compared to the ‘‘true model’’

used to generate the simulated data, (ii) robustness of

converging to the same optimal solution and (iii) compu-

tational efficiency.

Then, the performances of the Complete GA, including

the icc penalty, clustering initialization and timeout utility,

were further assessed on several simulated scenarios

characterized by different data richness, to evaluate the

robustness of the results with respect to different generated

datasets and more realistic sparce sample scenarios.

Finally, the Complete GA was tested on a real-world

case study related to the remifentanil [31], and its perfor-

mances were compared with those of the SCM as imple-

mented in PsN.

Simulated case study

The same simulated case study used by the Bies’s group

[26] was considered. It consisted of a 1-compartment

model with linear elimination, describing the pharma-

cokinetics of a generic drug after a single intravenous (iv)

administration. The model was parameterized in terms of

volume of distribution V, and clearance CL. Log-normally

distributed inter-individual variability was assumed on

both the parameters. The covariate effects added to the

parameters were creatinine clearance (CRCL) and body

mass index (BMI) with and exponential equation on V, and

body surface area (BSA) and sex (SEX) on CL with

exponential and linear model, respectively.

Simulated individuals were characterized by the set of

covariates included in the ‘‘true model’’, i.e., BMI, BSA,

CRCL and SEX, and by a set of confounding covariates

(spurious), i.e., age (AGE), creatinine (CR), height (HT)

and weight (WT). First, SEX was sampled from a discrete

uniform distribution (0,1). Then, BMI, AGE, CR, HT were

supposed to be uncorrelated given the SEX and were

sampled from normal (AGE) and lognormal distributions

(BMI, CR, HT). In particular, the mean of HT distribution

differed for male and female. Finally, the dependent

covariates, i.e., WT, BSA, CRCL, were computed as

function of the uncorrelated covariates: WT = BMI�HT2 ,
BSA =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HT � 100 �WT=3600ð Þ

p
and CRCL = 140

AGE�WT/(72 * CR). Parameters of the covariate distribu-

tions together with details about the simulated virtual

population are reported in the Supplementary Material S3.

Drug concentration values were simulated at 0.25, 0.5,

1, 2, 3, 6, 10 and 24 h after dose assuming a combined

residual error model. Model parameter values used for

simulation are reported in the Supplementary Material S3.

To consider the entire search space, all the covariates

were possible tested on each parameter considering all the

possible relationship types, as specified in the configuration

file reported in Supplementary S3. The hyper-parameters of

the algorithm were set to the values reported in Table 1.

Remifentanil case study

Remifentanil is an opioid analgesic drug with a rapid onset

and recovery time; it is used for sedation and, in combi-

nation with other drugs, for general anaesthesia.

Remifentanil is generally administered through an iv

infusion at a constant rate between 1 and 8 lg kg-1 min-1

for 4–20 min. Its PK had been previously assessed in 65

healthy adults [31]. For each patient, several covariates

were available in the dataset: five continuous (AGE, HT,

WT, BSA, Lean Body Mass—LBM) and 1 categorical

(SEX). The PK was described by a 3-compartment model

with lognormal inter-individual variability on all the

parameters (CL, V1, Q2, V2, Q3, V3) and a proportional

residual error.

As already done for the simulated case study, to con-

sider the entire space of solutions, all the candidate

covariates were tested on each model parameter consider-

ing all the possible relationships, as detailed in the con-

figuration file reported in Supplementary S4. GA was

applied using all the strategies described in the methods

section, including the clustering population initialization

and the timeout strategy. The hyper-parameters of the

algorithm used for this case-study are reported in Table 1.

The same covariate search was performed with the SCM

function of PsN considering both the search directions and

p-value threshold equal to 0.05 and 0.01 for forward and

backward direction, respectively.

Results

Simulated case study

A rich dataset including 200 subjects and 8 samples for

subject was simulated and used to evaluate the new pro-

posed heuristic introduced in the GA. To assess the

robustness of the algorithm among several runs, each ver-

sion of the GA was executed 20 times and the best selected

covariate model (i.e., that with the lowest fitness value)
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across the 20 runs was considered. All the GA versions

identified the same optimal model, reported in Table 2, at

least once. Model parameter estimates are shown in

Table 3 and compared with the ones of the base model

(without covariates) and of the true model re-estimated on

the simulated dataset.

