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Abstract
An adequate covariate selection is a key step in population pharmacokinetic modelling. In this study, the automated

stepwise covariate modelling technique (‘scm’) was compared to full random effects modelling (‘frem’). We evaluated the

power to identify a ‘true’ covariate (covariate with highest correlation to the pharmacokinetic parameter), precision, and

accuracy of the parameter-covariate estimates. Furthermore, the predictive performance of the final models was assessed.

The scenarios varied in covariate effect sizes, number of individuals (n = 20–500) and covariate correlations (0–90% cov-

corr). The PsN ‘frem’ routine provides a 90% confidence intervals around the covariate effects. This was used to evaluate

its operational characteristics for a statistical backward elimination procedure, defined as ‘fremposthoc’ and to facilitate the

comparison to ‘scm’. ‘Fremposthoc’ had a higher power to detect the true covariate with lower bias in small n studies

compared to ‘scm’, applied with commonly used settings (forward p\ 0.05, backward p\ 0.01). This finding was vice

versa in a statistically similar setting. For ‘fremposthoc’, power, precision and accuracy of the covariate coefficient increased

with higher number of individuals and covariate effect magnitudes. Without a backward elimination step ‘frem’ models

provided unbiased coefficients with highly imprecise coefficients in small n datasets. Yet, precision was superior to final

‘scm’ model precision obtained using common settings. We conclude that ‘fremposthoc’ is also a suitable method to guide

covariate selection, although intended to serve as a full model approach. However, a deliberated selection of automated

methods is essential for the modeller and using those methods in small datasets needs to be taken with caution.
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Introduction

Over the past decades, population pharmacokinetic mod-

elling with nonlinear mixed effects (NLME) approaches

efficiently supported drug development. During model

development covariates are analysed to establish a rela-

tionship between a model parameter and a patient specific

variable. A covariate can be any variable on patient-level

(not time varying) that influences the pharmacokinetics

(PK) or pharmacodynamics (PD) of a drug. If informative,

it reduces unexplained inter-individual PK or PD vari-

ability. To guide dose adjustments in special patient pop-

ulations (e.g. elderly, adipose, hepatically or renally

impaired patients), a covariate analysis is also of interest to

regulatory authorities [1]. To date, a number of automated

covariate selection techniques are available [2]: these

include e.g. stepwise covariate modelling (‘scm’) [3], or

least absolute shrinkage and selection operator (lasso) [4].

The stepwise procedure tests predefined covariates on

structural PK or PD parameters of interest. Automated

covariate selection methods are statistically driven meth-

ods. The ‘scm’ includes covariates by the highest drop of

objective function (dOFV) with a predefined p-value dur-

ing the forward inclusion. In one of the more common

implementations covariates are included until the likeli-

hood ratio test identifies no significant covariate parameter

relationship anymore. Afterwards, the backward elimina-

tion reduces the covariate model to obtain the final model,

by applying a stricter p-value. This method has been

evaluated on their properties and compared to other

established methods before [5, 6]. In contrast to that, the

‘frem’ is a full model approach and includes all covariates

& Sebastian G. Wicha

sebastian.wicha@uni-hamburg.de

1 Department of Clinical Pharmacy, Institute of Pharmacy,

University of Hamburg, Bundesstraße 45, 20146 Hamburg,

Germany

123

Journal of Pharmacokinetics and Pharmacodynamics (2023) 50:315–326
https://doi.org/10.1007/s10928-023-09856-w(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10928-023-09856-w&amp;domain=pdf
https://doi.org/10.1007/s10928-023-09856-w


of interest as observations (i.e., explicitly defining the

likelihood of the covariate values) [7]. A full covariance

matrix quantifies the random effects of PK parameters and

describes parameter covariate relationships [8]. With the

matrix, covariances of covariates can inform for other

covariates so that this method is less sensitive to

collinearity. Covariate coefficients are obtained from the

ratio of covariance between parameter and covariate vari-

ability to the covariate variance [7].

The novel ‘frem’ method has not been applied to many

clinical datasets yet [9–11]. Although ‘scm’ and ‘frem’ are

techniques that are rather complementary in nature due

their inherently different way to approach covariate mod-

elling, a structured comparison of the operational charac-

teristics using a simulation study is lacking. The aim of this

study was to compare the ‘scm’ and ‘frem’ as automated

covariate analysis methods. In order to enable a compar-

ison, we here introduce the ‘fremposthoc’ that offers a

covariate selection step from the final ‘frem’ model using

the confidence intervals around the estimated covariate

effect sizes in the final ‘frem’ model. In the present study,

the following aspects between ‘scm’, ‘frem’ and

‘fremposthoc’ were compared: (1) the power to identify the

true covariate (here defined as the covariate with the

highest correlation with the PK parameter), (2) accuracy

and precision of the estimated relationship, as well as (3)

the predictive performance. To enable a thorough com-

parison, we investigated the impact of dataset size

(n = 20–500), and covariate correlation (0–90%) for three

covariate effect sizes in sparse simulated datasets using the

commonly used (‘scm’) or predefined (‘frem’/’fremposthoc’)

settings of both approaches as well as statistically equal

settings.

