
ORIGINAL PAPER

An integrated modelling approach for targeted degradation: insights
on optimization, data requirements and PKPD predictions from semi-
or fully-mechanistic models and exact steady state solutions

Sofia Guzzetti1 • Pablo Morentin Gutierrez1

Received: 17 January 2023 / Accepted: 28 March 2023 / Published online: 29 April 2023
� The Author(s) 2023

Abstract
The value of an integrated mathematical modelling approach for protein degraders which combines the benefits of

traditional turnover models and fully mechanistic models is presented. Firstly, we show how exact solutions of the

mechanistic models of monovalent and bivalent degraders can provide insight on the role of each system parameter in

driving the pharmacological response. We show how on/off binding rates and degradation rates are related to potency and

maximal effect of monovalent degraders, and how such relationship can be used to suggest a compound optimization

strategy. Even convoluted exact steady state solutions for bivalent degraders provide insight on the type of observations

required to ensure the predictive capacity of a mechanistic approach. Specifically for PROTACs, the structure of the exact

steady state solution suggests that the total remaining target at steady state, which is easily accessible experimentally, is

insufficient to reconstruct the state of the whole system at equilibrium and observations on different species (such as

binary/ternary complexes) are necessary. Secondly, global sensitivity analysis of fully mechanistic models for PROTACs

suggests that both target and ligase baselines (actually, their ratio) are the major sources of variability in the response of

non-cooperative systems, which speaks to the importance of characterizing their distribution in the target patient popu-

lation. Finally, we propose a pragmatic modelling approach which incorporates the insights generated with fully mech-

anistic models into simpler turnover models to improve their predictive ability, hence enabling acceleration of drug

discovery programs and increased probability of success in the clinic.
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Introduction

Mechanistic modelling has proven extremely valuable not

only in enhancing the understanding of both traditional and

new modalities mechanism of action [1–4], but also in sup-

porting and guiding compound optimization by shedding

light on Structure-Activity Relationship (SAR). Especially

for emerging new modalities where little is known about the

mechanism or where technology lags behind science in

generating reliable data on biological or pharmacological

quantities of interest, inexpensive high-throughput model

simulations can to some extent ‘‘bridge the gap’’ between

science and technology by predicting the response of a bio-

logical system in scenarios of interest and,more importantly,

by identifying which mechanistic parameters are key drivers

of the response. Such quantitative understanding can ulti-

mately provide a robust rationale to identify which missing

data would bemost informative in building an understanding

of the pharmacology, and hence which technologies need

prioritization for data generation.

On the other hand, though, the use of mechanistic

models to explain available data can be impractical and

potentially even misleading without a thorough under-

standing of the amount and type of data that is required to

& Sofia Guzzetti

sofia.guzzetti@astrazeneca.com

Pablo Morentin Gutierrez

pablo.morentingutierrez@astrazeneca.com

1 DMPK, Research and Early Development, Oncology R&D,

AstraZeneca, Cambridge, UK

123

Journal of Pharmacokinetics and Pharmacodynamics (2023) 50:327–349
https://doi.org/10.1007/s10928-023-09857-9(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10928-023-09857-9&amp;domain=pdf
https://doi.org/10.1007/s10928-023-09857-9


uniquely identify the model parameters. While modelling

software is designed to always return parameter estimates,

if the model structure is excessively articulated (over-

parametrized) for the data, or, conversely, if the amount

and/or type of data is insufficient or too simplistic to inform

the building blocks of a mechanistic model, multiple

parameter estimates can provide an equally optimal data fit.

However, the uncertainty on those estimates is typically

high, or their reliability low, i.e. the output values are

highly unlikely to be truly representative of the biological,

chemical or pharmacological quantity they encode (e.g.,

protein baselines, endogenous turnover rates, on/off bind-

ing rates, drug-induced degradation rates, ...). In such case

the risk is over-interpreting the parameter values, poten-

tially leading to wrong decisions or scientific conclusions

at different levels in a drug discovery cascade, from

compound optimization to assessment of therapeutic

potential.

Although much has been published on identifiability

analysis of differential equations to address this issue

[5, 6], the minimal required data on target kinetics can be

challenging to generate, and even when this is not the case

its generation requires long timelines and significant

resources. Actually, in many cases kinetics data provide a

level of detail that goes beyond the necessary and sufficient

needs for pragmatically understanding the underlying

mechanism of action (MoA). On the contrary, the steady

state (i.e., dynamical equilibrium) of a biological or phar-

macological system can be enough to provide insights on

the MoA and hence to build a robust and reliable predictive

model from higher throughput and more easily accessible

data [7–10]. Moreover, the steady state can often be

mechanistically described by simpler (non-linear) algebraic

equations directly derived from a parent set of differential

equations, for which an exact solution might even be

available (depending on the mathematical structure of the

system) [7, 8, 11, 12]. Although the resulting mathematical

formulae may still retain some level of complexity (and

they typically do), they can facilitate the identification of

independent surrogate parameters, i.e. compositions of the

original parameters into sums, ratios or other functional

forms, which can lead to a reduction of the model

parametrization and, ultimately, to improved model relia-

bility. Such approach to identifiability can further be

combined with global sensitivity analysis [13] to identify

which of the original mechanistic parameters dominate the

system response variability, and hence whose experimental

measurements would be most impactful.

Whenever an exact steady state solution cannot be cal-

culated or its complexity is still prohibitive, semi-mecha-

nistic models such as indirect-response (turnover) models

[14] offer an alternative option. Such models are easier to

use in practice due to the smaller number of parameters

that require fitting, however while they can successfully

explain the data in specific studies or experimental settings,

they lack information on binding kinetics or baseline

levels, which makes them prone to failure at predicting the

response for different compounds or cell lines [15, 16].

In this manuscript we propose an integrated modelling

approach which leverages the benefits of each type of

model to mitigate the limitations of the others. Firstly we

show how exact mechanistic steady state solutions of the

MoA of binary- and ternary-complex degraders can

(i) provide noise-free insight on the role of each system

parameter in driving the pharmacological response

regardless of its specific value, (ii) suggest which mecha-

nistic knowledge can be confidently extracted from single

time point data and (iii) which additional data needs to be

collected to enhance the mechanistic understanding of the

system, and (iv) ultimately, inform compound optimiza-

tion, data generation and resource prioritization.

Secondly, we show how global sensitivity analysis of

fully mechanistic models can help to identify the key dri-

vers of the response.

Finally, we propose a pragmatic modelling approach

which incorporates the insights generated with fully

mechanistic models into simpler turnover models to

improve their predictive ability, hence enabling accelera-

tion of drug discovery programs and increased probability

of success in the clinic.

Methods

Exact solution of bilinear systems

The life cycle of biological entities and their interaction

with chemical compounds can be described via non-linear

systems of ordinary differential equations (ODEs), where

the type of non-linearity is often bilinear or at most

quadratic [17]. Exact steady-state solutions of such systems

are challenging to compute and rarely available in closed

form, due to potentially many chemical species involved

and corresponding interactions, resulting in a large number

of non-linear equations. Nevertheless, in some cases

implicit relationships can be obtained and solved numeri-

cally. Not only, they can inform on the system identifia-

bility, i.e. which parameters (or surrogates thereof) can be

uniquely estimated from the data. A mathematical method

to obtain an implicit, exact steady state solution to chem-

ical reaction networks with bilinear rate laws is described

in [18] and is summarized in Appendix A. Briefly, such

method applies thoughtful algebraic manipulations to

leverage the linear component of the system while segre-

gating the non-linear part to its core, which can then be

solved numerically.
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Monovalent degraders

In this paper we refer to compounds that induce degrada-

tion of a protein of interest (PoI) by binding solely to it as

Monovalent Degraders (MDs). It is very likely that other

components are required for degradation of the protein

(e.g. the proteasome), nevertheless no assumption is made

here on the mechanism of degradation. The only assump-

tion is that the compound needs to bind solely to the PoI to

induce its degradation with no requirement to bind any

other component of the system (differently from bivalent

degraders).

A mechanistic model for monovalent degraders

We assume that under endogenous conditions (i.e. in

absence of compound) the target protein synthesis and

degradation are zero- and first-order processes, respec-

tively, with corresponding rates ksyn, kdeg. When compound

is added, binding kinetics governed by on/off rates kTon, k
T
off

leads to the formation of a binary complex, which induces

degradation at a first order rate kMD. Upon degradation the

compound is released and recycled (Fig. 1).

Such mechanism can be mathematically described by

the following system of ODEs:

dT

dt
¼ ksyn � kdeg � Tþ kToff � TD� kTon � T � D

dD

dt
¼ �kTon � T � Dþ ðkToff þ kMDÞ � TD

dTD

dt
¼ kTon � T � D� ðkToff þ kMDÞ � TD

8
>>>>><

>>>>>:

ð1Þ

with initial conditions Tð0Þ ¼ T0 ¼ ksyn=kdeg, Dð0Þ ¼ D0,

TDð0Þ ¼ 0, where T, D, and TD represent target, drug, and

binary complex time-varying concentrations, respectively.

Being the MD recycled, the total MD concentration D0 ¼
Dþ TD is preserved. As a result, the last (or second)

equation is redundant as the binary complex (or MD)

concentration at any time can be obtained via the linear

conservation law as

TDðtÞ ¼ D0 � DðtÞ: ð2Þ

Since we are interested in the steady state, we set the

derivatives in (1) to 0 to obtain a steady state model:

ksyn � kdeg � Tþ kToff � TD� kTon � T � D ¼ 0

�kTon � T � Dþ ðkToff þ kMDÞ � TD ¼ 0

TDþ D ¼ D0:

8
<

:
ð3Þ

Note that, while in system (1) T, D and TD are time-

dependent variables, they are constant in (3) by definition

of steady state (the same notation has been used for the

sake of simplicity). Because system (3) is non-linear, cal-

culating an exact solution is not straightforward. Never-

theless, this type of non-linearity (bilinear) falls within the

category of tractable systems which can be solved with the

mathematical method developed in [18].

