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Abstract
Fractional differential equations (FDEs), i.e. differential equations with derivatives of non-integer order, can describe

certain experimental datasets more accurately than classic models and have found application in pharmacokinetics (PKs),

but wider applicability has been hindered by the lack of appropriate software. In the present work an extension of

NONMEM software is introduced, as a FORTRAN subroutine, that allows the definition of nonlinear mixed effects

(NLME) models with FDEs. The new subroutine can handle arbitrary user defined linear and nonlinear models with

multiple equations, and multiple doses and can be integrated in NONMEM workflows seamlessly, working well with third

party packages. The performance of the subroutine in parameter estimation exercises, with simple linear and nonlinear

(Michaelis–Menten) fractional PK models has been evaluated by simulations and an application to a real clinical dataset of

diazepam is presented. In the simulation study, model parameters were estimated for each of 100 simulated datasets for the

two models. The relative mean bias (RMB) and relative root mean square error (RRMSE) were calculated in order to assess

the bias and precision of the methodology. In all cases both RMB and RRMSE were below 20% showing high accuracy

and precision for the estimates. For the diazepam application the fractional model that best described the drug kinetics was

a one-compartment linear model which had similar performance, according to diagnostic plots and Visual Predictive

Check, to a three-compartment classic model, but including four less parameters than the latter. To the best of our

knowledge, it is the first attempt to use FDE systems in an NLME framework, so the approach could be of interest to other

disciplines apart from PKs.
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Introduction

Fractional calculus is a mathematical branch investigating

the properties of derivatives and integrals of non-integer

orders and goes back to the Leibniz’s note in his letter to

L’Hospital in which the meaning of the derivative of order

one half is discussed [1]. Though for a long of time,

fractional derivatives have existed only as theoretical

mathematical objects, in the last few decades many authors

have pointed out that mathematical models containing non-

integer order derivatives and integrals can more adequately

describe properties and phenomena that govern real mate-

rials e.g. polymers. It has also been pointed out that frac-

tional differential equations (FDEs) that arise from the use

of such non-integer derivatives, can be used to describe

anomalous diffusion (i.e. diffusion not described by Fick’s

law) and as a result, the anomalous kinetics that arise from

it. In fact several experimental datasets have been descri-

bed by fractional models better than by models of ordinary

differential equations. One of the main features of FDE

models, are the memory effects that arise by the fact that

the value of a fractional derivative depends on a history of

previous values and only on neighbouring ones [1].

In the field of pharmacokinetics (PKs), Dokoumetzidis

and Macheras [2] introduced fractional calculus in 2009 to

describe the PK of amiodarone that follows power law
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kinetics, and after that a few applications from the same

and other authors followed, such as, to name a few, dealing

with multicompartmental aspects of FDEs [3, 4], describ-

ing propofol PK [5], dealing with dose adjustment when

powerlaw kinetics apply [6] and also extending the

approach to pharmacodynamics, PDs [7]. Some applica-

tions have also appeared in neighbouring fields such as

drug release kinetics [8] and skin drug absorption [9].

Recent applications of FDEs such as in the oral absorption

of gentamicin [10] and bone remodeling [11] demonstrate

that this is an active field of research. However, the number

of fractional PK or PD models published is relatively

limited, despite the fact that FDEs have attractive features

and have the advantage that are extensions of classic ODEs

which appear as special case when the order is set to 1.

This should give fractional models important flexibility for

empirical modelling even in cases where mechanistic

description is not the main objective. One of the reasons for

the limited uptake of fractional calculus in pharmacomet-

rics literature is the lack of appropriate software: (a) effi-

cient numerical solvers and (b) integration in parameter

estimation software. A particular class of models of high

importance in pharmacometrics is nonlinear mixed effects

models (NLMEs) where variability components are also

estimated for each parameter, typically by analysing lon-

gitudinal data (such as PK data) from many subjects and

therefore characterising the interindividual variability of

the parameters. For NLME models complex algorithms are

used with various strategies for the calculation or approx-

imation of the objective function and its minimization to

the optimal parameter solution, and very rarely do scien-

tists use homemade code for such a task. As a result, a few

specialized software packages, mainly commercial and

some open source, dominate all the NLME applications,

with the leading one being NONMEM (Icon plc), which

was the first one that appeared in the seventies and has

continued to be the industry standard since then. It is

therefore of particular importance to implement a NON-

MEM extension for FDEs that readily allows the descrip-

tion of fractional models.

In the present paper an extension of NONMEM is

introduced that allows the definition of models including

FDEs. The extension allows the user to try out FDEs in a

model development workflow much like any other model

using the same likelihood approximation and minimisation

algorithms. Furthermore an implementation of an efficient

numerical solver has been carried out, after extensive

evaluation of various numerical solvers that appear in lit-

erature, a few of which are reviewed here too. The per-

formance of the extension in parameter estimation

exercises with linear and nonlinear fractional models has

been evaluated by simulations and an application in a real

clinical dataset of diazepam is presented. For completeness

a brief introductory theoretical section on fractional cal-

culus is also included.