Methods

The workflow of this simulation study is shown in Fig. 1.

The simulation dataset contained three covariates sampled

from a multivariate normal distribution. The dataset was

used to simulate with a one compartment model including

the true covariate relationship on clearance. These simu-

lated clinical datasets served for ‘scm’ and ‘frem’ analyses

(n = 1000 for each scenario). Based upon the final models,

power, precision, and accuracy were evaluated. The fol-

lowing section describes the single steps in detail.

Software

NLME modelling was applied with NONMEM� 7.5.0

[12], controlled through PsN 5.0.0 [13]. The software R

(version 3.6.0) [14] was used for automated run executions

and data analysis. The NONMEM� models as well as

relevant R code are provided in Supplement 1.

Generation of datasets and simulation of PK data

Continuous covariates

Three vectors of three covariates (i.e., covariateI, covari-

ateII and covariateIII) with defined means, and variances

were drawn from a multivariate normal distribution (Sup-

plement 3, Figure S3-1). The datasets included various

correlations of covariateI (covtrue) and covariateII from 0 to

90%. CovariateIII represented pure ‘‘noise’’ and was inde-

pendent from covtrue and covariateII. All simulations used

individually simulated datasets with 20, 50, 100 or 500

virtual patients (n) including 2 (sparse) concentration-time

points per individual. The sparse sampling datasets inclu-

ded samples in the sixth and twelfth dosing interval (1 and

11.5 h time after last dose, respectively). PK profiles of the

scenarios (1-CMT PK model, i.v. short infusion, linear

elimination) were obtained via Monte Carlo simulations.

The true PK model (run001) is described in Supplement

1.1. The simulated dose was 100 mg q12 h with 30 min

infusion. The PK model parameters were clearance (CL) of

18 L/h with inter-individual variability on CL (IIVCL: 0.1

variance, log-normal distribution), central volume of dis-

tribution (V1) of 400 L and a residual proportional error

(%CV) of 15%. Covtrue was implemented as an exponential

covariate on CL (hCL) with the hcov as covariate coefficient

(Eq. 1):

CL ¼ hCL � e hcov � COV�COVmeanð Þð Þ � egi : ð1Þ

The individual covariate value (cov) was normalized by

the mean of the covariate distribution cov� covmeanð Þ. The

remaining unexplained inter-individual variability (gi)
described the individual deviation from the typical

parameter hCL for the ith individual (Eq. 1).

The observed concentration Yobserved;i;j was calculated by

the predicted concentration Ypredicted;i;j multiplied by the

proportional residual unexplained variance per individual i

at each time point j (Eq. 2). No inter-occasion variability

was included:

Yobserved;i;j ¼ Ypredicted;i;j � 1 þ eprop;i;j
� �

: ð2Þ

The simulated covariate effect magnitudes varied

between hcov = 0.026, 0.032 and 0.045, respectively. This

resulted in relative effect sizes of - 18 to ? 22%, - 22 to

? 27% and - 29 to ? 41% on CL at the 5th - 95th

percentile of covariate values.
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Evaluation using ‘scm’ or ‘frem’ models

Parameter estimation was performed using first order

conditional estimation with interaction (FOCE?I), allow-

ing three minimum retries on each simulated dataset (for

each scenario, n = 1000). The structural model used for

estimation is described in Supplement 1.2 (run002). The

ADVAN 1 subroutine was used as analytical solution of

the 1-CMT model. All three previously simulated covari-

ates in the simulated dataset were provided to the ‘scm’, as

well to ‘frem’ for analysis. The ‘scm’ and ‘frem’ were

executed on each simulated dataset. The final ‘scm’ model

results were either obtained in the last forward/backward

step, or if the covariate identification failed, no covariate

model was obtained. The ‘frem’ is a full model approach

that includes all provided covariates simultaneously.

Thereby, results cannot be compared to ‘scm’ without

restrictions. To address the fundamental differences of

these methods we evaluated the results in three settings:

(i) Scenario 1 evaluated the operational characteris-

tics of ‘fremposthoc’. A covariate backward elim-

ination from final ‘frem’ models was performed

via the 90% confidence intervals of the estimated

covariate effect and compared to final ‘scm’

models obtained with commonly used settings

(forward inclusion, p\ 0.05 and a backward

elimination p\ 0.01).