PROTACs

Proteolysis targeting chimeras (PROTACs) are a novel

drug modality that fosters degradation catalysis by co-

opting an E3 ligase (e.g. Cereblon or VHL) to tag the

targeted PoI for turnover by the proteasome. Such mech-

anism of action heavily relies on the formation of a ternary

complex with the PoI and E3 ligase, which is known to be

liable to auto-inhibition, i.e., impairment of ternary com-

plex formation at high PROTAC concentrations due to an

excess of PoI- or E3 ligase-PROTAC binary complex

[19, 20]. In other words, while in a two-body binding

system the amount of binary complex increases monoton-

ically with the binder concentration up to ligand saturation

following a sigmoidal relationship, ternary complex for-

mation can decrease as the PROTAC concentration

increases beyond a critical threshold and is hence typically

described by a double sigmoidal (bell-shaped) function

(Fig. 2, left). From a pharmacological perspective, such

binding dynamics in a biological setting can result into the

so-called hook effect [19], i.e., a loss of degradation at high

PROTAC concentrations, with the implication that maxi-

mal effect can only be achieved within a certain

Fig. 1 A mechanistic model for

monovalent degraders
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concentration window, whose center and breadth are highly

specific to each molecule (Fig. 2, right). It is worth noting

that not all PROTACs display auto-inhibition in practice.

Efforts to reduce the hook effect whenever present have

been summarized by Cecchini et al. [21], nevertheless it is

fair to say that additional work is required to fully under-

stand how to pragmatically minimize this phenomenon.

PROTACs mechanistic modelling

Ternary complex formation (and subsequent degradation)

can happen through two different pathways: from a PRO-

TAC-target (PT) or PROTAC-ligase (PL) binary complex,

where the extent of the contribution of each pathway is

dictated by binding affinities, PROTAC concentration, and

target and E3 ligase baselines (Fig. 3). Once the ternary

complex is formed the PoI is degraded while PROTAC and

E3 ligase are released and recycled back into the system. It

is important to keep in mind that PROTACs are not

themselves degraders, rather degradation catalysts. There-

fore, the apparent ‘‘PROTAC degradation rate’’ (kPRO) is in

fact a surrogate, composite parameter that synthesizes

(i) ubiquitin transfer rate (which depends on the stereo-

chemistry), (ii) ubiquitination rate and (iii) proteasomal

degradation rate as a whole. While the stereochemistry can

be optimized – at least in principle – to facilitate the

ubiquitin transfer, the latter two parameters are endogenous

to the biological system and can dictate the overall

degradation kinetics (i.e. can be rate-limiting). This

underscores the importance of understanding biological

differences across cell lines, which cannot be conceived

separately from the compound’s kinetics.

In vitro data for different targets suggests that three

degradation scenarios can occur to the PoI bound into a PT

binary complex:

1. Endogenous degradation (flat line around the baseline)

2. Low-moderate degradation (more efficient than

endogenous degradation, less efficient than ternary

complex degradation), for example when the target

warhead is a MD itself (shallow degradation curve)

3. Stabilization, i.e., the compound inhibits the endoge-

nous degradation machinery (sigmoidal curve above

baseline).

Such observation justified the introduction of a binary

complex degradation rate (kMD) as an independent model

parameter (equal to, greater or less than the endogenous

degradation rate, respectively, in the three scenarios

described above).

This basic mechanistic model can be further customized

to include, e.g., competition with metabolites or endoge-

nous ligands (Fig. 3) – which may be relevant for early

PROTACs whose PoI ligand consists of a pre-existing

small molecule inhibitor which binds to an active site of

the target protein [22], or by unfolding the PROTAC

degradation rate in a series of transit compartments to

better describe the ubiquitination or de-ubiquitination

process, as done, e.g., in [23, 24]. Since the relevance of

these model components may be target or chemo-type

specific, for the sake of generality they will not be included

in this analysis, although the methodology utilized here can

be applied to an extended version of the model as well

(provided the assumption of total PROTAC and total ligase

conservation is met).

The governing equations are derived from mass bal-

ancing principles and they read as follows:

Fig. 2 Ternary complex levels as a function of PROTAC concentration in a pure binding system (left); target levels relative to baseline as a

function of PROTAC concentration in a biological setting (right)
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dT

dt
¼ ksyn � kdeg � Tþ kPLoff � TPLþ kToff � PT� kTon � T � P� kPLon � PL � T

dPL

dt
¼ kPLoff � TPLþ kPRO � TPL� kLoff � PLþ kLon � L � P� kPLon � PL � T

dPT

dt
¼ kPToff � TPL� kMD � PT� kToff � PTþ kTon � T � P� kPTon � PT � L

dTPL

dt
¼ �kPRO � TPL� kPLoff � TPL� kPToff � TPLþ kPLon � PL � Tþ kPTon � PT � L

dL

dt
¼ �kLon � L � P� kPTon � PT � Lþ kLoff � PLþ kPToff � TPL

dP

dt
¼ �kTon � T � P� kLon � L � Pþ kMD � PTþ kToff � PTþ kLoff � PL

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð4Þ

with initial conditions Tð0Þ ¼ T0, Lð0Þ ¼ L0, Pð0Þ ¼ P0,

PLð0Þ ¼ PTð0Þ ¼ TPLð0Þ ¼ 0, where T, L, P, PT, PL,

TPL stand for target, ligase, PROTAC, PROTAC-target

complex, PROTAC-ligase complex, and ternary complex

concentration, respectively, and will be referred to as states

of the system (dependence on time t has been suppressed to

ease the notation). Model parameters are defined in

Table 1. Note that on/off rates are correlated via coopera-

tivity a as [25]:

kPTon
kPToff

¼ a � k
T
on

kToff
;

kPLon
kPLoff

¼ a � k
L
on

kLoff
; ð5Þ

and since the proportionality constant a is the same in (5),

the relationship between on/off rates can be synthetically

expressed as

kToff
kTon

kPTon
kPToff

¼ kLoff
kLon

kPLon
kPLoff

: ð6Þ

This means that, even though the binding kinetics is gov-

erned by 8 parameters, only 7 of them are independent. In

other words, knowing any 7 on/off rates is sufficient to

calculate the remaining one via Eq (6). Adding endogenous

synthesis and degradation rates (ksyn, kdeg) as well as binary

Fig. 3 A PROTAC mechanistic model

Table 1 PROTAC model parameters: nomenclature and description

Parameter Units Rate Reaction

ksyn lM h�1 Endogenous synthesis ; ! T

kdeg h�1 Endogenous degradation T ! ;
kMD h�1 Binary cpx degradation PT ! ;þ P

kPRO h�1 Ternary cpx degradation TPL ! ;þ PL

kTon lM�1h�1 On Tþ P ! PT

kToff h�1 Off PT ! Tþ P

kLon lM�1h�1 On Lþ P ! PL

kLoff h�1 Off PL ! Lþ P

kPLon lM�1h�1 On Tþ PL ! TPL

kPLoff h�1 Off TPL ! Tþ PL

kPTon lM�1h�1 On Lþ PT ! TPL

kPToff h�1 Off TPL ! Lþ PT
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and ternary complex degradation rates (kMD, kPRO) gives a

total of 11 independent parameters.

Under the assumption of total PROTAC and total E3

ligase conservation the differential equations for free

PROTAC and free E3 ligase are redundant as they can be

obtained from conservation laws as

LðtÞ ¼ L0 � PLðtÞ � TPLðtÞ
PðtÞ ¼ P0 � PTðtÞ � PLðtÞ � TPLðtÞ;

�

ð7Þ

where L0 and P0 are the ligase baseline and PROTAC

concentration, respectively.

The steady state of the system is obtained by setting

each derivative in (4) to 0, and the same method described

in [18] previously adopted for MDs can be applied here.

Global sensitivity analysis

Sensitivity analysis is a powerful tool to understand how

and to what extent each model parameter (input) affects the

response (output) [13]. Local sensitivity analysis studies

the system states variability as a single parameter varies, all

the others being fixed. While this approach is extremely

convenient for its simplicity of implementation and easi-

ness of interpretation, it can be misleading as the sensitivity

of the response to one parameter can depend on the values

of all the other fixed parameters. In other words, the model

output can be sensitive to a parameter pH for a given set of

the other parameter values and at the same time insensitive

to pH for a different set of fixed values. Therefore, this

approach can be useful and unbiased only if confidence in

the fixed parameters is high.

Differently, global sensitivity analysis studies the output

variability over the whole parameter space, i.e. as all model

parameters are changed simultaneously. As a result, the

response variability characterization is more robust as it only

depends on the assumed or observed distribution of each

parameter on a given feasible range rather than on a single

value [26]. At the same time, though, visualizing the response

variability andquantifying the contribution of each parameter

to it is increasingly challenging with the dimension of the

parameter space: it is well known that the number of points to

accurately sample a parameter space grows exponentially

with the dimension of the parameter space itself (‘‘curse of

dimensionality’’). In other words, if N samples are sufficient

to describe the distribution of a single parameter, an order of

NP points will be required to equivalently accurately sample

P parameters. For instance, if 10 samples are used for each

parameter of the PROTAC model (4) the total number of

required sampleswould be approximately 100billions (1011).

Each set of the 100 billion parameter combinations will

generate amodel output, and visualizing and interpreting 100

billion model simulations is clearly more challenging than

plotting 10 of them (as a single parameter changes), as well as

more computationally expensive.