The GAs correctly selected three of the four covariates,

i.e., CRCL and BMI on CL and SEX on V, but missed to

identify the effect of BSA on V. In addition, the effect of

CRCL on CL was modelled by a piece-wise linear rela-

tionship instead of an exponential one. No spurious

covariates were included in the model, despite the high

correlations between candidate covariates. Even if the

solution identified by the GAs was slightly different from

the true covariate model it resulted better than the true

model in terms of objective function value (- 6528.256 vs

- 6531.31) and AIC (- 6516.256 vs - 6519.31). In

addition, as it can be noticed from Table 3, parameter

estimates of the true model and of GA suggested model

were in good agreement. The estimated inter-individual

variability on CL and V (random effect) was comparable.

To investigate why the BSA was not automatically inclu-

ded on V by the GAs, it was manually added to the selected

model with an exponential relationship and the model re-

estimated. A non-significant improvement in the AIC (-

6519.78 vs - 6519.31) was obtain, suggesting that the

effect of the true covariate could be too weak to be detected

in this single simulated scenario.

Once the best solution across the 20 runs had been

assessed, we considered the robustness of the different GA

implementations of converging to it. As reported in

Table 4, the Base GA selected the best solution in 55% of

the runs, while in the 45% of the cases it converged to more

complex models characterized by more spurious covariates

and a lower AIC. Each of the new strategies introduced in

the algorithm increased the probability of GA to converge

to the best solution. The percentage of runs selecting the

optimal model raised from 55 to 65% introducing the icc
penalty in the fitness function, further increased to 80% due

to the clustering population initialization and, finally,

reached 95% (19/20) when also the timeout utility was

include (Complete GA).

Regarding the computational time, no significant dif-

ferences were observed in terms of mean execution time to

perform 50 generations among the different approaches.

However, the introduction of clustering population initial-

ization significantly reduced the number of generations

needed to reach the optimal solution (26.75 vs 32.75).

Resulting in a 12.9% reduction of the mean execution time

needed to reach the best solution. The timeout strategy

gave an additional reduction of - 2.9% in computational

time.

Finally, the evolution of the average maximum fitness

value across different runs is reported in Fig. 3. Since the

fitness function of the new proposed versions of GA dif-

fered from the one of the Base GA, due to the introduction

of the icc penalty, results were compared considering both

the fitness function definitions. It is worth noting that in

both the cases the Complete GA outperformed the Base

GA.

In summary, the Complete GA, due to the three novel

heuristics here introduced, outperformed the Base GA,

inspired to literature algorithms [28], demonstrating higher

performances in robustly and efficiently converging to a

better solution.

After the assessment of the improvement provided by

the new design options, we evaluated the robustness of the

Complete GA performances with respect to (random)

dataset generation and the data richness (sample per

Table 1 Value of the hyper-parameters of the GA used for the simulated and the remifentanil case-study

Hyper-parameter Definition Simulated case study Remifentanil case study

ps Selection pressure parameter 0.75 0.75

pc Crossover probability 0.7 0.7

pm Mutation probability 0.025 0.025

% e Percentage of chromosomes preserved by elitism 10% 10%

nchr Number of chromosomes in the population 30 50

#Gen Number of generations 50 150

Table 2 Covariate model structure of the true model and of the

optimal solution selected by the GA

Model parameter Covariates

True model GA solution

CL CRCL-exponential CRCL- piece-wise linear

BMI-exponential BMI-exponential

V BSA-exponential SEX-linear

SEX-linear
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subject). To this end, first we generated 20 replicates of the

rich simulated dataset (200 subjects, 8 samples per sub-

ject). Then, we considered two additional scenarios with

sparser data, sub-sampling 5 (0.25, 0.5, 2, 6, 24 h) or 3

(0.25, 2, 6 h) samples per subject from the rich datasets.

For each replicate and scenario, the Complete GA was run,

and results summarized across the replicates of the dataset

(see Table 5).

First, we evaluated the covariate selected by the GA

compared to the true model. As reported in Table 5, the

Complete GA was able to consistently identify the true

covariate structure across the replicates of the dataset and

unrespect to data richness. Indeed, for the rich data sce-

nario the GA solution always included at least three of the

four true covariates and only few spurious covariates (1.3

in average). In agreement with previous results, in almost

all the replicates of the dataset the GA correctly included

the CRCL and BMI on CL and SEX on V. Differently, the

BSA-V relationship was more challenging to be identified,

however, it was correctly selected in the 40% (8/20) of the

replicates. Even when slightly different from the true

covariate model, the GA solution was generally better than

the true model in terms of AIC. This finding is not sur-

prising. Finally, equivalent results were obtained for the

two scenarios characterized by sparser data (5 and 3 sam-

ples per subject), demonstrating that the Complete GA was

robust also respect to the data richness.