(ii) Scenario 2 assessed a statistical ‘head-to-head’

comparison of ‘fremposthoc’ and ‘scm’ covtrue

coefficients with only forward inclusion (p\ 0.1)

(iii) Scenario 3 showed a comparison of all estimated

‘frem’ covtrue covariate coefficients without a

selection step compared to ‘scm’ results of Sce-

nario 1.

Scenario 1

A forward selection with a p-value of\ 0.05 and a back-

ward elimination (p\ 0.01) was used reflecting the com-

monly used settings of the ‘scm’. We compared those

‘scm’ runs, which selected covtrue to those ‘frem’ runs that

identified covtrue with a covariate effect significantly dif-

ferent from zero. The significance was interpreted by the

90% confidence interval obtained from sampling impor-

tance resampling (SIR) [15]. The results were extracted

from the PsN provided results files (PsN 5.0.0), and the

effect sizes (5th – 95th percentile of the covariate effect,

90% confidence interval) reflect the default setting of the

‘frem’ PsN routine. Since this setting evaluated a backward

elimination, we define this use case of the ‘frem’ as

‘fremposthoc’. We furthermore defined power (1–type

II error) as the frequency of selecting covtrue in the

covariate model (‘scm’), or as frequency to identify covtrue

as a covariate with the highest effect size different from

zero and non-overlapping 90% confidence interval

(‘fremposthoc’). For the ‘fremposthoc’, the estimated univari-

ate hcov coefficient was evaluated (PsN ‘frem_results.csv’),

which represents the effect of a single covariate in isolation

[7]. Conditional accuracy and conditional precision,

Fig. 1 Graphical workflow of

the simulation study. Scm
stepwise covariate modelling,

frem full random effects

modelling, rrmse relative root

mean squared error, rbias
relative bias, mvrnorm
multivariate normal distribution
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expressed as rbias (Eq. 3) and rrmse (Eq. 4), were calcu-

lated as follows for significant covtrue coefficients:

rBIASð%Þ ¼ 1

N
�
Xi

1

ðestimatedi � trueiÞ
truei

� 100; ð3Þ

rRMSEð%Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
Xi

1

ðestimatedi � trueiÞ2

true2
i

vuut � 100: ð4Þ

The denominator (N) was different across the simulated

scenarios and methods, as the number of simulations for

which covtrue coefficients was evaluated changed

accordingly.

Moreover, true alpha values (Type-I error rate) were

evaluated based on covIII inclusion in the forward ‘scm’

models and the final ‘fremposthoc’ models. CovIII is inde-

pendent of the others and represents pure noise without

having any simulated relationship between the pharma-

cokinetics and covIII. The alpha values in the final

‘fremposthoc’ models were defined as the frequency of runs

in which the covIII effect was not overlapping with zero.

According to Ribbing et al., we calculated the fraction

of predictive models by assuming an estimated covariate

coefficient between zero and two times covtrue to be likely

to improve the predictive performance of a model [16]. For

each scenario the fraction of predictive models was cal-

culated (Eq. 5), where e represents the covariate effect

size, c the correlation between covtrue and covII and N the

dataset size varying from n = 20–500. SecnN represented

the models which included covtrue (‘scm’) for the respec-

tive scenario. For ‘fremposthoc’ coefficients, secnN repre-

sented all runs or those including a significant covtrue

relationship with the highest effect of all three covariates in

the models for comparison to the ‘scm’.

Fraction of predictive model:

secN ¼ 100 �
P1000

n¼1 PecnN � secnNð Þ
P1000

n¼1 secnN
ð%Þ; ð5Þ

where,

PecnN ¼ 1 if
ĥecnN � hecnN

hecnN

�����

�����
\1

0 otherwise

8
><

>:
:

Scenario 2

For a comparison of equal selection criteria, ‘scm’ runs

with only forward inclusion (p-value\ 0.1) were com-

pared to ‘fremposthoc’ results (which evaluates overlap/non-

overlap with zero of the 90% confidence interval). Settings

for ‘fremposthoc’ were not changed compared to scenario 1.

Power, conditional accuracy and precision were calculated

for those runs, where the included covtrue was statistically

significant. Similar to scenario 1, the predictive perfor-

mance of final ‘scm’ and fremposthoc’ models was evaluated

according to Ribbing et al. [16]. As the number of signif-

icant runs changed across the simulated scenarios (e.g. n,

covariate effect magnitude, cov-corr) the denominator to

calculate these evaluation metrices changed between also

between both methods.