A plethora of mathematical tools to quantify the impact

of each parameter on the response and to tackle the curse of

dimensionality are available. In this work Sobol indices

[27] are used to assess the fraction of total variability

associated with each parameter, which is a random variable

represented via Polynomial Chaos Expansions (PCEs)

[28–31]. Parameters are assumed to be uniformly dis-

tributed around a given mean and standard deviation, and

are hence accordingly represented by first-order PCE of

Legendre polynomials, which maximize the convergence

rate according to the Askey scheme [32, 33]. Parameter

uncertainty is propagated in the system via Non-Intrusive

Spectral Projection (NISP) [34]. As a result, the stochastic

model output can be represented as a PCE as well, whose

coefficients can be easily used to calculate Sobol indices.

In order to reduce the computational cost of sampling

associated with NISP without compromising accuracy,

Smolyak sparse quadratures are employed [35]. The spar-

sity level has been manually increased until no significant

change in the Sobol indices estimates was observed.

Uncertainty propagation via NISP and Sobol indices cal-

culation was handled with the C?? library UQTk devel-

oped at the Sandia National Laboratories [36], embedded in

a MATLAB implementation of the mechanistic PROTAC

model (4).

Experimental data and modelling

In vitro

Test compounds were evaluated at 12 concentrations

obtained with a 1:3 dilution factor, with two replicates per

concentration. Remaining PoI levels were measured via

Western Blots, ERD9 [37], Immunofluorescence [38] or

HiBit technology [39] and expressed as a fraction of pro-

tein in DMSO treated cells (i.e. baseline).

The following bi-sigmoidal model describing the

remaining fraction of target at steady state (bTSS) as a

function of concentration (C) was fitted to each individual

dose-response at steady state to capture any potential hook

effect and calculate maximal degradation and potency:

bTSSðCÞ ¼ 1� Emax
Ch

Ch þ ECh
50

1� Eloss

Emax

C

C þ IC50

� �

:

ð8Þ
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Eq (8) describes the response as a combination of two

sigmoidal curves with half-maximal concentrations EC50

and IC50, respectively. Emax represents the overall maximal

effect, while Eloss can be interpreted as the fraction of

degradation lost to the hook effect. To avoid over-

parametrization the Hill coefficient of the sigmoid corre-

sponding to the hook effect was fixed to 1, while it was

estimated (h) for the sigmoid corresponding to increasing

degradation. Because the response is the result of the

contribution of two distinct sigmoidal curves, the observed

potency (DC50) may not exactly correspond to EC50,

therefore it was calculated numerically from (8) as the

concentration delivering half-maximal effect. The con-

centration corresponding to maximal degradation (DCmax)

was also calculated numerically as the root of the first

derivative, and maximal degradation as

Dmax ¼ 1� bTSSðDCmaxÞ. Note that in absence of the hook

effect (Eloss ¼ 0) Eq. (8) reduces to a simple sigmoidal

function where Emax ¼ Dmax and EC50 ¼ DC50.

Whenever dose-response time courses were available,

model (8) was embedded into the following turnover model

describing the fraction of target at any given time (bT):

dbT

dt
¼ kdeg � 1�

bT

bTSSðCÞ

 !

; ð9Þ

where the endogenous fractional turnover rate kdeg was

estimated or fixed to experimental data obtained from

Stable Isotope Labeling with Amino acids in Cell culture

(SILAC) [40].

Experimental data in Sect. 4.1.3 has been generated

with AstraZeneca proprietary Selective Estrogen Receptor

Degraders (SERDs) [41–45].

Endogenous PoI or E3 ligase levels in different cell lines

were assessed via Western Blots.

In vivo

In vivo data was generated in NSG mice implanted with a

patient-derived xenograft tumor model. C-PROTAC-006

was dosed orally on a daily schedule for three days at 30 mg/

kg, 60mg/kg or 100mg/kg. Plasma concentration at different

time points was quantified via Liquid Chromatography with

tandem Mass Spectrometry (LC-MS/MS). Remaining pro-

tein levels relative to vehicle baseline levels were assessed by

Western Blots at 6h, 24h, 48h after the last dose.

A one-compartmental pharmacokinetic model with first-

order absorption was fitted to the plasma concentration data

and used as a driver of the pharmacodynamic model (9)

parametrized from in vitro data generated in the same cell

line to obtain predictions of in vivo degradation kinetics.

Results

Monovalent degraders

Exact steady state solution

By applying the method in [18] the following expression

can be obtained, which implicitly describes the free target

at steady state (see Appendix B.1):

ksyn
kMD

kToff þ kMD

kTon
� 1
T
� kdeg
kMD

� Tþ ksyn
kMD

� kdeg
kMD

kToff þ kMD

kTon
¼ D0:

ð10Þ

Since total protein amounts (Tþ TD) relative to baseline

are more easily accessible experimentally, through some

manipulations an expression for the fraction of total

remaining target can also be obtained as a function of the

free MD concentration (see Appendix B.2):

Ttot

T0

ðDÞ ¼ kdeg
kMD

þ 1� kdeg
kMD

� �

�

kdeg
kMD

kToff þ kMD

kTon

Dþ kdeg
kMD

kToff þ kMD

kTon

:

ð11Þ

Notice how Eq. (11) has the structure of a decreasing

sigmoidal curve of the form

Ttot

T0

ðDÞ ¼ bTmin þ 1� bTmin

� �
� DC50

Dþ DC50

; ð12Þ

with top plateau and Hill coefficient equal to 1, and bottom

plateau (bTmin), maximal degradation ( bDmax) and concen-

tration for half-maximal degradation (DC50) respectively

equal to

bTmin ¼
kdeg
kMD

; bDmax ¼ 1� bTmin;

DC50 ¼ 1� bDmax

� �
� k

T
off þ kMD

kTon
;

ð13Þ

which is consistent with [46].

PROTACs

Exact steady state solution

The steady state solution for PROTACs is convoluted due

to the complexity associated with three-body binding

kinetics. In fact free target T and free ligase L are obtained

simultaneously by numerically solving the following non-
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linear system of conservation laws for PROTAC and E3

ligase1:

LtotðT;LÞ ¼ Lþ PLðT;LÞ þ TPLðT;LÞ ¼ L0

PtotðT;LÞ ¼ PðT;LÞ þ PTðT;LÞ þ PLðT;LÞ þ TPLðT;LÞ ¼ P0;

�

ð14Þ

where P, PL, PT and TPL are all known calculated func-

tions of T and L encapsulating surrogates of the original

mechanistic parameters (Appendix D.1). Solving (14)

means finding the one pair TH;LH
� �

among all possible

system states that does not violate the conservation laws,

i.e., if we call Z1ðT;LÞ ¼ LtotðT;LÞ � L0 and Z2ðT;LÞ ¼
PtotðT;LÞ � P0 the amount by which each conservation law

is violated, the solution to (14) will satisfy Z1ðTH;LHÞ ¼ 0

and Z2ðTH;LHÞ ¼ 0 simultaneously. Figure 4 provides a

visual example: Z1 and Z2 are surfaces whose shape is

dictated by the mechanistic parameters; the intersection

between the two surfaces and the horizontal plane Z ¼ 0

corresponds to the pair TH;LH
� �

that satisfies (14). Once

TH and LH are calculated numerically, all the remaining

states as well as the total remaining target

TtotðT;LÞ ¼ Tþ PTðT;LÞ þ TPLðT;LÞ; ð15Þ

which is typically available through measurements, can be

easily obtained through the exact expressions (D25a),

(D25b), (D25c) (Appendix D.1). In particular, the total

remaining target as a fraction of the baseline reads as:

bTtotðT;LÞ ¼
kdeg
kPRO

þ 1� kdeg
kPRO

� �
kdeg
ksyn

Tþ

1� kMD

kPRO

� �
kdeg
ksyn

� kTon
kLon

kPToff
kPTon

kdeg
kPRO

T2 þ kPToff
kPTon

ksyn
kPRO

L� kPToff
kPTon

kdeg
kPRO

L � T
�

þ kTon
kLon

kPToff
kPTon

ksyn
kPRO

� kdeg
kPLon

þ kPLoff
kPLon

kdeg
kPRO

� �
kLoff
kLon

kTon
kPTon

	

� kLoff
kLon

kTon
kPLon

kPToff
kPTon

kdeg
kPRO




Tþ kLoff
kLon

kPLoff
kPLon

ksyn
kPRO

þ ksyn
kPLon

� �
kTon
kPTon

:

þ kLoff
kLon

kTon
kPLon

kPToff
kPTon

ksyn
kPRO

��

L2 þ kTon
kLon

L � Tþ
�

kLoff
kLon

kTon
kPLon

þ kToff
kPTon

þ kPToff
kPTon

kMD

kPRO
þ kMD

kPTon

� �	 


Lþ

� kToff þ kMD

kLon

kTon
kPTon

þ kTon
kLon

kToff
kPTon

þ kPToff
kPTon

kMD

kPRO
þ kMD

kPTon

� �	 


T

� kLoff
kLon

kTon
kPTon

kToff
kPLon

� kPLoff
kPLon

kMD

kPRO

� �

þ kLoff
kLon

kTon
kPLon

kToff
kPTon

þ kPToff
kPTon

kMD

kPRO
þ kMD

kPTon

� ��

ð16Þ

and it can be verified that it is equivalent to the numerical

steady state solution of the differential Eq. (4) (Fig. 4).