In addition, the GA performances relating to the number

of generations needed to reach the optimal solution and

computational time required were not significantly

affected.

More detailed results are provided in the Supplementary

S5.

Table 3 Parameter estimates for the base model (without covariates), the true model and the model selected by the GAs

Parameter Base model (without

covariates)

True model (estimated on the simulated

dataset)

GA–

solution

CL 0.654 0.608 0.528

V 1.94 2.28 2.34

BMI on CL (exponential) – 0.224 0.232

CRCL on CL (exponential) – 0.272 –

CRCL on CL (piece-wise linear–1) – – 0.0162

CRCL on CL (piece-wise linear–2) – – 0.543

BSA on V – 0.0676 –

SEX on V – - 0.347 - 0.32

CL—inter-individual variability (random

effect)

0.371 0.2 0.196

V—inter-individual variability (random effect) 0.299 0.25 0.256

Correlation between CL and V 0.0766 0.0497 0.048

Additive error 0.10 0.106 0.106

Proportional error 0.000365 0.00036 0.000361

OBJ - 6388.597 - 6528.256 - 6531.310

AIC - 6384.597 - 6516.256 - 6519.310

Table 4 Summary statistics on the 20 runs of the GA in the different conditions

Base GA Updated GA—version

1

Updated GA—version

2

Complete

GA

Correlation penalty x x x

Clustering initialization x x

Timeout utility x

Runs selecting the best solution 55% 65% 80% 95%

Mean execution time for 50 generations 63.6 min 62.8 min 62.5 min 60.8 min

Mean number of generations needed to reach the optimal

solution

32.75 31.23 26.75 27.15

Mean execution time to reach the optimal solution 45.2 min 43.9 min 38.5 min 37.2 min
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Remifentanil case study

The complete version of the GA proposed in this paper was

then applied on the remifentanil case study and compared

to the SCM. To allow comparison with GA results, we

asked the SCM to test all the candidate covariates on each

model parameter considering all the possible relationships.

The choice of testing a range of model alternatives (i.e.,

linear, hockey-stick, exponential and power models) for

each continuous covariate introduced a dependence of the

SCM results on the order in which the parameter-covariate

relationships were tested. Therefore, the SCM was

executed multiple times changing in a combinatorial way

the order in which the relationships for each covariate-

parameter pair were tested to ensure that SCM results were

not biased by the starting points and to increase the like-

lihood of finding the global optimum. To increase com-

parability of the results, also the GA was executed 10

times. The overall best solution (in term of AIC) identified

by the GA and SCM is reported in Table 6. The two

covariate models were very similar, with differences only

for the covariates included on CL (WT by GA and BSA by

SCM) and on V3 (HT, AGE and SEX by GA and LBM by

SCM).

Fig. 3 Evolution of the average maximum fitness over generations (over 20 runs of the algorithm). In violet the Complete GA, in light-blue the

version 2 of the GA, in green the version 1 of the GA and in red the Base GA. In black the true model (Color figure online)

Table 5 Summary statistics about covariate model selected by the Complete GA on 20 replicates of three simulated scenarios

8 samples/id 5 samples/id 3 samples/id

True covariates*

Runs including CRCL on CL 85% 75% 80%

Runs including BMI on CL 95% 95% 95%

Runs including BSA on V 40% 45% 55%

Runs including SEX on V 100% 100% 85%

Average number of included covariates [25th p, 75th p] 3.2/4 [3, 4] 3.15/4 [3, 4] 3.15/4 [3, 4]

Spurious covariates

Average number of included covariates [25th p, 75th p] 1.3 [1, 2] 1.25 [0, 2] 1.2 [0, 2]

Covariate model optimality

Number of cases where AICGA solution B AICtrue model 18/20 17/20 19/20

Computational efficiency

Mean execution time for 50 generations (CV%) 54.8 min (5.2%) 53.9 min (4.4%) 53.4 min (4.2%)

Mean number of generations needed to reach the optimal solution (CV%) 28.57 (37.4%) 27.7 (31.4%) 30.1 (38.3%)

Mean execution time to reach the optimal solution (CV%) 37.6 min (28.4%) 32.1 min (28.5%) 33.51 min (32.9%)

*Unrespect to the type of covariate-parameter relationship
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Comparing the AIC value, the best model selected by

the GA was slightly better (slightly lower AIC) than the

best solution identified by the SCM (4031.48 vs 4033.74)

among the 24 runs. However, the solution provided by the

SCM approach was relevantly influenced by the order of

the shape of relationships in which the candidate covariates

were tested. Indeed, considering all the 24 SCM runs, the

AIC of the selected models ranged from 4033.74 to

4151.23. On the other hand, even if also the GA solution

varied among different runs due to the stochasticity of the

evolutionary process, the AIC range of the models selected

by the GA was narrower, from 4031.48 to 4042.9 (Fig. 4).