Scenario 3

In this scenario, conditional accuracy, and precision, but

also the predictive performance of all estimated ‘frem’

covtrue coefficients (i.e. no posthoc selection step from the

final ‘frem’ model) were compared to ‘scm’ models

obtained in scenario 1.

Categorical covariates

Additionally, a simulation study (n = 500) with a true

dichotomous categorical covariate was performed. The

dataset size varied from n = 20–500 and covariate corre-

lation to a continuous covariate was 0% or 80%. The third

covariate (continuous) was independent of the others. The

true model included the categorical covariate as a frac-

tional change of clearance with an effect size of either

- 20% or - 40%. IIVCL, but also inter individual vari-

ability on central volume of distribution (IIVVc) was

included in the model. More details on this study are

described in Supplement 2.

Results

Power of covtrue inclusion for ‘scm’
and ‘fremposthoc’

The power to include the covtrue throughout the investi-

gated scenarios was highly variable. Overall, the power to

select covtrue increased with dataset size or covariate effect

and decreased in presence of covariate collinearity.

In scenario 1, the simulations and estimations showed

that ‘fremposthoc’ power was higher compared to the ‘scm’

throughout all scenarios (Fig. 2), likely due to the higher

value for alpha of 0.1 in the ‘fremposthoc’ (non-overlapping

90% confidence interval of the covariate effect size) vs.

0.01 in the ‘scm’. The dataset size (n = 20 to n = 100)

strongly increased power for both methods. The presence

of covariate correlation reduced the power of ‘fremposthoc’

from 82 to 59% (n = 50, hcovtrue = 0.032) whereas the ‘scm’

power was less affected by correlation in the simulated

scenarios (Table 1). Moreover, with an increasing covariate

effect on clearance, we observed an increase of power from
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28% (‘scm’, n = 50, 0% cov-corr, hcovtrue ¼ 0:026) to 80%

ðhcovtrue ¼ 0:045Þ and from 64 to 96% for ‘fremposthoc’.

Scenarios with n = 500 showed a power of[ 91%, inde-

pendent of covariate effect magnitude and were less in-

fluenced by covariate collinearity (Fig. 2 and Table 1).

Moreover, the frequency of a significant covII effect in

the final ‘fremposthoc’ models was[ 77% in presence of

C 80% cov-corr (n C 100). In contrast to that, covII was

significantly included in\ 16% of ‘scm’ runs.

In scenario 2, a ‘head-to-head’ comparison with a sta-

tistically similar setting was performed (same setting for

the ‘fremposthoc’ as in scenario 1 and ‘scm’ with sole for-

ward inclusion using an alpha value of 0.1): the less strict

alpha value in combination with only forward inclusion led

to an increase of power for the ‘scm’, resulting in above

53% and with that being superior to ‘fremposthoc’ (Fig. 3).

More details are described in Supplement 3.

No comparison of power is possible for scenario 3 due

to the missing selection step in the ‘frem’.

Conditional accuracy and precision of hcovtrue
estimates

In scenario 1, an overestimation in small n datasets was

more pronounced for ‘scm’ than for ‘fremposthoc’ (Fig. 2).

Thus, ‘fremposthoc’ covariate coefficients were more accu-

rate and precise. (Fig. 2, Supplement 3, Figure S3-2). We

observed for both methods a power-dependent increase in

conditional accuracy up to unbiased estimates, see Table 1

and Fig. 2. For example, the rbias of ‘scm’ coefficients was

reduced from 50% (hcovtrue ¼ 0:026) to 8% (hcovtrue ¼ 0:045)

in small datasets (n = 50) in presence of 90% cov-corr.

The conditional precision of the estimated coefficients in

scenario 1 showed the same trend: Imprecision steeply

decreased with increasing power (Table 1). With both

methods, we obtained imprecise estimates in small n

datasets (n = 50, hcovtrue ¼ 0:032, ‘fremposthoc’: 35%, ‘scm’

42%), independent of correlation.

In scenario 1, CL and Vc were accurately (rrmse\
10%) and precisely (rbias\ 3%) estimated in the final

‘scm’ as well as the ‘fremposthoc’ model. The proportional

error model estimate trended to underestimation (rbias[
- 11%) and was less precise with rrmse\ 27%.

Fig. 2 ‘Scm’ and ‘fremposthoc’ results of scenario 1. Illustration of

power (%), conditional relative bias (%) (rbias) and conditional

relative root mean squared error (%) (rrmse) of covtrue estimates.