Global sensitivity analysis

Global sensitivity analysis was performed on the mecha-

nistic model (4) assuming uniform distribution of the

parameters over the ranges listed in Table 2. In order to

reduce the exponentially high computational cost of GSA

on a high-dimensional parameter space, no cooperativity

was assumed (a ¼ 1, or kPLon ¼ kTon, k
PT
on ¼ kLon, k

PL
off ¼ kToff ,

kPToff ¼ kLoff). Smolyak sparse quadratures of level 6 were

used, corresponding to 242815 sampled parameter combi-

nations. Sobol indices of DC50 and Dmax were calculated

Fig. 4 Left: Example of a solution to the PROTAC model. Each

surface represents the amount by which a conservation law is violated

(purple, orange); the curve where each surface intersects the

horizontal plane Z ¼ 0 (grey) corresponds to the set of system states

where each conservation law is satisfied individually; the intersection

point of the two curves (red dot) corresponds to the system solution,

which satisfies both conservation laws simultaneously. Right: Vali-

dation of the exact steady state solution obtained from (14) (solid) vs.

the numerical steady state solution of the differential Eq. (4) (dashed)

(Color figure online)

1 Due to non-linearity, in principle it is not guaranteed that inverting

the conservation laws (14) for T and L provides a unique solution.

Nevertheless, it has been verified numerically that this is the case for

the biological and pharmacological systems of interest.
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for each parameter from the corresponding simulated dose-

responses and grouped by category to ease the interpreta-

tion (Fig. 5). More precisely, the fractions of variability

due to binding kinetics, degradation kinetics, and target

baseline sum up the contribution of the Sobol indices of on/

off rates (kTon, k
T
off , k

L
on, k

L
off), degradation rates (kMD, kPRO),

and endogenous target synthesis/turnover (ksyn, kdeg),

respectively. Most of the variability of both DC50 and Dmax

is due to changes in ligase baseline ([ 50%), followed by

degradation efficiency (� 20� 40%) and target baseline

(� 20%). Based on the selected parameter range and dis-

tribution, binding kinetics contributes only minimally to

the overall response variability (� 5%).

Discussion

Monovalent degraders

Compound optimization

Binding equilibrium constants (Kd ¼ kToff=k
T
on) are often

used to drive SAR of small molecules. While they have

proved useful in practice [47–50], from a mechanistic

viewpoint they can only provide limited understanding of

the major drivers of pharmacology:

1. On/off rates matter individually. Consider the case

where kToff is minimized vs. the case where kTon is

maximized. In both cases the overall effect on thermo-

dynamics is that the binding affinity increases (i.e. Kd

decreases), however the same variation in affinity can

actually result in different degradation profiles. This is

particularly evident in the two extreme scenarios where

kToff is extremely low (namely kToff ! 0þ, as it could be

the case, e.g., of a covalent binder) or when kTon is much

greater than kToff þ kMD (namely kTon ! þ1). The def-

inition in (13) clearly shows that by reducing kToff one can

only lower DC50 to ð1� bDmaxÞkMD=k
T
on, whereas by

increasing kTon there is virtually no limit to how potent a

compound can be made (namely, up to DC50 ¼ 0).

Analogously for bDmax, from Eq. (11) we can clearly see

that, for the same degradation efficiency (kMD), ever

faster on-rates will reduce the target to a minimum

relative amount equivalent to the ratio of endogenous

and MD degradation rate (Eq. (17a)); differently, ever

slower off-rates will spare a portion of residual protein

that is inversely proportional to the amount of free drug

at steady state (Eq. (17b)):

Ttot

T0

ðDÞ �!
kTon!þ1

TON ¼ kdeg
kMD

ð17aÞ

Ttot

T0

ðDÞ �!
kT
off
!0þ

TOFF ¼ kdeg
kMD

þ 1� kdeg
kMD

� �

�

kdeg
kTon

Dþ kdeg
kTon

:

ð17bÞ

In formulae, notice that the limit TOFF in (17b) is equal

to TON (17a) added by a residual term, which clearly

shows that optimizing off rates leads to inferior

degradation (Fig. 6).

2. Maximizing on-rates is the most efficient way to

maximize binary complex degradation via binding

kinetics. Minimizing (11) solely via binding kinetics

entails minimizing the residual term. Because of its

functional structure, this can only be achieved by

making the ratio
kToff þ kMD

kTon
as close to 0 as possible,

i.e., by maximizing kTon.

3. Binding and degradation optimization is coupled.

Eq. (11) highlights how the residual term that prevents

a MD from achieving maximal degradation

(1� kdeg=kMD) is governed not only by the binding

equilibrium constant kToff=k
T
on but also by the ratio of

binary complex degradation rate to the binding on-rate

(kMD=k
T
on), which parameters are clearly different in

nature (pharmacology vs. chemistry). This shows that

binding and degradation cannot be thought of sepa-

rately. In other words, relatively slow binding can be

efficient enough for a slow degrader, but on the other

hand a fast degrader will require fast binding to deliver

its full potential. For many years medicinal chemist

have focused on increasing the drug-target residence

time by means of optimizing off-rates [47, 48]. While

that approach has been successful, this analysis

suggests that for degraders optimizing on-rates is a

more efficient approach. Copeland et al already

highlighted that optimization of the target residence

time (i.e. off-rate) may have limited utility in cases

where the rate of new protein synthesis (and degrada-

tion) plays an important role [47, 48]. Multiple authors

[47, 48, 51] mention an upper limit to on-rates

Table 2 Parameter ranges for global sensitivity analysis of PROTAC

mechanistic model

Description Parameter Range

Target or Ligase baselines T0, L0 0:1nM; 1lM½ �
Target or Ligase ON rate kTon, k

L
on, k

PT
on , k

PL
on 105; 107


 �
M � s

Target or Ligase OFF rate kToff , k
L
off , k

PT
off , k

PL
off 10�3; 10�1½ �=s

Ternary complex half-life lnð2Þ=kPRO 0:1; 1000½ �s
Cooperativity a 1 (fixed)
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(108 � 109M�1S�1) given by the rate of diffusion of

the two binding partners in physiological solutions,

however Schoop et al [51] show that several discovery

programs have not yet achieved such upper limit,

indicating that there may still be room to further

increase on-rates. Medicinal chemists have been con-

fronted with the question of whether it is possible to

design on-rates for a given target within a given

compound series but Schoop has shown different

compound series of distinct targets which display

significant differences in their on-rates. Obviously the

difficulty facing medicinal chemist is establishing

general kon optimization strategies. Optimization of

on-rates through SAR has been limited and mostly

empirical due to the difficulty to predict the physico-

chemical steps involved in receptor-ligand association

(protein conformational re-arrangements, protein des-

olvation and molecular orbital orientation) [47, 48, 51].

4. Improving degradation efficiency is necessary to

increase maximal degradation, and sufficient but

not necessary to improve degradation potency

Because Dmax only depends on the (endogenous and)

MD degradation rate via (13), the only way to increase

maximal degradation is by increasing kMD. Moreover,

because degradation potency directly depends on Dmax

(13), improving degradation efficiency (kMD) always

results in higher potency (lower DC50) as well.

However, the opposite is not necessarily true: an

improvement in potency driven by optimized binding

kinetics (faster kTon or slower kToff) has no impact

whatsoever on Dmax.

5. Complete degradation can only be reached asymp-

totically; faster turnover proteins are harder tar-

gets. It is impossible to achieve net 100% degradation

because bTmin ¼ kdeg=kMD is always strictly positive, no

matter how small the ratio. Moreover, faster protein

turnover requires higher degradation efficiency to

maintain a given level of target knock-down.

In conclusion, optimizing binding affinities is a sim-

plistic approach that can lead to ambiguous outcomes

because the response is sensitive to on and off rates indi-

vidually, and binding kinetics should be optimized rela-

tively to degradation kinetics (and conversely).

Fig. 5 Global sensitivity analysis of the PROTAC mechanistic model. Simulated dose-responses associated with sampled parameter space (left)

and variance decomposition of DC50 and Dmax via Sobol indices (right)

Fig. 6 Local sensitivity analysis of degradation by MDs to changes in

binding equilibrium constant (Kd) driven by either on-rate (left) or

off-rate (center). For the same change in affinity at a fixed

concentration (dashed vertical line) the asymptotic response is

different depending on whether the change in affinity is due to a

variation in on- (red) vs off-rate (blue) (right) (Color figure online)
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Model identifiability and data requirements

Although analyzing the fraction of total remaining target

relative to baseline would be more relevant because truly

representative of the available experimental data, for the

sake of simplicity we now focus on the expression of the

free target concentration. In Appendix B.3 we show that

the same conclusions hold true for the fraction of total

remaining target.

If we lump the coefficients in (10) into a new synthetic

parametrization to highlight the equation structure

(Eqs. (18)-(19)) it becomes evident that while the original

mechanistic model (1) is governed by five parameters (ksyn,

kdeg, k
T
on, k

T
off , kMD), the corresponding steady state (10)

only features three independent degrees of freedom (a, b, c,
see Appendix B.3), which are surrogates of the original

mechanistic parameters:

�a � Tþ a � c � 1
T
þ a� b � c ¼ D0; ð18Þ

where

a ¼ ksyn
kMD

b ¼ kdeg
kMD

c ¼ kToff þ kMD

kTon
:

ð19Þ

This apparently simple observation is extremely informa-

tive on model identifiability and data requirements:

1. If the only available data is free target concentration at

steady state T, the surrogate parameters a, b and c can
be uniquely estimated, but none of the original

mechanistic parameters can be uniquely identified.