Fractional calculus

Theory

The basis of fractional calculus is the definition of a frac-

tional order of differentiation a -in our case 0\a\1. This

ath derivative is defined through fractional integration and

successive ordinary differentiation. Hence firstly a frac-

tional integral formula is defined through the Riemann–

Liouville (LR) integral [1]

RL
0 Iat f ðtÞ ¼ 0D

�a
t f ðtÞ ¼ 1

CðaÞ

Z t

0

ðt � sÞa�1f ðsÞ ds; a[ 0;

ð1Þ

where C is the gamma function. Here f is assumed such

that the involved integral is well defined. The left-side

subscript of the RL
0 Iat and 0D

�a
t operators, denotes the lower

end of the integration limits, which in this case has been

assumed to be zero. Different bounds can be used but result

in slightly different definitions and properties. Using ordi-

nary differentiation of the above integral, the fractional

derivative is defined through

0D
a
t f ðtÞ :¼ D1

0D
a�1
t f ðtÞ ¼ D1 RL

0 I1�a
t f ðtÞ; ð2Þ

where D1 ¼ d

dt
, the ordinary derivative. The calculations

above yield the following definition for the LR fractional

derivative [1]

0D
a
t f ðtÞ ¼

d

dt

1

Cða� 1Þ

Z t

0

f ðsÞ
ðt � sÞa ds

� �
; 0\a\1:

ð3Þ

This definition is a convolution between the function f and

a power law function of time and is the source of the

memory effects that arise through the process.

Though widely known, the LR definition of fractional

derivatives is not the most useful one when it comes to real

applications. That is because when used in differential

equations, for t ¼ 0 a fractional integral of the function f is

involved in the initial condition which is not easy to

interpret physically. That is why another definition is

mostly used when dealing with FDEs, and that is the

Caputo derivative which is defined as

C
0D

a
t f ðtÞ :¼

1

Cð1� aÞ

Z t

0

f 0ðsÞ ds
ðt � sÞa; ð0\a\1Þ; ð4Þ

where the C in the upper index indicates the Caputo defi-

nition of the fractional derivative. With this definition, the

284 Journal of Pharmacokinetics and Pharmacodynamics (2023) 50:283–295

123



initial value problems for fractional problems can be

written in the familiar form

C
0D

a
t yðtÞ ¼ f ðt; yÞ; yð0Þ ¼ y0: ð5Þ

Another advantage this definition has is that it carries

properties that are consistent to the ordinary derivative

such as that the fractional derivative of a constant is zero
C
0D

a
t C ¼ 0 which is not the case for LR. For these reasons

in the rest of this paper, the fractional derivatives used are

assumed to be Caputo derivatives.

A simple example of an FDE from PKs is the classic

one-compartment model with first order elimination

dA

dt
¼ �keA; Að0Þ ¼ A0: ð6Þ

The fractional equivalent of this equation is

C
0D

a
t AðtÞ ¼ �keAðtÞ; Að0Þ ¼ A0 ð7Þ

and its solution can be expressed analytically through the

Mittag–Leffler function [1]

AðtÞ ¼ A0Eað�ket
aÞ; ð8Þ

where

EaðxÞ ¼
X1
k¼1

xk

Cða � k þ 1Þ: ð9Þ

This is a generalised form of the exponential function since

for a ¼ 1 we see that E1ðxÞ ¼ expðxÞ. This means that the

fractional version of the simple PK model collapses to the

ordinary one for a ¼ 1, AðtÞ ¼ A0e
�ket. In [12] it is shown

that (8) behaves as a stretched exponential for small times

i.e. � expð�ket
aÞ while for larger times behaves like a

power law. In general the solution of this fractional equa-

tion can describe anomalous processes or drug release in

heterogeneous media [12].

In actual applications few problems of the form of (5)

have a closed-form analytical solution. In fact even (7)

which does have an analytical solution, still needs to be

computed numerically in order to approximate the Mittag–

Leffler function efficiently, since the analytical definition

involves an infinite power series which is more difficult to

compute. Hence the necessity of numerical methods which

can approximate the trajectories of such fractional systems

arises naturally. Numerical solvers for FDEs must be effi-

cient both in terms of accuracy as well as speed. In the next

section a few of these methods are presented with emphasis

on the Grünwald–Letnikov (GL) scheme [13] that was the

one chosen for the implementation in NONMEM and was

used to produce the results presented in this paper.

Numerical methods

The Laplace transform

A function f(t) is of exponential order a when we can find

positive constants M and T such that e�atjf ðtÞj�M for all

t[ T so f(t) does not grow faster than an exponential

function for t ! 1. The Laplace transform for such a

function is defined [1]

FðsÞ ¼ L f ðtÞ; s½ � :¼
Z 1

0

e�stf ðtÞdt: ð10Þ

The inverse Laplace transform can also be defined, though

it is not possible to write it down in most cases. The inverse

transform gives the original function

L�1 FðsÞ; t½ � :¼
Z cþi1

c�i1
estFðsÞds ¼ f ðtÞ; c ¼ ReðsÞ[ c0;

ð11Þ

where c is the path of integration. In classic calculus, the

Laplace transform is a useful technique for solving linear

ordinary differential equations. In the Laplace domain one

can transform ODEs to algebraic expressions which are

much easier to solve, and then go back to the time domain

by performing the inverse Laplace transform. Fractional

linear differential equations can also be written in the

Laplace domain easily since—like ordinary derivatives—

fractional derivatives can be transformed in the Laplace

domain. For 0\a� 1 it can be shown that [1]

L C
0D

a
t f ðtÞ; s

� �
¼ saFðsÞ � sa�1f ð0Þ: ð12Þ

A simple example of an FDE that can be solved using the

Laplace transform is found in [3]