Conditional accuracy and precision for the ‘fremposthoc’ is shown for

the univariate coefficients
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In scenario 2, the higher alpha value of 0.1 in scenario 1

for ‘scm’ forward selection strongly reduced overestima-

tion of coefficients to a rbias below 48%. As a result,

conditional accuracy was higher compared to ‘fremposthoc’,

whereas conditional precision of ‘scm’ coefficients was

similar to ‘frem’ coefficients throughout the scenarios

(Fig. 3, Supplement 3 Table S3-1). Additional details are

described in Supplement 3.

Furthermore, scenario 3 compared all ‘frem’ covtrue

estimates without a selection step to those of the final ‘scm’

models obtained after backward elimination. This analysis

quantitatively shows the effect of selection bias if com-

pared to scenario 1 results. In sum all ‘frem’ coefficients

were unbiased. Moreover we observed still a high impre-

cision of ‘frem’ coefficients in small n datasets (n\ 100)

which was independent of the selection step, but ‘frem’

showed a superior precision compared to ‘scm’ especially

in small n datasets, (Fig. 4). Further details are described in

Supplement 3.

The simulation study using a true categorical covariate

showed the same trend of power, conditional rbias and

rrmse for scenario 1 and scenario 2, whereas the differ-

ences of our evaluation criteria were smaller between ‘scm’

and ‘fremposthoc’, if compared to the simulation study using

a true continuous covariate. Supplement 2 provides a

detailed description of all obtained results.

Predictive performance of ‘scm’ and ‘fremposthoc’
models

Scenario 1 evaluated the estimated covariate coefficients of

the final ‘scm’ and ‘fremposthoc’ models for their predic-

tivity, i.e., were termed predictive when estimated between

zero and two times the true value. The results are shown in

Table 1 Simulation and estimation results of ‘scm’ and ‘fremposthoc’ in scenario 1

N Covariate correlation

(%)

Method hCOV = 0.026 hCOV = 0.032 hCOV = 0.045

power

(%)

rbias

(%)

rrmse

(%)

power

(%)

rbias

(%)

rrmse

(%)

power

(%)

rbias

(%)

rrmse

(%)

20 0 frem 36.5 68.3 87.0 47.2 8.1 67.6 70.1 17.2 40.2

scm 10.4 118 128 18.1 84.8 95.3 35.2 36.4 47.3

50 frem 33.5 68.5 87.8 46.6 47.8 68.5 63.0 18.6 40.9

scm 9.60 118 127 16.2 83.6 97.0 33.2 36.4 47.4

90 frem 25.0 69.2 89.0 36.8 47.1 68.7 49.3 17.9 42.3

scm 8.20 120 129 13.2 85.0 99.1 27.6 36.8 47.7

50 0 frem 64.2 23.8 40.5 81.5 12.5 33.9 96.0 2.50 25.3

scm 28.4 47.3 54.9 50.1 28.3 39.0 80.0 7.60 24.2

50 frem 60.4 23.7 40.6 78.0 12.8 34.4 92.6 3.00 25.2

scm 27.5 47.2 54.8 48.4 28.8 39.6 78.0 8.00 24.2

90 frem 46.5 23.4 41.8 58.8 13.2 34.9 71.8 2.70 25.8

scm 22.1 49.5 57.1 38.0 31.6 42.2 67.2 8.30 24.2

100 0 frem 89.2 4.40 28.3 97.0 1.20 25.3 99.9 0.20 19.2

scm 62.7 16.1 27.1 85.1 5.70 22.8 99.2 - 0.70 19.5

50 frem 83.8 5.70 28.7 94.5 1.50 25.8 99.3 0.30 18.8

scm 60.8 16.5 27.5 84.1 6.30 22.9 98.3 - 0.6 19.4

90 frem 69.1 3.80 27.7 76.6 1.50 25.0 83.0 0.70 19.2

scm 51.8 16.9 27.6 70.6 6.30 23.0 87.4 0.10 19.4

500 0 frem 99.2 - 2.2 15.4 99.9 - 0.2 12.4 100 - 0.50 8.80

scm 100 - 2.1 14.6 100 - 1.0 11.9 100 - 1.2 8.60

50 frem 99.2 - 2.3 15.3 100 - 0.2 12.4 100 - 1.0 8.70

scm 100 - 2.0 14.6 100 - 1.0 11.9 100 - 1.1 8.60

90 frem 91.96 - 1.8 15.1 95.8 - 0.7 12.1 98.1 - 1.0 9.10

scm 93.5 - 1.7 14.6 96.7 - 0.8 11.9 99.6 - 1.1 8.60

The simulated relative covariate effect sizes were - 18 to ? 22% (hCOV = 0.026), - 22 to ? 27% (hCOV = 0.032) and - 29 to ? 41%

(hCOV = 0.045) on clearance at the 5th to 95th perc percentile of covariate values. Conditional accuracy and precision were expressed as rbias

(%) and rrmse (%)
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Fig. 5. The predictive performance of the covtrue estimates

was a function of power for the ‘scm’, but also for

‘fremposthoc’. The ‘fremposthoc’ showed a higher power in

small n datasets, thus the fraction of predictive models was

more than twice as high compared to ‘scm’. On the other

hand, the fraction of predictive ‘scm’ models increased

more steeply with increasing power. At a power value

of[ 28% more than 90% of the final models were likely to

improve the predictivity (‘fremposthoc’[ 47% power).