2. If, in addition to point (1), the endogenous degradation

rate kdeg is available, the MD degradation rate kMD can

be obtained from (19) as

kMD ¼ kdeg
b

ð20Þ

and consequently the endogenous synthesis rate ksyn
and protein baseline T0 as

ksyn ¼ kMD � a; T0 ¼
ksyn
kdeg

: ð21Þ

3. If, in addition to points (1) and (2), the binding

equilibrium constant Kd ¼ kToff=k
T
on is available, also

the individual on/off rates can be calculated as

kTon ¼
kMD

c� Kd
; kToff ¼ Kd � kTon: ð22Þ

Example: baseline estimation from degradation data

Eq. (B14) in Appendix B.3 describing the fraction of total

remaining target at steady state was fitted in Matlab to the

in vitro degradation dose-response of 12 SERDs to obtain

the surrogate parameters a, b, c (An example is shown in

Fig. 7, left). The measured endogenous fractional turnover

rate of ERa in MCF-7 (kdeg ¼ 0:15/h, Appendix C) was

used to calculate the MD degradation rate kMD via (20).

Then, ER baseline was estimated from each compound

from (21) with an interquartile range of 1:86� 4:51nM

(Fig. 7, right), which is within published concentrations of

ER for MCF-7 cells [52, 53].

PROTACs

Compound optimization

We have shown that optimizing MDs based on binding

affinity alone is sub-optimal because the same change can

produce different effects on degradation, depending on

whether such variation is due to slower/faster on-rate vs

off-rate. Differences in the effect can be traced back to

Fig. 7 Example of MD dose-

response with mechanistic

model fit (left) and estimated

baselines (right). Each point

represents the baseline estimate

obtained by fitting the dose-

response of 12 different SERDs

individually
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binding kinetics and degradation kinetics being coupled or,

more precisely, to the proportion of MD degradation rate

kMD and on-rate kTon. In this respect, although drawing

similar conclusions for PROTACs is less straightforward

due to the complexity of the steady state solution, under-

standing parameter dependencies (i.e., proportions of

mechanistic parameters or which ones matter with respect

to which others) can provide at least general guidelines on

the most critical aspects of optimization.

The core of PROTACs inter-parameter relationships and

proportions is encoded in coefficients cij’s and tij’s

(Appendix D.2). Rather than analyzing the expression of

each individual coefficient, we will summarize such rela-

tionships in a table where both rows and columns correspond

to kinetics, pharmacological or biological parameters, and

the cell in a given row r, column c is filled if the proportion

between the two parameters in the corresponding row and

column has an effect on steady state degradation (i.e., if they

appear in a ratio in the coefficients). For instance, the MD

solution (10) contains the ratios kToff=k
T
on, kdeg=kMD, kMD=k

T
on,

which correspond to the table pattern in Fig. 8 (top). The

non-empty fingerprint of the top-right or bottom-left off-

diagonal blocks clearly marks the coupling between binding

and degradation kinetics previously noted (kMD=k
T
on). Fur-

thermore, while the top-left diagonal block encodes the

binding affinity kToff=k
T
on, the bottom-right one captures the

maximum achievable degradation (17a), given by the pro-

portion between the endogenous and MD degradation rates

kdeg=kMD, thus coupling biology with pharmacology.

The fingerprint of the PROTACs solution is shown in

Fig. 8 (bottom). As for MDs, the table is partitioned into

binding and degradation kinetics, however the former

block is further sub-divided into target and E3 ligase

kinetics of single species or binary complexes, for a total of

2� 2 sub-blocks of size 4� 4.

1. Binding and degradation optimization is coupled.

First and foremost, as in the previous example it is

evident that the matrix pattern is not block-diagonal,

i.e., binding and degradation kinetics are intertwined.

2. PROTACs are more than just the sum of their

components.More specifically, even the top-left two-by-

two target/ligase binding kinetics block is not block-

diagonal: this means that PROTACs-induced response is

the result of not only target and ligase kinetics individ-

ually, but also of the interplay between the two. For

instance, target-PROTAC on-rate (kTon) matters relatively

to ligase-PROTAC on rate (kLon). This fact underscores

that PROTACs design goes way beyond the optimization

of its individual components (E3 ligase and target

warheads), i.e., optimizing each portion independently

may not guarantee an optimal compound overall.

3. On/off rates matter individually. Each on/off rate plays

a unique and specific role in relationship with the rest of

the parameters (the fingerprint of each row or column is

specific to each parameter). As for MDs, even more so

for PROTACs this implies that changes not only to each

binding affinity, but also on cooperativity can produce a

different effect depending onwhether on- vs off-rates are

changed. Therefore studying how the response varies as

cooperativity changes is an ill-posed question as it is for

binding affinities.

4. Increased cooperativity via faster on-rates promotes

degradation. As described above, an excess of PT (or

PL) binary complex can impair efficient degradation up

to causing protein stabilization. The exact solution

fingerprint of kMD shows that PT accumulation can be

mitigated via binding kinetics in two ways: by favoring

the ligase pathway via faster PROTAC-ligase on rates

(kMD=k
L
on ratio), or by increasing cooperativity via on

rates (kMD=k
PL
on , kMD=k

PT
on ratios).

Model identifiability and structural data requirements

Model observability

Despite the complexity of calculations and resulting

expressions, the compact notation in Eq. (14) is key to

highlight a structural feature of the system with implications

on minimal data requirements. First of all, the E3 ligase

baseline L0 is an input to the system, just as much as the drug

concentration P0, therefore experimental knowledge of it is a

prerequisite. Secondly, ifwefirst consider the simpler case of

MDs, expression (18) clearly shows that observations of only

one species (the remaining free target T following a corre-

sponding given dose D0) is necessary and sufficient to infer

the remaining states of the system (binary complex TD and

freeMDD from (B4a) and (B5) inAppendixB, respectively)

and possibly estimate the surrogate parameters (provided

enough distinct observations). Differently, for PROTACs,

Eqs. (14) feature two independent variables (T and L) for

each given concentration P0 which cannot be further

reduced. This suggests that observations of at least two dif-

ferent states are required in order to infer the state of the

whole system and possibly estimate its surrogate parameters.

Such two species do not necessarily need to be free target and

free ligase: any other pair of observations (except for total

ligase and total PROTAC, which are conserved) is viable

because T and L can be retrieved from relationships (D23a),

(D25a)-(D25c) (Appendix D.1) to then solve (14). For

instance, if the concentrations TH and TH

tot were observed for

free target T and total target Ttot, free ligase concentration L

could be calculated by solving TH þ PTðL;THÞþ
TPLðL;THÞ ¼ TH

tot, where the notation ðL;THÞ indicates

functional dependence on ligase, given the target
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concentration, and the exact functional relationships of PT

andTPL are known from (D23a) and (D25c).Analogously, if

total target TH

tot and ternary complex TPLH were observed,

target and ligase concentrations could be retrieved by solving

Eq. (15) and (D23a) for T and L simultaneously, given TH

tot

and TPLH.

In summary, the exact solution structure practically

implies that measuring total remaining target concentration

only is insufficient to infer the state of the whole steady

state system, which also requires knowledge of the E3

ligase baseline.

Model identifiability

While these conclusions characterize the steady state

system observability, i.e., the ability of inferring the state

of the whole system given a set of observations, under-

standing which surrogate parameters can be uniquely

identified (such as a, b and c for MDs) is not as immediate.

Ultimately, the steady state solution is characterized by 14

Fig. 8 Tables of parameters

interactions emerging from the

exact steady state solution of

MD (top) and PROTAC

(bottom) mechanistic models. A

filled cell in row r, column

c indicates that the parameters

in row r and column c matter

relatively to each other.

Relationships marked with an

asterisk refer to an equivalent

dual parametrization of the

exact solution (not shown, see

Appendix D) and are included

for completeness
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surrogate coefficients (cij’s and tij’s, Appendix D.2) which,

alone, are insufficient to retrieve the original 11 mecha-

nistic parameters. In fact, by constructing a Gröbner basis

[54] it can be shown that only 9 of them are actually

independent. This means that at least 2 mechanistic

parameters (or corresponding surrogates) have to be mea-

sured to be able to retrieve all the others from 9 model

coefficient estimates. For instance, if the endogenous

degradation rate kdeg (or the endogenous synthesis rate ksyn,

or the binary complex degradation rate kMD) and the

PROTAC-target binding affinity kTon=k
T
off are available from

measurements, all the original mechanistic parameters can

be calculated (Appendix D.3). The generalization of this

conclusion to all possible sets of measurements from which

it is possible to retrieve the mechanistic parametrization

will be addressed in future work.

Data prioritization: impact of protein endogenous baselines
on pharmacology

While drawing firm guidelines on PROTACs optimization

is challenging due to the complexity of the system, the

outcome of global sensitivity analysis can be extremely

valuable to guide data prioritization and model simplifi-

cation. First and foremost, it is striking how most of the

total response variability (up to 75%) is not driven by

chemical or pharmacological factors such as binding and

degradation rates, which can indeed be optimized, rather by

biological factors, i.e. ligase and target baselines, over

which we have no control. This shows how critical it is to

characterize the distribution of such parameters in the

patient population and, consequently, to judiciously select

the most appropriate pre-clinical patient representative

tumour models [55]. More precisely, data collected from

four different AstraZeneca PROTACs projects clearly

show how Dmax correlates with the ratio of ligase and

target baselines, i.e., the higher the ligase levels relatively

to the target the higher the degradation (Fig. 9). It is to be

noted that here baseline quantification is obtained from

Western Blots and hence is only semi-quantitative. While

efforts are in place to generate absolute quantification of

protein levels in relevant models to confirm such rela-

tionship, the fact that a similar trend is observed across

multiple targets and compounds from different chemical

series is early evidence that such correlation may hold true

in practice, both in vitro and in vivo [15]. Note that even

within the same target space not all molecules may display

the same type of correlation: a range of different slopes or

Dmax may be observed. For instance, Fig. 9 (center) shows

how A-PROTAC-001 displays a flatter profile with a lower

Dmax compared to other compounds targeting the same

protein of interest and ligase. What makes a PROTAC

more or less sensitive to changes in baseline ratio is still

unclear, and which profile is more desirable depends on the

PKPD/E and toxicity relationship of the target. In this

example, if 80� 90% maximal degradation is sufficient to

drive efficacy then A-PROTAC-001 is preferable because

it is expected to be efficacious in most of the relevant cell

lines and hence ultimately in a wider set of baseline ratios

(which may be observed in the target population). On the

other hand, if nearly complete degradation is required for

efficacy then A-PROTAC-002-005 may be preferable

because they can achieve higher Dmax up to � 100%.