C
0D

1=2
t yðtÞ ¼ �yðtÞ ð13Þ

with yð0Þ ¼ 1. Using (12) it can be written as

s1=2YðsÞ � s�1=2yð0Þ ¼ �YðsÞ; ð14Þ

y where Y(s) is the Laplace transform of y(t). Using stan-

dard algebra it gives the following result in the Laplace

domain

YðsÞ ¼ 1

sþ ffiffi
s

p : ð15Þ

The final solution can now be obtained by performing an

inverse Laplace transform. For this simple example, there

are expressions that can be found in tables with inverse

Laplace transform formulas such as [1] which yield the

known result

yðtÞ ¼ E1=2ð�t1=2Þ: ð16Þ
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Unlike the previous example, solving (11) explicitly for the

system of variables and obtaining an analytical solution for

Q(s) in the time domain, is generally difficult—if not

impossible. To address this problem algorithms to carry out

numerical inverse Laplace transform (NILT) exist. Several

such algorithms have been developed such as [14] which is

based on the Euler algorithm [15]. Another popular choice

is the Talbot method [16] where the path of integration is

chosen to be a special cotangent contour [17]. These

algorithms are a useful tool for solving linear FDEs and

have been used successfully in fractional PKs estimation

problems [3], however they are typically very demanding

computationally. This makes them unattractive for esti-

mation problems where the speed of the algorithm is of

paramount importance.

Fractional linear multi-step methods

An alternative to the various NILT methods that provides

more efficiency as well as universality, is the family of

methods known as fractional linear multi-step methods

(FLMMs). These are extensions of the classic Linear

Multi-Step methods used for numerically solving classic

ODEs. The name multi-step stems from the fact that they

use the solution at several steps previous to the current step

for which the solution is computed. The idea behind these

methods is that an initial value problem

y0ðtÞ ¼ f ðt; yÞ yð0Þ ¼ y0 ð17Þ

can be written as

yðtÞ ¼ y0 þ
Z t

t0

f ðt; yÞdt ð18Þ

which can be approximated by [13]

Xk
j¼0

qjyn�j ¼ h
Xk
j¼0

rjf ðtn�j; yn�jÞ; ð19Þ

where qðzÞ ¼ q0z
k þ q1z

k�1 þ � � � þ qk and rðzÞ ¼ r0zk þ
r1zk�1 þ � � � þ rk are the first and second characteristic

polynomials. The fraction of these two polynomials give

the generating function of the LMM

dðnÞ ¼ qð1=nÞ
rð1=nÞ ; ð20Þ

where meaning of dðnÞ is that the weights xn can be

written as the coefficients of the power series of the gen-

erating function. Depending on whether q0 6¼ 0 and

r0 6¼ 0, the method is either explicit [yn appears only on the

left side of (19)] or implicit (yn appears on both sides).

Finally this can be reformulated in terms of convolution

quadrature formulas in:

yn ¼ h
Xn
j¼0

xn�jf ðtjÞ: ð21Þ

This method is a special case of a general methodology

used for solving problems of type (18) or otherwise known

as Volterra integral equation of the second kind [18]. The

extension to FDEs of the general LMMs is based on the

fact that the general problem (5) can also be written as a

Volterra integral equation simply by the fractional integral

operator (0I
a
t ) on both sides and obtaining

yn ¼ y0 þ
1

CðaÞ
Xn
j¼1

Z tj

tj�1

ðtn � sÞa�1f ðs; yðsÞÞds: ð22Þ

The details on deriving the fractional equivalent of (21) can

be found in [19]. There, the final formula for the FLMMs is

derived

yn ¼ y0 þ ha
Xs

0

wn;jf ðtj; yjÞ þ ha
Xn
0

xðaÞ
n�jf ðtJ ; yjÞ; a� 1

ð23Þ

and wn;j are correction terms which maintain the order of

convergence when f is non-smooth [19]

In this work, the method that was used for the numerical

solution of the FDEs was the so called GL scheme based on

(23). It is basically a backwards differentiation formula of

first order (BDF1). The correction terms are omitted and

using the classic BDF1 where the generating function takes

the form dðnÞ ¼ 1� n, it can be shown [18] that the x
coefficients are those of a binomial series. Hence

xðaÞ
n ¼ ð�1Þn �a

n

� �
¼ ð�1Þn Cð1� aÞ

Cðnþ 1ÞCð�a� nþ 1Þ
ð24Þ

and so the formula for yj is

yn ¼ y0 þ ha
Xn
j¼0

ð�1Þn�j �a
n� j

� �
f ðtj; yjÞ; a� 1; ð25Þ

where y0 ¼ yð0Þ. Since this method is implicit there is need

for an approximation of yn to be used in f ðtj; yjÞ for j ¼ n.

In this work, an iterative Newton–Raphson method was

used for this purpose. Given an initial approximation for

yn—let this be y
ð0Þ
n — the method can approximate yn using

the following relation

yðkÞn ¼ yðk�1Þ
n � 1� haf 0ðtn; yðk�1Þ

n Þ
h i�1

� yðk�1Þ
n � haf ðtn; yðk�1Þ

n Þ �
Xn�1

j¼1

xðaÞ
n�jf ðtj; yjÞ � y0

" #
;

ð26Þ
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where k 2 N is the number of iterations. This method is

highly popular because of its quadratic convergence [20].

Since its convergence properties are local, a good initial

estimate y0n is required for the method to perform well. A

good approximation for it is usually y
ð0Þ
n ¼ yn�1. In rapidly

changing solutions (i.e. non-smooth functions) a smaller

step is required for this approximation to provide accurate

results.