As power is a composite of dataset size, covariate effect

size and correlation, we analysed the individual compo-

nents on their relation to influence the fraction of predictive

models (Supplement 3 Figure S3-3). We observed that

dataset size, covariate effect size, rbias and rrmse most

influenced the fraction of predictive models and that pre-

dictive performance was less impacted by covariate

correlation.

The fraction of predictive ‘scm’ and ‘fremposthoc’ models

in scenario 2 were similar (scm: 97.0% ‘fremposthoc’:

97.5%, n = 50, cov-corr = 80%, hcovtrue ¼ 0:026) and

reached both 100% in the scenario with the highest simu-

lated covariate effect magnitude, hcovtrue ¼ 0:045; n[ 50),

see Supplement 3 Figure S3–4.

Overall, final ‘frem’ models (scenario 3) were providing

highly predictive covariate coefficient estimates, which

were mainly driven by covariate effect magnitude and

independent of the dataset size (Supplement 3 Figure S3-

6).

Type 1 error

For scenario 1, the true alpha values are displayed in

Fig. 6. Overall, ‘fremposthoc’ indicated a false significant

covariate effect of the dummy covariate covIII in more

cases, than the given 10% confidence intervals of the

covariate effects would imply, i.e., an inflated type 1 error

rate was observed. The ‘scm’ also displayed inflated type 1

error rates for small datasets. For n C 100 both methods

approached the set alpha value of 10% (‘fremposthoc’) or 5%

(‘scm’).

In scenario 2, the true ‘scm’ alpha values were between

6 and 11% and with that close to the expected 10% value.

Fig. 3 ‘Scm’ vs. ‘fremposthoc’ in the scenario 2. Illustration of power

(%), conditional relative bias (%) (rbias) and relative root mean

squared error (%) (rrmse) of covtrue estimates in sparse datasets.

Conditional accuracy and precision for the ‘fremposthoc’ is shown for

the univariate coefficients
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Discussion

In the present study, we compared operational character-

istics of the novel ‘frem’ technique to ‘scm’ as automated

covariate analysis methods. As the ‘frem’ method is a full

model approach and does not originally comprise a selec-

tion step, we introduced the ‘fremposthoc’ step to account for

a covariate backward elimination based on significant

covariate effect sizes. This reflects an additional applica-

tion of a ‘frem’ model in an exploratory analysis. Overall,

this study gave insights in operational characteristics of the

‘frem’ method, but also showed the ability of ‘fremposthoc’

to guide covariate selection. Yet, for ‘fremposthoc’ the same

caution as for the ‘scm’ should be applied since this

posthoc step also can introduce selection bias in scenarios

with low power (i.e. small covariate effect size, small

sample size). Of note, an evaluation of precision and

accuracy of all covtrue ‘frem’ estimates without a selection

step showed that the covariate effect estimates were unbi-

ased and showed lower imprecision as those determined

using the ‘scm’, which were biased due to the selection

step, in particular in scenarios with low power. This un-

derlines the value of the ‘frem’ method. It has the addi-

tional advantage of interpreting the covariate effect

simultaneously to statistical significance without the need

for further evaluate the parameter uncertainty, which is

needed for ‘scm’ to evaluate clinical relevance (e.g. boot-

strap, llp-sir [17]). In large datasets, both methods provided

precise and accurate inference on covariate effects in our

simulation study. Moreover, Yngman et al. described an

advantage of ‘frem’ model, that it can provide covariate

coefficients for any subset of the examined covariates and

thus be applied to different covariate datasets [7]. In

addition, a model reduction of the full model could be done

in a stepwise manner, if a more parsimonious model is

desired [2, 7]. This simulation study comprised an inves-

tigation of final ‘frem’ model subsets for the purpose of

covariate backward elimination, presented in

scenarios 1–2.