The structure of the models selected by the GA in each run

are reported in Supplementary S4.

Discussion

GA has been suggested as a useful tool for automatic

covariate selection in population PK/PD modelling, and

good performances have already been obtained

[16, 26, 27, 34]. However, some relevant limitations pre-

vent its actual use in the daily pharmacometric modelling

activity. In this work, a new GA for covariate selection has

been proposed. The structure of the developed algorithm

was inspired by the GAs already available in the literature

for model building and covariate selection (Base GA).

However, new strategies were proposed to overcome issues

encountered in the previous works, with particular focus on

the risk of falling in a local minimum, the high computa-

tional load, and the tendency of including highly correlated

covariates.

The size of the chromosome population is an important

hyper-parameter of GA, and it can significantly affect GA

performances and efficiency. Indeed, if the population

dimension is too limited, GA would explore a reduced

portion of the search space, with consequent increasing in

the risk of falling into a local minimum. Otherwise,

increasing the population size leads to a higher computa-

tional load. In this work, a strategy based on hierarchical

clustering has been proposed to maximise the heterogene-

ity of the initial population and, thus, widen the region of

the search space explored by the GA while maintaining the

same number of chromosomes. The advantages of the

clustering approach were demonstrated by comparing the

result of the algorithm with and without initialization

strategy. The non-random population initialization

improved the ability of the GA to find the best solution (see

Table 4).

With regard to computational load, GA was allowed to

process chromosome in parallel with an arbitrary number

of cores. In addition, a timeout utility has been imple-

mented to early stop the run of non-promising candidate

models, using prior information on the execution time that

a model generally required to be estimated for the con-

sidered problem in a given hardware architecture. Indeed, it

has been observed that the most promising chromosomes

are associated with a lower execution time. When applied

Table 6 Covariate model

structure of the overall best

solution selected by GA and

SCM

Model parameter Covariates

scm solution Complete GA solution

CL AGE—exponential AGE—exponential

BSA—exponential WT—exponential

V1 LBM—exponential LBM—exponential

Q2 AGE—exponential AGE—exponential

V2 AGE—exponential AGE—exponential

SEX—linear SEX—linear

Q3 AGE—piece-wise linear AGE—piece-wise linear

V3 LBM—exponential AGE—exponential

HT—piece-wise linear

SEX—linear

Fig. 4 Boxplot of the AIC score for the model selected by different

runs of GA (Pink box) and SCM algorithm (Blue box) (Color

figure online)
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to the simulated scenario, the introduction of the timeout

strategy did not significantly decrease the computational

time. However, it significantly improved the GA conver-

gence performances, allowing to select the best solution in

95% of the runs instead of 80% (as shown in Table 4). The

lack of improvement in the execution time likely followed

by the fact that, due to the simplicity of the considered case

study (linear one-compartment model), the difference

between the execution times of a good and a bad model

was narrow. When applied to more complex scenarios, the

timeout strategy is expected to have greater impact on

running times. As proof of concept, 10 generations of the

GA-version 2 (without the timeout utility) are performed

on the remifentanil case study and compared with 10

generations of the complete GA. It is observed that the time

needed by the GA-version 2 is 19.7% longer than the time

required by the complete version of the algorithm (542.9 vs

649.9 min). The observed 19.7% increase of computation

time is much larger than the one observed in the simulated

case study where the GA-version 2 need only 2.9% longer

time than the time required by the complete GA in per-

forming 50 generations (62.5 vs 60.8 min). The effect of

the timeout utility is then surely made less pronounced by

the parallel execution of several chromosomes, indeed,

even without the timeout strategy, the algorithm can pro-

ceed despite some cores being stacked in solving an

unpromising chromosome.

To avoid the introduction of highly correlated covariates

on the same parameter, a penalty coefficient proportional to

the covariate correlation was introduced in the definition of

the fitness function. This penalty had a significant impact

on guiding the GA through the selection of simpler models.

Indeed, when the correlation penalty was removed, in 45%

of the runs GA selected sub-optimal models including

several spurious covariates characterized by high correla-

tions. The issue was already highlighted by Sherer and co-

authors [26]. Indeed, in the same simulated case study here

considered, the GA proposed by Sherer et al. identified a

solution including three of the four true covariate rela-

tionship (i.e., CRCL and BMI on CL and SEX on V) and

three spurious ones. To mitigate this problem the authors

increased the point penalty per covariate included in the

model and adding a user defined penalty for highly corre-

lated parameters. The approach proposed in this work has

the advantage to be user independent.