Impulsive fractional differential equation

A particular class of problems that is of interest in PK and

PK/PD applications, are the impulsive differential equa-

tions which are described by

C
0D

a
t yðtÞ ¼ f ðt; yðtÞÞ; t 2 J0 :¼ J n t1; . . .; tm½ �; J :¼ ½0; T�

yðtþk Þ ¼ yðt�k Þ þ uk; k ¼ 1; 2; . . .;m; yð0Þ ¼ y0

ð27Þ

which means that for every time point tk there is an impulse

uk that mainly describes physical phenomena that have a

sudden change in their states, i.e. an additional dose, where

the total number of doses is m. These types of equations are

therefore able to describe multiple dose kinetics. In the

classic case (a ¼ 1), the method of solving these problems

is trivial, since one can simply solve ODEs for time

intervals between doses and then for tk restart the solver

with initial conditions containing the extra dose. For

ða\1Þ that is not the case since as mentioned, each yi is

depends on the solution of each previous time point,

therefore restarting the solver for each dose, would result in

loss of that information. For the numerical solution of this

class of problems, we follow [21] that suggests that the

solution of (27) is

yðtÞ ¼ y0 þ
Xk
i¼1

uk þ
1

CðaÞ

Z t

0

ðt � sÞa�1f ðs; yðsÞÞ ds;

for t 2 ðtk; tkþ1Þ:
ð28Þ

This problem is identical in its numerical solution to (22)

but for the addition of the summation term of the doses uk
which is implemented in the existing algorithm with a

simple if statement which adds each dose to each yn for

tn [ tk.

Methods

Numerical solver for fractional differential
equations

The GL scheme was the method chosen for the solution of

the FDEs that described the models tested in NONMEM.

The algorithm was picked for its efficiency in terms of

speed and accuracy compared to other algorithms. More

specifically, the Adams–Bashforth–Moulton predictor–

corrector (ABMPC) method [12] which was also tested,

proved both slower and less accurate for small t than the

GL algorithm. The nature of the ABMPC algorithm is such

that more computations accumulate in the process thus

increasing computational time. Also for small times there

were terms that needed small steps h in order to converge

which was time costing by itself. However it is worth

mentioning that this algorithm was robust and efforts have

been made to reduce computational costs [22], making it a

possible option for use on more complex problems.

In order to validate the algorithm upon which the

numerical solver was based, various tests were performed.

The rationale was to compare the numerical solution

preferably to an analytical solution, so for cases where an

analytical solution was not available such as non-linear

models comparison for the classic case of a ¼ 1 was used.

First, the numerical solution was computed for a linear

fractional PK model like (7) and compared to the analytical

solution given by (8). In order to verify that the algorithm

gives reliable results for non-linear models as well, it was

tested on a fractional Michaelis–Menten equivalent model

(29), by setting a ¼ 1 and comparing the results to the

classic Michaelis–Menten solution, since neither an ana-

lytical solution nor a NILT solution is available for this

case. The capability of the algorithm to handle multiple

FDEs were tested by simulating a classic two-compartment

PK model with a ¼ 1 and compared to the analytical

solution. Finally the capability of the algorithm to handle

multiple doses was tested with the linear fractional model

of Eq. (7) compared to the superposition of multiple

instances of the analytical solution of Eq. (9). Indeed, in

linear FDEs, superposition principle holds, but the multiple

dose problem in the nonlinear case, is nontrivial due the

memory effects. All the above mentioned algorithms were

developed and tested in MATLAB before final imple-

mentation in FORTRAN. The GL algorithm was optimized

for speed and accuracy.

NONMEM implementation and interface

The numerical routine for the solution of FDEs was developed

and tested in MATLAB, and ported to FORTRAN to make it
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available as a subroutine in NONMEM. It supports linear and

nonlinear models, withmultiple FDEs, as well as multiple doses.

The implementation of the fractional models in NONMEM is

done using $PRED control record in the control file in order to

provide a user supplied subroutine for the solution of the model

equations. These are not defined in the control file like in the

$DES case but in the subroutine itself. The subroutine

FDEGL(...) can be called anywhere in $PRED using a brief

verbatim code ‘‘CALL FDEGL(VECTRA, VECTRB,TIME,

ff, AMT, int(Np),int(Ns), int(Nd)), given that

the all the arguments used, are defined. The vector names VEC-

TRA, VECTRB are used in order to be compliant with what the

NONMEMabbreviatedcodesupports.Argumentsare:Allmodel

parameters including the order of the fractional derivative a are

passed in VECTRA; VECTRB stores the initial values of the

dependent variables; TIME is the value of the NONMEM data

record for which the solution is to be computed; AMT is the data

record needed for each dose, as usually used in NONMEM; Np

the number of the parameters, Ns is the number of steps for the

solver and Nd the number of FDEs. Once called, it returns the

solution of the equation, ff, for each time point requested by

NONMEM (i.e. the TIME value for each data record).

The FORTRAN subroutine consists of two parts: the

main solver algorithm and the definition of the FDE. The

first part is fixed and is not supposed to be changed by the

user. The second part of the subroutine is the definition of

the problem and consists of two FORTRAN functions.

In the first FORTRAN function, FFUN, the user has to

input right hand side of the FDE (5) exactly as with all

ODE solving software. In the second FORTRAN function,

FFUNJ, the user inputs the derivative of ðt; yÞ=oy in the

same manner. For example, in the simple system of (7), the

first function is FFUN=-ke*y, while the second function

is FFUNJ=-ke, which is the Jacobian of the right hand

side of (7).

This—apart from the number of steps of the solution—is

the only user input in the process, which makes the use of

the subroutine easy and familiar thus requiring little or no

knowledge of fractional calculus on behalf of the user. Also

note that doses are handled naturally with in the data file in

the AMT data item, as usual.