The statistical power to detect true covariate effects is

important to guide clinical study design. Ribbing et al.

described that dataset size, magnitude of collinearity, and

covariate effect size influence the power of the ‘scm’

method [16]. Ahamadi et al. investigated the operating

characteristics of ‘scm’ using different complexities of true

models (i.e. 1–4 true covariates). Those scenarios with one

true covariate (n = 300, cov-corr 32% or 89%, 250 simu-

lations) reached a high power [18]. This is in line with our

results in datasets n C 100. Beyond that, our observed

power increase, as a result of increased dataset- and

covariate effect size, as well as a reduction of power caused

by collinearity of covariates are in line with Ribbing et al.

Fig. 4 ‘Scm’ vs. ‘frem’ for scenario 3. Illustration of relative bias (%) (rbias) and relative root mean squared error (%) (rrmse) of covtrue
estimates in sparse datasets. Accuracy and precision for the ‘frem’ is shown for the univariate coefficients
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[19]. In comparison to that, the ‘fremposthoc’ showed an up

to three-fold higher power in the worst-case scenario with

high correlation in small cohort studies (scenario 1,

hcovtrue ¼ 0:026), likely as a result of the different alpha

values in the selection step. In scenario 2, power differ-

ences of the two methods were smaller, rather favouring

‘scm’. We however think that ‘scm’ with only forward

inclusion and an alpha value of 0.1 does not represent

common practice. Moreover, it is known that ‘scm’ suffers

from multiple testing which is not the case of the

‘fremposthoc’ method, which makes this an interesting

comparison.

In this study covII carries up to 90% of the information

of covtrue. ‘Fremposthoc’ accounts for correlation and the

high frequency significant covII inclusions in high corre-

lation scenarios represents its ability to account for corre-

lation. In contrast to that, ‘scm’ with forward selection (p

value\ 0.05) and backward elimination (p value\ 0.01),

but also with applying only forward inclusion (p-

value\ 0.1) is intrinsically not able to capture the true

present correlation. However, the model prediction using a

wrong, but highly correlated covariate, that carries infor-

mation of the true covariate could be comparable to

including the true covariate. One the one hand, the inclu-

sion would lead to interpretation difficulties, on the other

hand, an exclusion of correlated covariates could also cause

confounded interpretation of covariate effect estimates, as

the correlated covariate carries parts of the true covariate

information. Thereby pharmacological understanding is

key for decision making.

Fig. 5 Fraction of models with

high predictive performance for

‘scm’ and final ‘fremposthoc’

models with significant true

covariate relationships in

scenario 1. Estimated

coefficients between zero to two

times the true value were

assumed to improve the

predictive performance

Fig. 6 True alpha-values for ‘fremposthoc’ and ‘scm’ for scenario 1.

Error bars shows min and maximum values, and points display

median values
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We also investigated a scenario with a true categorical

covariate with and without an additional level of variabil-

ity, the IIVVc. The results showed a similar behaviour as

observed for continuous covariates. Scenarios 1 and 2

showed only minor differences in power for ‘scm’ and

‘fremposthoc’ in cases when the covariate has a strong effect

size. The additional level of variability decreased power by

up to ca. - 5%. The simulation study using a true con-

tinuous covariate did not include IIVVc, so we assume an

overall worsening effect of the presented continuous

covariate study results in presence of IIVVc here.

Moreover, conditional accuracy and precision of the

covariate coefficients were investigated in case covtrue was

selected in the final models. In scenario 1 bias was present

in both methods, however slightly lower when using the

‘fremposthoc’ (especially in low power scenarios). In sce-

nario 2 the findings were vice versa, so that overestimation

was less pronounced for ‘scm’, resulting from a less strict

alpha value in the selection step. According to Wahlby

et al. selection bias is only moderate in typical PK mod-

elling dataset [5], but this was only confirmed for covari-

ates with high effect sizes [16]. In scenario 3 unbiased

‘frem’ estimates were obtained, as no covariates were

selected, and all estimated coefficients were considered for

the evaluation.

Conditional precision was more precise for ‘fremposthoc’

compared to ‘scm’ in scenario 1 and equally high in sce-

nario 2. Precision was improved by a less strict alpha value

(‘scm’ in scenario 1 vs. scenario 2). As precision is a

function of power, we assume that the increased precision

is caused by increased ‘scm’ power.

Beyond that, in scenario 1 we evaluated the predictive

performance of the final models and used the range of zero

to two times the true coefficient value as a predictor for

improvement of the model fit, according to Ribbing et al.

[16]. The present study confirmed the predictive perfor-

mance of ‘scm’ models being a function of power and we

confirmed this for ‘fremposthoc’ estimates. Compared to

‘scm’ models, the fraction of predictive ‘fremposthoc’

models was higher, especially in scenarios which achieved

power\ 50%. The predictive performance was positively

correlated with rbias, rrmse and number of study individ-

uals. Interestingly, covariate collinearity did not impact the

predictive performance (Supplement 3 Figure S3-3).