Finally, the complete version of the GA was tested on

the real case study of remifentanil [31]. This example has

been used, among several others, in the work of M. Prague,

M. Lavielle [7], in which a new tool for automatic model

building is proposed and compared with SCM and Con-

ditional Sampling for Stepwise Approach (COSSAC), and

in which the best solution was provided by SCM. In our

work, both GA and SCM were run several times. On the

one hand performing multiple runs allowed to account for

the stochastic nature of GA and on the other it ensured that

the SCM results were not affected by the initial conditions.

Indeed, it was observed that the model selected by SCM

was strongly affected by the order in which the covariate-

parameter relationships were tested. This dependence

derived from the specific choice of testing multiple model

alternatives (i.e., linear, hockey-stick, exponential and

power models) for each continuous covariate-parameter

combination. Testing such a range of covariate-parameter

relationships is not recommended in the every-day practice

of covariate model building, thus, performing multiple runs

of SCM is not necessary in the standard SCM usage.

However, in this work we exceed the scope of the daily

practice in covariate selection and challenged the GA and

SCM to identify the optimal covariate model without the

need of restricting the space of possible solutions by

introducing a priori assumptions on the covariate-parame-

ter combinations or the types of relationship to test. In this

context, the GA outperformed the SCM according to the

best selected model among different runs (AIC of 4031.48

vs 4033.74), and according to the AIC distribution of the

selected models. Indeed, even if also the GA identified

different solutions among the different runs, the selected

models were almost equivalent both for structure and

performance (AIC).

In summary, in this work a new GA for covariate

selection has been proposed, further confirming that GA is

an attractive approach, which could compete with more

standard methods for covariate selection. When applied to

a real case study, our GA proved to perform better than

SCM by selecting models with greater fitting perfor-

mances. In addition, the strategies proposed, i.e., the pop-

ulation initialization by hierarchical clustering to limit the

risk of falling in local minimum, the parallel implementa-

tion and timeout utility to manage computational load, and

the correlation penalty to avoid inclusion of high correlated

spurious covariates, represented relevant improvements

compared to GAs previously proposed.

Some additional considerations must be addressed

regarding the computational load. The total runtime of the

GA strongly depends on GA hyperparameters and model

complexity. Although the execution time of the proposed

GA required only one hour for the simulated case scenario

(1 compartment PK model with linear elimination), when

applied to the remifentanil case study its execution time

reached approximately 100 h. This strong difference is an

implicit consequence of the longer time required by

NONMEM to identify more complex models and does not

depend on GA convergence issues. Comparing the com-

putational load of GA and SCM, it is evident that a single

SCM run takes a significantly shorter time than GA (about

2.5 min for the simulated scenario and 2.5 h for the real
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one). However, given the high dependence of SCM solu-

tion from the order in which the parameter-covariate

relationships are tested, SCM could require several runs to

obtain a robust solution, reducing the computational

advantage. Differently, multiple runs of GA returned more

consistent solutions, suggesting the unnecessity of running

GA several times. Despite the improvements proposed in

this work, computational time required by GA remains

high. However, the parallel implementation of GA would

allow to exploit powerful computational architecture, such

as cloud computing, grid computing or other shared

resources methods, decreasing the run times. In addition,

alternative strategies could be evaluated to further reduce

the execution times. For example, the introduction of an

hybrid component of the algorithm, that complements the

globally-oriented genetic algorithm with a local search

method [29], had been proposed in the literature, and

accordingly to Sibieude et al. 2022 [34], it could give

another - 34% benefit on the computational load.

Conclusions

The appropriate inclusion and quantification of individual-

specific covariates is a major task of the PK/PD model

building exercise. Consequently, selection of covariates is

routinely performed during pharmacometric analysis, and a

number of algorithms are currently available. The GA is a

ML method inspired by natural selection theory that has

been recently proposed as an efficient and viable solution.

Nevertheless, until now some limitations of the algorithm

have limited its development in daily practice. In this paper

a new GA for covariate selection has been proposed, pro-

viding further evidence that GA is an appealing approach,

that could rival the more standard methods for covariate

selection. In addition, the strategies proposed, i.e., the

population initialization by hierarchical clustering to limit

the risk of falling in local minimum, the parallel imple-

mentation and timeout utility to manage computational

load, and the correlation penalty to avoid inclusion of high

correlated spurious covariates, represented a relevant step

toward more widespread use of GAs for covariate search.
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