However, in this scenario characterizing the ligase and

target baseline distribution in the patient population is even

more critical: if the ratio is relatively low in most patients

these PROTACs may be unable to achieve complete

degradation due to the steep correlation with the baseline

Fig. 9 Correlation between Dmax and ratio of ligase and target

baselines across different targets (left; only one compound per

program is shown for easiness). Dmax/baseline ratio correlation of

several compounds targeting protein A (center). DC50/baseline ratio

correlation of several compounds targeting protein C (left)
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ratio, and as a result efficacy may be compromised. At the

same time, though, a sharp slope may enable a better

therapeutic index: if the relevant tox tissues display lower

ratios compared to the patient representative tumour

models a steeper relationship would entail degrading the

target in the tumor while sparing it in normal tissues [15].

A pragmatic approach to modelling

This analysis implies an empirical approach to build a

mathematical model of medium complexity with the

potential of being truly predictive. While, on the one hand,

the fully mechanistic model is over-parametrized and

hence unlikely to be predictive, on the other hand tradi-

tional turnover models such as (9) are also unlikely to be

predictive across patient representative tumour models

because unable to capture differences in Dmax driven by

changes in baselines. However, GSA of the former sug-

gests that it is possible to ‘‘enrich’’ or ‘‘augment’’ the latter

with data-driven components. More precisely, Dmax can be

implemented as a (sigmoidal) function of the baseline ratio

as inferred from the data rather than as a constant param-

eter, and the same can be done for DC50 (Fig. 9, right). For

instance, if q is the ligase/target baseline ratio these two

parameters can be described as

DmaxðqÞ ¼
qd

qd þ qd50
;

DC50ðqÞ ¼ðDC50;max � DC50;minÞe�j�q þ DC50;min

ð23Þ

and used in Eq. (9). Clearly, this type of modelling requires

generating dose-responses in multiple patient representa-

tive tumour models spanning a range of baseline ratios,

which is more demanding than a simple dose-response but

still less prohibitive and more easily accessible than indi-

vidual on/off rates. Not only, it has the potential of pre-

dicting the response of new patient representative tumour

models or tissues (or even patients) as they become of

interest or available.

Whenever baseline and/or dose-response data is

unavailable or insufficient to fully parametrize relation-

ships (23), it is critical to use the same in vitro cell line as

the in vivo model to increase the chances of operating in

biological settings with comparable baseline ratio q (even

without knowing its value) while mitigating the risk of a

disconnect in Dmax and potency due to potential differences

in baseline ratio. For instance, Fig. 10 shows how a PD

model built on degradation time course data in model C-9

in vitro, driven by the plasma PK profile fitted in vivo in the

same C-9 model, can successfully predict degradation

kinetics in vivo at multiple dose levels.

Conclusion

In this work we have shown the value of an integrated

modelling approach for degraders which combines the

benefits of traditional turnover models and fully mecha-

nistic models to address two key project questions in drug

discovery programs, i.e. (i) how to drive compound opti-

mization and (ii) how to predict pharmacology across

patient representative tumour models or the kinetics of

in vivo degradation from in vitro data, ultimately to support

dose selection and predictions.

Whenever an exact mechanistic steady state solution is

available it can be utilized to precisely understand the role

of each parameter on the response and hence which kinetic

‘‘knobs’’ (e.g. on/off rates) need to be tuned to achieve a

desired pharmacological profile (Dmax, DC50). If such

properties can be measured experimentally in high-

throughput format they can directly inform and guide the

design of novel compounds, otherwise it may be possible to

obtain them indirectly from degradation data.

Following this approach we have shown how on/off and

degradation rates are related to potency and maximal effect

Fig. 10 PK fit and PD predictions of in vivo degradation kinetics from in vitro indirect response model in the same cell line as the in vivo model

by C-PROTAC-009 at different dose levels
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of monovalent degraders, and how such relationship can be

used to suggest a compound optimization strategy based on

faster association rather than slower dissociation. Moreover,

the same relationship indicates which additional experi-

mental data (e.g. endogenous protein turnover and binding

affinity) should be collected to retrieve all the original

mechanistic parameters, which we demonstrated for SERDs.

Whenever an exact steady state solution is not available, or

when its complexity is prohibitive (such as for PROTACs), an

empirical data-driven, mechanism-agnostic approach offers a

sub-optimal yet more pragmatic option. Nevertheless, even

complex exact steady state solutions can provide insight on

the type of observations required to ensure the predictive

capacity of a mechanistic approach. Specifically for PRO-

TACs, the structure of the exact steady state solution suggests

that the total remaining target at steady state, which is easily

accessible experimentally, is insufficient to reconstruct the

state of the whole system at equilibrium and observations on

different states (such as binary/ternary complexes) are nec-

essary. Not only, it highlights how the E3 ligase baseline

levels are a direct input to the system – just as the compound

concentration – and therefore should bemeasured beforehand

in biological models of interest.

While parameter identifiability is challenging for PRO-

TACs, global sensitivity analysis suggests that both target

and ligase baselines (actually, their ratio) are the major

sources of variability in the response of non-cooperative

systems, which speaks to the importance of not only gen-

erating such data as early as possible in drug discovery, but

also characterizing their distribution in the target patient

population to maximize the probability of response in the

clinic. Importantly, GSA can also suggest pathways to

enrich (too) simplistic turnover models just enough to

unlock their predictive capacity. The pragmatic approach

we proposed here is being applied within AstraZeneca to

PROTAC programs, accelerating the drug discovery pipe-

line and increasing the chances of success in the clinic.

Appendix A exact solution of bilinear
systems

A mathematical method to obtain an exact steady state

solution to chemical reaction networks with bilinear rate

laws is described in [18] and can be summarized as

follows:

1. Linearize the system by treating the bilinear terms

(‘‘bilinears’’) as dummy variables (‘‘dummies’’);

2. Partition the augmented variables (individual variables

and dummies) in two sets: free variables (XF), which

play the role of parameters, and dependent variables

(XD), which depend on free variables;

3. Obtain the free variables from the dummies definitions

and linear conservation laws;

4. Obtain the dependent variables from the free variables

calculated at the previous step.

Note that this method cannot be applied to any bilinear

system. The following two applicability conditions have to

be satisfied:

Requirement 1 The number of free variables must be

‘‘large enough’’ to contain the states

that appear in bilinears.

More precisely, the number of vari-

ables that appear in bilinear terms (NP)

must be less than or equal to the total

number of bilinear terms (NB) and

conservation laws (NC): NP �NC þ NB.

Requirement 2 The choice of free and dependent

variables (Step 2) allows the retrieval

of free variables from linear relations

(Step 3).

More precisely, there must exist a

clean set XX of DN ¼ NP � NC vari-

ables which appear in bilinears in such

a way that each bilinear term contains

at most one of them. If so, dependent

variables (XD) will include states that

do not appear in bilinears (XM) and a

subset of DN bilinears such that each

element of the clean set XX appears

once and only once in all the selected

bilinears, and free variables (XF) will

include states that appear in bilinears

and any remaining bilinears not inclu-

ded in XD.

Appendix B Monovalent degraders

B.1 Steady state solution

We report the steady state equations derived from the fully

mechanistic model (1) for easiness:

ksyn � kdeg � Tþ kToff � TD� kTon � T � D ¼ 0

�kTon � T � Dþ ðkToff þ kMDÞ � TD ¼ 0

kTon � T � D� ðkToff þ kMDÞ � TD ¼ 0

8
><

>:
ðB1Þ

and define equations and variable sets as in Table 3, with

corresponding cardinality.
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The first applicability requirement for method [18] is

NP �NC þ NB, which is met (2� 1þ 1). Although the

total number of Equations is NE ¼ 3, the linear conserva-

tion law introduces constraints among states that reduce the

number of independent equations to 2 (as shown in

Eq. (3)). Therefore we will solve for ND ¼ 2 dependent

variables and NF ¼ NV � ND ¼ 2 free variables.

Secondly, we need to find a clean set of DN ¼ NP �
NC ¼ 1 variable that appears in bilinears in such a way that

each bilinear term contains at most one of them. Because

there is only one bilinear term, T � D, T or D are equivalent

options. For example, set XX ¼ fTg. The clean set is key to
the applicability of the method, as it enables the lin-

earization of the non-linear component of the system.