The type 1 error rate was evaluated with covIII being

independent from the other two available covariates. The

previously described inflated type 1 error rate in the ‘scm’

approach [5] was confirmed in this study but was also

observed for the ‘fremposthoc’. The ‘fremposthoc’ alpha val-

ues were decreasing with increasing study size but were

still slightly inflated. The confidence interval of the

covariate effect is calculated by SIR in the PsN imple-

mentation of ‘frem’ [15]. The confidence interval served

for the calculation of the frequency in how many of the

performed runs the covIII effect size was estimated to be

significantly different from zero. Broeker et al. found, that

especially in small n datasets the SIR-derived confidence

interval tends to be underestimated, in particular for the

omega values [17]. This underestimation might explain the

inflated alpha values, as zero is less often included in the

SIR-based confidence intervals if they are too narrow.

‘Frem’ is mathematically equivalent to FFEM, which

has been suggested as an alternative to stepwise procedures

[2]. Although a backward elimination is not originally

intended by the full model approach, as this may curtail its

benefits, a guidance for this backward elimination step has

been proposed by Gastonguay et al. [2]. A model reduction

based on covariate effect size, has also been applied to

clinical data [20]. A reduction of a full model for predictive

purposes can be done via exclusion of non-statistically

significant (CI includes null value) and non-clinically

important (entire CI contained within no effect range)

covariate effects. Covariates which are clinically important

and statistically significant, or are not statistically signifi-

cant but may be clinically important should be retained in

the model [2]. The clinical relevance criteria was not

considered in our study evaluation, as this additional filter

is subjective in a simulation study and driven by the

pharmacological considerations. Furthermore, statistically

significant effects are clearly defined, whereas the often

used clinical relevance threshold of 20% is not. This

threshold may apply for clearance; however, it can be

different for other PK parameters related to a covariate

effect. Moreover, this threshold can be dependent on the

indication, pharmacometric question to be answered or

substance itself, e.g. a narrow therapeutic window could

reduce the threshold. These factors cannot be fully reflec-

ted in a simulation study.

A few more limitations shall be mentioned: the here

evaluated scenarios only display a portion of the com-

plexity of covariate analysis in real clinical datasets. The

here simulated covtrue effect magnitudes were chosen

around the often-used clinical significance threshold of

20% on clearance [12] displaying a weak, moderate, and

strong effect as it could be expected in a real clinical

dataset. However, neither collinearity between more than

one covariate, nor the presence of more than one true

covariate carrying information was investigated.

To calculate the fraction of predictive models amongst

the evaluated runs in each scenario, we assumed an esti-

mated covariate coefficient between zero and two times

covtrue to be likely to improve the predictive performance

of a model [16]. This in other words accounts for up to

100% overestimation, so that even in presence of a strong

selection bias, coefficients were rated as predictive. Highly

biased covariate coefficients make the model less adequate
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for predictive purposes and could ultimately cause mis-

leading clinical interpretation on e.g., clearance if the

covariate coefficient originates from small n datasets

(\ n = 100). However, as ‘fremposthoc’ has not been

applied to clinical data yet, this needs to be further

evaluated.

Besides that, this simulation study investigated only

covariates on clearance, but usually clinical covariates are

also found on other model parameters. Moreover,

interindividual variability on central volume of distribution

is very common in clinical datasets but was not included in

the analysis using a true continuous covariate. Based on

prior knowledge and confirmatory results obtained in the

simulation study with categorical data, we assume a

reduction of power in presence of more levels of vari-

ability. Moreover, the covariate coefficients directly

obtained via the PsN ‘frem’ routine, represent exponential

covariate parameterization in fixed effects models [8].

Other implementations might be of interest, too, and could

be explored in subsequent studies.

Conclusion

Overall, this study contributed to the understanding of the

‘frem’ and showed properties and characteristics of the

methods for continuous but also categorical covariates. We

introduced with ‘fremposthoc’ a possibility to guide covari-

ate selection, mimicking how ‘frem’ could be additionally

used in practise. With that, covariate effect size interpre-

tation and selection can be done simultaneously and a

predictive model with capturing correlation in the datasets

can be obtained. Using the commonly applied settings of

‘scm’ and ‘frem’, in small n datasets the power of

‘fremposthoc’ was substantially higher, leading to a lower

bias, compared to ‘scm’ in scenario 1. In datasets with

n[ 100 power, precision, and accuracy of ‘fremposthoc’

were comparable to ‘scm’. However, the simulated sce-

narios still highlight the need for thoughtful choice of the

method to answer the underlying pharmacometric question

in small datasets.
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