The FORTRAN subroutine FDEGL together with a

template NONMEM control stream, as well as user

instructions, can be found in a GitHub page (https://github.

com/PMXathens/FDE4NONMEM). All work in this paper

was carried out using NONMEM version 7.4 compiled

with gfortran version 4.6.0.

Evaluation by simulation study

Several tests on single patient runs were performed to make

sure the algorithm was called properly by NM-TRAN.

Afterwards one hundred data sets were simulated for each

of the two models studied and estimation of the population

parameters was carried out for each one of them in order to

calculate the bias and precision of the methodology, by the

relative mean bias (RMB) and relative root mean square

error (RRMSE), respectively. In both models—linear and

non-linear—a population of 24 subjects was simulated for

t ¼ 40 h and both fixed and random effects were consid-

ered. The batch estimation process was achieved using the

Bootstrap tool of Perl Speaks NONMEM (PSN) with data

sets simulated in MATLAB. Namely, the datasets of the

simulation study prepared in MATLAB, were placed in the

bootstrap directory of a PSN bootstrap run, as bootstrap

datasets and then the bootstrap command was run to exe-

cute them.

Linear model

The linear model is given by the expression (7) with an

additional parameter volume of distribution, V, as the

proportionality constant between the drug amount A and

the measured concentration C, as CðtÞ ¼ AðtÞ=V . Vari-

ability was assumed in ke and V, whereas a was kept the

same for all subjects. A log-normal distribution was con-

sidered for the two random variables and a proportional

error model for the residual variability. More specifically,

the h values were: hke ¼ 0:5 h�a , hV ¼ 6:5 L and ha ¼ 0:5

while for the random distributions: xke ¼ 0:25, xV ¼ 0:25

for the interindividual variabilities and r ¼ 0:1 for the

proportional residual error and a dose of 9 mg. For the

estimation process of each data set, the stochastic

approximation expectation maximization (SAEM) method

with INTERACTION was used since it proved the most

robust of all other estimation methods for this problem,

while the standard errors were estimated by the importance

sampling (IMP) method.

Non-linear model

As a second case study, a non linear model was chosen in

order to show that the methods can be used in a wider

category of problems. A fractional analog of Michaelis–

Menten kinetic was used, described by the following

equation

C
0D

a
t AðtÞ ¼ � VmaxCðtÞ

Km þ CðtÞ ð29Þ

and Að0Þ ¼ dose, CðtÞ ¼ AðtÞ=V , where Km and Vmax are

the Michaelis–Menten constant and the maximum rate of

elimination, respectively. In the population study, log-

normal variability was considered in Vmax; Km and V

whereas a was kept the same for all patients. The simula-

tion parameters were: hVmax
¼ 3:5 mg=ha, hKm

¼ 0:6 mg/L,

hV ¼ 2 L, ha ¼ 0:9 with xVmax
¼ 0:25, xV ¼ 0:25, xKm

¼
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0:25 and a dose of 9 mg. Once again a proportional error

model was used with r ¼ 0:1 and the SAEM method with

INTERACTION was chosen for the estimation process.

Diazepam data analysis

For the application on a real data set, Diazepam data from

[23] were used. The data set used consisted of 12 patients

for t ¼ 72 h for an iv dose of 5–10 mg. A fractional one-

compartment model was used for the fitting process, ini-

tially using three parameters: volume of distribution (V),

elimination rate (ke) and the order of the fractional

derivative (a). For comparison purposes, classic (non-

fractional) 1, 2 and 3-compartment models with linear

elimination were also fitted to the data. The comparison of

the fits was done using diagnostic plots such as predicted vs

observed and residuals vs time as well as Visual Predictive

Check (VPC) plots using PSN.

Results

Numerical results

In order to test the numerical solvers used for the solution

of FDEs the GL scheme was compared to known meth-

ods. The results are shown in Fig. 1 with the compared

solutions completely overlapping, demonstrating that the

GL method is successful in solving both the linear and

non-linear problems, while it can handle successfully

multiple equations and multiple doses. Other than its

accuracy, the method was efficient in terms of speed.

More specifically, for the linear example of (7), the

numerical solution was compared to the analytical solu-

tion (8) (Fig. 1A), while for the non-linear equation (29) a

comparison was made for a ¼ 1 i.e. the classic Michaelis–

Menten equation, using a typical MATLAB solver

(ode15s) (Fig. 1B). The multi-compartment case was

tested also for the classic a ¼ 1 against the solution with

the same MATLAB solver (Fig. 1C). The main aspect

tested in the two latter cases is the ability of the algorithm

to give accurate results and it is thought that since in the

classic case the GL method gives correct results, it is

unlikely that it could produce a wrong solution when

a\1. In the last case the multiple dose scenario was

tested for the linear model for a ¼ 0:6, against the

superposition of the respective analytical solution. While

the superposition holds in linear FDEs and is a good

approach to handle multiple doses, in the nonlinear case

multiple doses need to be handled within the algorithm,

while restarting the solution using as initial values the

final point of the previous dose session, which is the

common practice for ODEs, is not feasible in FDEs due to

the memory effects and the presence of history. Figure 1D

shows that multiple doses can be handed well within the

GL solver for the fractional linear case and there is no

reason to believe that this could change for the non-linear

case, despite the fact that there is no analytical solution

for the latter case to test it against.

Simulation study

The NONMEM implementation was evaluated by a sim-

ulation/estimation study for the two models (7) and (29).