It is now possible to identify a clean partition of free and

dependent augmented variables. Dependent variables (XD)

will include states that do not appear in bilinears (XM) and

the bilinear term. Free variables (XF) will include states

that appear in bilinears (XP) (in this case there are no

remaining bilinears since the only one has been included as

a dependent variable). In summary:

XD ¼ fTD;T � Dg

XF ¼ fT;Dg:
ðB2Þ

With such partition in place, (B1) can be rearranged as a

system of 2 independent linear equations in 2 unknown

dependent variables XD parametrized on the free variables

XF (on the right-hand side):

kToff � TD� kTon � ðT � DÞ ¼ �ksyn þ kdeg � T
ðkToff þ kMDÞ � TD� kTon � ðT � DÞ ¼ 0

�

ðB3Þ

Solving such linear system provides expressions for the

binary complex TD and the bilinear term as functions of

the remaining states T and D:

TD Tð Þ ¼ ksyn
kMD

� kdeg
kMD

� T ðB4aÞ

T � Dð Þ Tð Þ ¼ ksyn
kMD

kToff þ kMD

kTon
� kdeg
kMD

kToff þ kMD

kTon
� T ðB4bÞ

Because the bilinear term contains only one variable of

the clean set XX (i.e., it is linear in the clean set), D can be

easily obtained as function of T:

DðTÞ ¼ ksyn
kMD

kToff þ kMD

kTon
� 1
T
� kdeg
kMD

kToff þ kMD

kTon
ðB5Þ

At this point, by plugging in expressions (B4a) and (B5)

the conservation law (2) can be expressed by and solved for

for T only:

DtotðTÞ ¼ DðTÞ þ TDðTÞ

¼ ksyn
kMD

� kdeg
kMD

� Tþ ksyn
kMD

kToff þ kMD

kTon
� 1
T

� kdeg
kMD

kToff þ kMD

kTon
¼ D0;

ðB6Þ

which is the implicit exact solution (10).

In summary, this method linearizes the original non-

linear system (B1) by treating bilinear terms as additional

(dummy) variables and by wisely choosing a subset of

them as parameters so that the non-linear core of the sys-

tem is curtailed to the sole conservation laws.

B.2 Exact expressions of total target relative
to baseline as a function of free drug

Most in vitro assays detect the (fraction of) total amount of

remaining target Ttot ¼ Tþ TD, whose exact expression as

a function of T can be easily obtained from (B4a):

TtotðTÞ ¼ TDðTÞ þ T ¼ ksyn
kMD

þ 1� kdeg
kMD

� �

� T: ðB7Þ

Kinetics parameters such as kTon and kToff do not appear

explicitly, rather implicitly through T. Although finding a

formula for T is impossible — it can only be calculated

numerically from (B6) — relationship (B4b) can be used to

express T in terms of D, whereby on and off rates appear

explicitly:

Table 3 SERDs - Equations and

variable sets with corresponding

cardinality

Description Set Cardinality

Equations Eq. (1) NE ¼ 3

Conservation laws Eq. (2) NC ¼ 1

States X ¼ fT;D;TDg NE ¼ 3

Bilinears (dummies) XB ¼ fT � Dg NB ¼ 1

Augmented variables (states and dummies) X [ XB NV ¼ 4

States that appear in bilinears XP ¼ fT;Dg NP ¼ 2

States that do not appear in bilinears XM ¼ fTDg NE � NP ¼ 1
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T ¼

ksyn
kMD

kToff þ kMD

kTon

Dþ kdeg
kMD

kToff þ kMD

kTon

� � : ðB8Þ

Plugging (B8) into (B7) and dividing by the baseline T0 ¼
ksyn=kdeg we obtain the fraction of total remaining target

relative to baseline:

Ttot

T0

ðDÞ ¼ kdeg
kMD

þ 1� kdeg
kMD

� �

�

kdeg
kMD

kToff þ kMD

kTon

Dþ kdeg
kMD

kToff þ kMD

kTon

� � ;

ðB9Þ

which is Eq. (11).

B.3 Minimal parametrization of total remaining
target relative to baseline

Since the available in vitro data is typically in the form of

total target as a fraction of baseline, in order to enable

parameter estimation we need to express the exact solution

(B6) in terms of bTtot ¼ Ttot=T0. This task can be performed

in three steps:

1. Express (B6) in terms of the normalized free target

bT ¼ T=T0. By multiplying and dividing each term

containing T in (B6) by the baseline T0 ¼ ksyn=kdeg
(note that this equates to multiplying by 1, which does

not change the equation) we obtain:

� kdeg
kMD

ksyn
kdeg

� bT þ ksyn
kMD

kdeg
ksyn

kToff þ kMD

kTon
� 1
bT

þ ksyn
kMD

� kdeg
kMD

kToff þ kMD

kTon
¼ D0;

ðB10Þ

and recalling the definitions of the surrogate parame-

ters a, b, c (19):

�a � bT þ b � c � 1
bT
þ a� b � c ¼ D0: ðB11Þ

2. Express bT as a function of bTtot. By normalizing (B7)

we obtain

bTtotðbTÞ ¼
Ttot

ksyn=kdeg
¼ kdeg

kMD

þ 1� kdeg
kMD

� �

� bT ðB12Þ

and inverting for bT

bTðbTtotÞ ¼
bTtot �

kdeg
kMD

1� kdeg
kMD

� � ¼
bTtot � b
1� bð Þ ðB13Þ

3. Plug (B13) into (B11). We obtain

� a
1� b

� ðbTtot � bÞ þ b � c � ð1� bÞ�

1

bTtot � b
þ a� b � c ¼ D0;

ðB14Þ

which can be expanded as a polynomial function in

bTtot:

� a
1� b

bT2
tot þ ða� bcþ 2ab

1� b
� D0ÞbTtot

� ða� bc� D0Þbþ bcð1� bÞ � ab2

1� b
¼ 0:

ðB15Þ

The surrogate parameters a, b, c are still identifiable from

(B15), in fact they can be uniquely obtained by estimating

c1 ¼
a

1� b

c2 ¼ a� bcþ 2ab
1� b

� D0

c3 ¼ �ða� bc� D0Þbþ bcð1� bÞ � ab2

1� b
;

ðB16Þ

which are certainly identifiable by construction, and by

setting

b ¼ c2 þ c3 � c1 þ D0

D0

a ¼ c1ð1� bÞ

c ¼ c3
b
þ c1 � D0:

ðB17Þ

Appendix C SILAC modelling

The following mono-exponential model was fitted to

heavy- and light-labelled SILAC data in untreated MCF-7

cells (Fig. 11), with the endogenous fractional turnover

rate kdeg as a shared parameter:

bT ¼ ðbT0 � bT1Þ � e�kdeg�t þ bT1: ðC18Þ

Model estimates are reported in Table 4 with 95% confi-

dence intervals.
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Appendix D PROTACs

D.1 Steady state solution

The steady state of the dynamical system (4) is obtained by

setting the time derivatives to 0:

ksyn � kdeg � Tþ kPLoff � TPLþ kToff � PT� kTon � T � P� kPLon � PL � T ¼ 0

kPLoff � TPLþ kPRO � TPL� kLoff � PLþ kLon � L � P� kPLon � PL � T ¼ 0

kPToff � TPL� kMD � PT� kToff � PTþ kTon � T � P� kPTon � PT � L ¼ 0

�kPRO � TPL� kPLoff � TPL� kPToff � TPLþ kPLon � PL � Tþ kPTon � PT � L ¼ 0

�kLon � L � P� kPTon � PT � Lþ kLoff � PLþ kPToff � TPL ¼ 0

�kTon � T � P� kLon � L � Pþ kMD � PTþ kToff � PTþ kLoff � PL ¼ 0:

8
>>>>>><

>>>>>>:

ðD19Þ

Let us define equations and variable sets as in Table 5,

with corresponding cardinality. The first applicability

requirement on dimensionality NP �NC þ NB is met

(5� 2þ 4). Although the total number of equations is

NE ¼ 6, the two linear conservation laws introduce con-

straints among states that reduce the number of inde-

pendent equations to 4. Therefore we will solve for

ND ¼ 4 dependent variables (XD) and NF ¼ NV � ND ¼ 6

free variables (XF).

In order to be able to apply the method, the choice of

free and dependent states cannot be fully arbitrary. We

need to find a clean set of DN ¼ NP � NC ¼ 3 variables

that appear in bilinears in such a way that each bilinear

term contains at most one of them. For instance, P, PT

and PL all appear in the bilinears XB, but each bilinear

contains each one of them only once (in other words, P,

PT and PL are never multiplied by one another). There-

fore, XX ¼ fP; PT; PLg is a clean set for system (D19).

The clean set is key to the applicability of the method, as

it enables the linearization of the non-linear component of

the system.

It is now possible to identify a clean partition of free and

dependent augmented variables. Dependent variables will

include states that do not appear in bilinears (XM) and a

subset of DN ¼ 3 bilinears such that each element of the

clean set XX appears once and only once in all the selected

bilinears, for a total of ND ¼ 4. For instance, there is one

and only one bilinear in the set XB;XX
¼ fL � P;T � PL;L �

PTg that contains each one of P, PT and PL (i.e., elements

of the clean set XX) once: only L � P contains P, only T � PL
contains PL, and only L � PT contains PT.2 Free variables

will include states that appear in bilinears (XP) and the

remaining bilinears (XB n XB;XX
). In summary:

XD ¼ XM [ XB;XX
¼ fTPL;L � P;T � PL;L � PTg

XF ¼ XP [ XB n XB;XX

� �
¼ fT; P;L; PT; PL;T � Pg:

ðD20Þ

With such partition in place, system (D19) can be rear-

ranged as a system of 4 independent linear equations in 4

unknown dependent variables XD parametrized on the free

variables XF (on the right-hand side). Solving such linear

system provides expressions for TPL (i.e., XM) and the

bilinears XB;XX
as functions of the remaining states T, P, L,

PT, PL (i.e., XP) and the bilinear T � P (i.e., XB n XB;XX
).

Thanks to the rational choice of free and dependent vari-

ables, the three equations associated with the bilinears

XB;XX
in turn make up a linear sub-system in the clean

variables of XX , parametrized on T and L (i.e., XPnXX). As

a result, solving this linear sub-system provides expres-

sions for P, PT and PL in terms of T and L, which in turn

allows for reformulating the conservation laws as functions

solely of the two latter variables. Finally, solving the

conservation laws for T and L allows the retrieval of all the

other states (and dummies).

In summary, this method linearizes the original non-

linear system by treating bilinear terms as additional

(dummy) variables and by wisely choosing a subset of

them as parameters so that the non-linear core of the sys-

tem is curtailed to the sole conservation laws.