The first is the simplest PK relationship, the iv bolus with

linear elimination, which in its fractional version can

account for various diffusion processes that are anomalous

or of slower diffusion in the deeper tissues. The second

model is the fractional version of a typical non-linear

Michaelis–Menten model which is usually used to describe

saturable PK processes. While its physical meaning is

unclear at the moment, here it is used as a typical non-

linear model to test the performance of the method.

Parameters were estimated for each of the one hundred

simulated data sets for the two models. The RMB and

RRMSE were calculated using the results from each esti-

mation in order to assess the bias and precision of the

methodology. The results for the linear and non-linear

models are shown in Tables 1 and 2, respectively. For the

linear model, RMB was below or near 1% while RRMSE

below 10% for the THETAs and in the region of 15% for

the OMEGAs and the SIGMA. In the non-linear model

more elevated values for Vmax and Km were obtained for

RMB, 5% and 11%, respectively, while for RRMSE the

highest value was obtained for Km and was 19%. Overall,

the results show high accuracy and precision for the esti-

mates. Also the expected values for each parameter, i.e. the

mean of the one hundred estimates, are very close to the

simulated values, all of which indicate a good performance

in the simulation study.

The performance of NONMEM while using the user

function for the solution of the fractional equations, was

satisfying since it did not produce unusual errors and

warnings while the speed of the optimization was found to

be relative to the speed of the solver.

Diazepam data analysis

The fractional model that best described the drug kinetics

was a one-compartment linear model with an elimination

rate ke and fractional order a, i.e. (7). The volume of dis-

tribution V was not estimated but set to 1 since there was
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an identifiability issue. This is to be expected since, as

already mentioned, the analytical solution of this equation

is a Mittag–Leffler function given by (9). This function has

two main trends: For small values of t it has the form of a

stretched exponential function, while for large values of t it

has the form of a power law. The analytical form of this

power law function is given by the following expression

[24]

yðtÞ ¼ t�a

Cð1� aÞ
V

ke
: ð30Þ

For the case of Diazepam, data were available for 72 h,

while for initial times there was limited information, hence

the solution was required for large times, following (30).

This means that we expect only the ratio V=ke to be esti-

mated properly since the solution is the same for any

combination of V and ke that results in the same ratio. Thus

in NONMEM only a ke parameter was estimated and the

volume of distribution was arbitrarily set to 1.

The estimation process was performed in NONMEM

while the most successful method was SAEM with

INTERACTION. Standard errors were calculated in

Fig. 1 Typical profiles generated with GL scheme compared to

various alternative methods. A GL scheme vs. Analytical ML

function for the linear model. B GL scheme vs. MATLAB ode15s

for classic (non-fractional) Michaelis–Menten model. C GL

scheme vs. MATLAB ode15s for classic (non-fractional) two-

compartment model. D GL scheme for multiple dose vs. superposition

of analytical ML functions

Table 1 Results of the simulation study for the Linear Model

hke ðh�aÞ hV (L) ha xke xV r

RRMSE (%) 9.14 0.95 2.72 16.53 12.03 14.62

RMB (%) �1:017 0.322 0.393 0.041 �0:611 �0:036

Sim. values 0.5 6.5 0.5 0.25 0.25 0.1

Exp. values 0.506 6.251 0.501 0.259 0.25 0.099

For each model, all 100 estimation runs were successful and all results

were used for the calculation of RMB and RRMSE
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NONMEM by the IMP method. The results of the NLME

model constructed to fit the Diazepam data, were inspected

visually and with the use of diagnostic plots. Predicted vs.

Observed, Residuals vs. Time and VPC graphs were used

to determine the goodness of fit as well as the ability of the

model to predict the data. Some individual fits obtained by

NONMEM can be seen in Fig. 2. The results are presented

in log–log plots in order to assess the fit more accurately

for the small concentration values. As shown by the plots,

the Diazepam data follow a power law shape. The pre-

dicted versus observed and residual versus time graphs are

presented in Fig. 3 showing all 12 patients together with

the identity line and show good agreement between the

predictions and the observations. The residual versus time

plot shows that the points are randomly distributed evenly

around the x axis which provides evidence that the

Table 2 Results of the

simulation study for the Non-

Linear Model

hVmax
(mg=ha) hKm

(mg=ha) hV ha xVmax
xKm

xV r

RRMSE (%) 2.94 19.13 2.82 0.7 7.2 11.11 8.21 12.06

RMB (%) �4:98 �11:03 �2:36 �0:62 �0:63 �1:54 0.12 �0:12

Sim. values 3.5 0.6 2 0.9 0.25 0.25 0.25 0.1

Exp. values 3.422 0.55 1.998 0.893 0.249 0.244 0.25 0.099

For each model, all 100 estimation runs were successful and all results were used for the calculation of

RMB and RRMSE

Fig. 2 Individual fits for 4 out of the 12 patients, showing the power law behaviour of the data
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estimator is not biased and also that the predicted points

follow the same trend as the observed points.

In Table 3 together the parameter estimates, the standard

errors of the estimates are shown, which take small values

indicating that the estimator is precise.

Finally the ability of the model to predict the data was

evaluated with the use of a VPC, which also tests whether

misspecification is present in the structural, variability or

error models. For this procedure, 500 data sets of the same

format as the observed data set were simulated and 95%

prediction intervals around each of the 5th, 50th, and 95th

percentiles of the simulated data sets were plotted together

with the corresponding percentiles of the observed data.

The results appear in Fig. 4 and show that the observed

percentiles fall within the prediction intervals of the sim-

ulated data. The VPC plot was generated in PSN which

demonstrates that companion third party software packages

such as PSN work well with the present FDE NONMEM

extension, without modifications.

The fractional model was also compared to a classic

compartment model. An optimization was performed using

the same data set for Diazepam with a classic three-com-

partment model with iv bolus administration. The fit for the

same patients as for the fractional model is presented for

the classic case in Fig. 5. The fit with the three-

compartment model is comparable to the fractional model

but using six parameters as opposed to only two of the

fractional model.

Discussion

The main deliverable of the present work is a general

purpose subroutine, written in FORTRAN, which works as

a plugin to NONMEM and allows the definition of arbi-

trary, user-defined, linear and nonlinear FDE models. The

actual numerical algorithm used for the FDE solver is

based on the GL method [19], but has been modified to suit

our needs. Furthermore the final choice of the numerical

method is a result of an extensive survey and testing of

many different algorithms in terms of performance and

flexibility. To evaluate the approach, we presented a couple

of simulation–estimation exercises for linear and nonlinear

systems, respectively, and an application to a real PK

clinical dataset.

Although successful in this study, this is a first approach

of the use of fractional models in population analysis and

the method still needs to be tested on more complex

problems, where stiff differential equations or larger data

sets appear. Also the method has limitations. At the

moment only IV bolus dosing is supported, with multiple

doses too. Other routes of administration or infusion would

need adding to the model depot compartments which is not

trivial. Also at the moment only FDEs of the form of

Eq. (5) are supported, i.e. with the fractional derivative on

the left hand side. More general FDEs such as those pro-

posed in [3] are not supported. Despite the fact that the

examples shown use a single FDE, the subroutine provided

can be used for multiple FDEs. However, it is worth

Fig. 3 Predicted vs. Observed (left) and Residual versus Time (right) graphs

Table 3 Parameter estimates for the diazepam data analysis

hke ha xke r

Estimated values 17.1 0.54 0.1 0.083

Standard errors 2.04 0.017 0.0512 0.0084

CV (%) 11.92 3.15 51.2 10.1
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Fig. 4 VPC for Fractional

model

Fig. 5 Individual fits for 4 out of the 12 patients, for a classic 3 compartment model with absorption for comparison
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mentioning that regarding the multi compartment analysis,

one needs to take precautions when using FDEs in PK

problems. As discussed in [4], if the fractional derivatives

used in each equation have different orders a1, a2 etc., i.e.
the non-commensurate case, then mass balance issues

arise. This happens because usually the outgoing flux from

one compartment is an incoming flux in another. If dif-

ferent orders are used, then the transfer rate constants will

have different units (i.e. h�a1 , h�a2 ; etc.) and mass balance

will not hold. Fractional multi-compartmental models can

be useful if the same order a is used (commensurate case),

in which case the equations are the same as in the classic

case, simply by changing the order of the derivatives on the

left hand side of the ODEs, or when studying problems

where mass balance is not an issue such as PK/PD models,

where there is no mass balance between the PK and the PD.

This gives plenty of opportunities for future studies on PK/

PD data [7]. Pharmacological signals are often charac-

terised by delayed response and the history of previous

states of involved variables needs to be taken into account

in the models, instead of the instantaneous local state of the

variables. FDEs provide this capability, along with other

approaches which differ mathematically, but offer a similar

flavour, such as delay differential equations, which have

found important applications in pharmacometrics [25].

A final interesting comment about the current analysis is

that in all cases the order of the FDE, a , has been kept the

same for all subjects, without IIV. Indeed it is not clear

what could be the physical meaning of IIV on a, since this
parameter has so fundamental impact on the problem and

even affects the units of other parameters. Considering a

statistical distribution on a parameter such as a seems to

run into theoretical problems even by attempting to define

it, despite the fact that from a numerical point of view it

could be possible to estimate an OMEGA associated to a.

Conclusions

The present study implements FDE systems in NONMEM

with the aim to allow the use of fractional PK models in

NONMEM and to the best of our knowledge it is the first

attempt to use FDE systems in a NLMEs framework, so the

approach could be of interest to other disciplines apart from

PKs. The method supports linear and non-linear models

with multiple equations and multiple doses. In simulation

studies the method proved capable to provide unbiased and

precise estimates of the parameter values, while with a real

PK data set, performed well, and gave an alternative,

similarly good fit to a classic 3-compartment model, but

more parsimonious. As a first attempt to introduce FDEs in

the NLME framework there are limitations that will be

addressed in future work, furthermore it is hoped that the

present provided software will motivate more applications.

Acknowledgements Acknowledgments are not compulsory.

Funding Open access funding provided by HEAL-Link Greece.

Declarations

Conflict of interest The authors declare no conflicts of interest.