Fig. 11 ERa SILAC data in untreated MCF-7 cells

Table 4 Parameter estimates of model (C18) fitted to the data in

Fig. 11

Parameter Heavy Light

kdeg ðh�1Þ 0:1535 ð0:1432� 0:1643Þ 0:1535 ð0:1432� 0:1643Þ
bT0 ð%Þ 100:3 ð98:30� 102:3Þ 87:02 ð84:74� 89:33Þ
bT1 ð%Þ 12:98 ð10:67� 15:26Þ �0:2821 ð�2:28� 1:70Þ

2 Note that the set ~XB;XX
¼ fT � P;T � PL;L � PTg is also a suit-

able clean set, leading to an equivalent alternative solution (not

shown).
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Isolating dependent variables on the left-hand side and

free variables on the right-hand side in (D19) yields:

kPLoff � TPL � kPLon � ðT � PLÞ ¼ �ksyn þ kdeg � T� kToff � PTþ kTon � ðT � PÞ
ðkPLoff þ kPROÞ � TPLþ kLon � ðL � PÞ � kPLon � ðT � PLÞ ¼ kLoff

kPToff � TPL� kPTon � ðL � PTÞ ¼ ðkMD þ kToffÞ � PT� kTon � ðT � PÞ
�ðkPRO þ kPLoff þ kPToffÞ � TPLþ kPLon � ðT � PLÞ þ kPTon � ðL � PTÞ ¼ 0

8
>>><

>>>:

ðD21Þ

where the equations for P and L have been dropped due to

redundancy (they can be retrieved from the remaining

states and the conservation laws) and each bilinear term has

been highlighted in brackets as a whole dummy variable.

System (D21) can be written in matrix form as

kPLoff 0 � kPLon 0

kPLoff þ kPRO kLon � kPLon 0

kPToff 0 0 � kPTon
�ðkPRO þ kPLoff þ kPToffÞ 0 kPLon kPTon

2

6
6
6
4

3

7
7
7
5

TPL

L � P
T � PL
L � PT

2

6
6
6
4

3

7
7
7
5

¼ �

ksyn � kdeg 0 kToff 0 0 � kTon
0 0 � kLoff 0 0 0 0

0 0 0 � ðkMD þ kToffÞ 0 0 kTon
0 0 0 0 0 0 0

2

6
6
6
4

3

7
7
7
5

1

T

PL

PT

L

P

T � P

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

ðD22Þ

with solution (see Appendix D.2 for coefficients

definitions)

TPL ¼ t00 þ t10 � Tþ tH � PT ðD23aÞ

L � P ¼ c11PLþ c12PT� c13 � P � T ðD23bÞ

T � PL ¼ c20 � c21Tþ c22PT� c23 � P � T ðD23cÞ

L � PT ¼ c30 � c31T� c32PTþ c33 � P � T: ðD23dÞ

Eqs. (D23b)-(D23d) form a linear system in the clean set

XX ¼ fP; PT; PLg, parametrized on T and L, which can be

recast in matrix form as

�c13 � T� L c11 c12

c23 � T T � c22

c33 � T 0 � c32 � L

2

6
4

3

7
5

P

PL

PT

2

6
4

3

7
5 ¼

0

c20 � c21T

�c30 þ c31T

2

6
4

3

7
5;

ðD24Þ

with solution

P ¼ �p20T
2 � p11L � Tþ p10Tþ p01Lþ p00

TðL2 þ d11L � Tþ d01Lþ d10Tþ d00Þ
ðD25aÞ

PL ¼ bL;02L
2 � bL;12L

2 � T � bL;21L � T2 þ bL;20T
2 þ bL;01L� bL;10Tþ bL;11L � T

TðL2 þ d11L � Tþ d01Lþ d10Tþ d00Þ

ðD25bÞ

PT ¼ Tð�bT ;20T
2 þ bT ;01L� bT ;11L � Tþ bT ;10Tþ bT ;00Þ

TðL2 þ d11L � Tþ d01Lþ d10Tþ d00Þ
ðD25cÞ

(see Appendix D.2 for coefficients definitions). Finally,

plugging expressions (D23a) and (D25a)-(D25c) in the

conservation laws (7) provides a system of two non-linear

equations in two unknowns:

LtotðT;LÞ ¼ L þ PLðT;LÞ þ TPLðT;LÞ ¼ L0

PtotðT;LÞ ¼ PðT;LÞ þ PTðT;LÞ þ PLðT;LÞ þ TPLðT;LÞ ¼ P0;

�

ðD26Þ

from which T and L can be numerically calculated for any

given concentration P0 and ligase baseline L0.

D.2 Steady state solution coefficients

The rationale for coefficients notation is displayed in

Table 6. The subscripts in each coefficients are determined

as follows:

• cij is the coefficient in row i, column j of the clean set

system in matrix form (D24);

• tij, pij, bT ;ij, bL;ij, dij multiply the monomial term Ti � Lj

in the corresponding formula as in Table 6;

• tH multiplies the PT binary complex in (D23a) (and is

the only coefficient that does not multiply a monomial

term in two variables of the form Ti � Lj).

Eqs. (D23a)-(D23d), (D24)

Table 5 PROTACs - Equations and variable sets with corresponding cardinality

Description Set Cardinality

Equations Eq. (D19) NE ¼ 6

Conservation laws Eq. (7) NC ¼ 2

States X ¼ fT;L;P;PT; PL;TPLg NE ¼ 6

Bilinears (dummies) XB ¼ fT � P;L � P;T � PL;L � PTg NB ¼ 4

Augmented variables (states and dummies) X [ XB NV ¼ 10

States that appear in bilinears XP ¼ fT; P;L; PT;PLg NP ¼ 5

States that do not appear in bilinears XM ¼ fTPLg NE � NP ¼ 1
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c11 ¼
kLoff
kLon

c12 ¼
kToff
kLon

þ kMD

kLon

c13 ¼
kTon
kLon

c20 ¼
kPLoff
kPLon

� ksyn
kPRO

þ ksyn
kPLon

c21 ¼
kdeg
kPLon

þ kPLoff
kPLon

� kdeg
kPRO

c22 ¼
kToff
kPLon

� kPLoff
kPLon

� kMD

kPRO

c23 ¼
kTon
kPLon

c30 ¼
kPToff
kPTon

� ksyn
kPRO

c31 ¼
kPToff
kPTon

� kdeg
kPRO

c32 ¼
kToff
kPTon

þ kPToff
kPTon

� kMD

kPRO
þ kMD

kPTon

c33 ¼
kTon
kPTon

t00 ¼
ksyn
kPRO

t10 ¼ � kdeg
kPRO

tH ¼ � kMD

kPRO

Eqs. (D25a)-(D25c)

d11 ¼ c13

d01 ¼ c11c23 þ c32

d10 ¼ �c12c33 þ c13c32

d00 ¼ �c11c22c33 þ c11c23c32

Eq. (D25a)

p20 ¼ �c12c31

p11 ¼ �c11c21

p10 ¼ c12c30 � c11c21c32 � c11c22c31

p01 ¼ c11c20

p00 ¼ c11c20c32 þ c11c22c30

Eq. (D25b)

bL;02 ¼c20

bL;12 ¼� c21

bL;21 ¼� c13c21

bL;11 ¼c13c20 � c21c32 � c22c31

bL;20 ¼c12c21c33 þ c12c23c31

� c13c21c32 � c13c22c31

bL;01 ¼c20c32 þ c22c30

bL;10 ¼� ðc20c33 þ c23c30Þc12
þ ðc20c32 þ c22c30Þc13

Eq. (D25c)

bT ;20 ¼ �c13c31

bT ;01 ¼ c30

bT ;11 ¼ �c31

bT ;10 ¼ c13c30 � c11c21c33 � c11c23c31

bT ;00 ¼ c11c20c33 þ c11c23c30

D.3 Mechanistic parameters retrieval

Assume endogenous degradation rate kdeg and the PRO-

TAC-target binding affinity kTon=k
T
off are known form

measurements, and that the 9 coefficients t00, t10, tH, c11,

c13, c20, c23, c30, c33 are estimated. Then, synthesis and

degradation rates are obtained as:

ksyn ¼ �kdeg
t00
t10

kMD ¼ kdeg
t10
tH

kPRO ¼ ksyn
t00

From the definitions of c11 and c30, and given the ratio

kTon=k
T
off , it follows

kPToff
kPTon

¼ c30
kPRO
ksyn

a ¼ c30
c11

kPRO
ksyn

kPLoff
kPLon

¼ a
kToff
kTon

and finally

Table 6 Coefficient notation key for all (set of) variables

Coefficient notation Variable (set) Equation reference

t�� ternary complex (TPL) (D23a)

c�� clean set system (P, PT, PL) (D23b)-(D23d), (D24)

p�� PROTAC (P) (D25a)

bT ;�� PROTAC-Target binary complex (PT) (D25c)

bL;�� PROTAC-Ligase binary complex (PL) (D25b)

d�� denominator of the clean set variables (and determinant of the clean set system (D24)) (D25a)-(D25c)

Journal of Pharmacokinetics and Pharmacodynamics (2023) 50:327–349 347

123



kPLon ¼ ksyn

c20 �
kPLoff
kPLon

� ksyn
kPRO

kTon ¼ kPLon � c23

kLon ¼
kTon
c13

kPTon ¼ kTon
c33

kLoff ¼ kLon � c11

kPToff ¼ a
kLoff
kLon

kPTon

kPLoff ¼ a
kToff
kTon

kPLon

kToff ¼
kPLoff
kPLon

kLoff
kLon

kPTon
kPToff

kTon
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