Supplementary information The code used in the article can be found

in the GitHub page: https://github.com/PMXathens/FDE4NONMEM

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Podlubny I (1999) Fractional differential equations. Academic,

New York

2. Dokoumetzidis A, Macheras P (2009) Fractional kinetics in drug

absorption and disposition processes. J Pharmacokinet Pharma-

codyn 36:165–178. https://doi.org/10.1007/s10928-009-9116-x

3. Dokoumetzidis A, Macheras P, Magin R (2010) Fractional

kinetics in multi-compartmental systems. J Pharmacokinet Phar-

macodyn 37:507–524. https://doi.org/10.1007/s10928-010-9170-

4

4. Dokoumetzidis A, Macheras P, Magin R (2010) A commentary

on fractionalization of multi-compartmental models. J Pharma-

cokinet Pharmacodyn 37(2):203–207. https://doi.org/10.1007/

s10928-010-9153-5

5. Copot D, Chevalier A, Ionescu CM, Keyser RD (2013) A two-

compartment fractional derivative model for propofol diffusion in

anesthesia. In: IEEE international conference on control appli-

cations, 2013, pp. 593–660

6. Hennion M, Hanert E (2013) How to avoid unbounded drug

accumulation with fractional pharmacokinetics. J Pharmacokinet

Pharmacodyn 40(6):691–700. https://doi.org/10.1007/s10928-

013-9340-2

7. Verotta D (2010) Fractional dynamics pharmacokinetics–phar-

macodynamic models. J Pharmacokinet Pharmacodyn

37(3):257–276. https://doi.org/10.1007/s10928-010-9159-z

8. Yin C, Li X (2011) Anomalous diffusion of drug release from a

slab matrix: fractional diffusion models. Int J Pharm

418(1):78–87. https://doi.org/10.1016/j.ijpharm.2010.12.009

9. Caputo M, Cametti C (2021) Diffusion through skin in the light

of a fractional derivative approach: progress and challenges.

J Pharmacokinet Pharmacodyn 48:3–19. https://doi.org/10.1007/

s10928-020-09715-y

10. Miskovic-Stankovic V, Janev M, Atanackovic TM (2022) Two

compartmental fractional derivative model with general

294 Journal of Pharmacokinetics and Pharmacodynamics (2023) 50:283–295

123

https://github.com/PMXathens/FDE4NONMEM
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10928-009-9116-x
https://doi.org/10.1007/s10928-010-9170-4
https://doi.org/10.1007/s10928-010-9170-4
https://doi.org/10.1007/s10928-010-9153-5
https://doi.org/10.1007/s10928-010-9153-5
https://doi.org/10.1007/s10928-013-9340-2
https://doi.org/10.1007/s10928-013-9340-2
https://doi.org/10.1007/s10928-010-9159-z
https://doi.org/10.1016/j.ijpharm.2010.12.009
https://doi.org/10.1007/s10928-020-09715-y
https://doi.org/10.1007/s10928-020-09715-y


fractional derivative. J Pharmacokinet Pharmacodyn. https://doi.

org/10.1007/s10928-022-09834-8

11. Neto JP, Alho I, Costa L et al (2021) Dynamic modeling of bone

remodeling, osteolytic metastasis and PK/PD therapy: introduc-

ing variable order derivatives as a simplification technique.

J Math Biol. https://doi.org/10.1007/s00285-021-01666-3

12. Sopasakis P, Sarimveis H, Macheras P, Dokoumetzidis A (2018)

Fractional calculus in pharmacokinetics. J Pharmacokinet Phar-

macodyn 45(1):107–125. https://doi.org/10.1007/s10928-017-

9547-8

13. Suli E, Mayers DF (2003) An introduction to numerical analysis.

Cambridge University Press, Cambridge

14. Tucker M (2022) Numerical inverse Laplace transform.

MATLAB Central File Exchange

15. Abate J, Whitt W (2006) A unified framework for numerically

inverting Laplace transforms. INFORMS J Comput

18(4):408–421

16. Talbot A (1979) The accurate numerical inversion of Laplace

transforms. J Inst Math Appl 23(1):97–120

17. Dingfelder B, Weideman JAC (n.d.) An improved Talbot method

for numerical Laplace transform inversion. https://doi.org/10.

48550/ARXIV.1304.2505

18. Lubich C (1983) On the stability of linear multistep methods for

Volterra convolution equations. IMA J Numer Anal 3:439–465

19. Garrappa R (2015) Trapezoidal methods for fractional differential

equations: theoretical and computational aspects. Math Comput

Simul 110:96–112

20. Chapra SC (2018) Applied numerical methods with MATLAB�
for engineers and scientists. McGraw-Hill Education, New York

21. Wang J, Feckan M, Zhou Y (2016) A survey on impulsive

fractional differential equations. Fract Calc Appl Anal. https://

doi.org/10.1515/fca-2016-0044

22. Garrappa R (2010) On linear stability of predictor–corrector

algorithms for fractional differential equations. Int J Comput Math

87(10):2281–2290. https://doi.org/10.1080/00207160802624331

23. Greenblatt DJ, AllenMD, Harmatz JS, Shader RI (1980) Diazepam

disposition determinants. Clin Pharmacol Ther 27(3):301–312

24. Macheras P, Iliadis A (2010) Modeling in biopharmaceutics,

pharmacokinetics and pharmacodynamics: homogeneous and

heterogeneous approaches. Springer, New York

25. Yan X, Bauer R, Koch G, Schropp J, Perez-Ruixo J, Krzyzanski

W (2021) Delay differential equations based models in NON-

MEM. J Pharmacokinet Pharmacodyn 48(6):763–802. https://doi.

org/10.1007/s10928-021-09770-z

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Journal of Pharmacokinetics and Pharmacodynamics (2023) 50:283–295 295

123

https://doi.org/10.1007/s10928-022-09834-8
https://doi.org/10.1007/s10928-022-09834-8
https://doi.org/10.1007/s00285-021-01666-3
https://doi.org/10.1007/s10928-017-9547-8
https://doi.org/10.1007/s10928-017-9547-8
https://doi.org/10.48550/ARXIV.1304.2505
https://doi.org/10.48550/ARXIV.1304.2505
https://doi.org/10.1515/fca-2016-0044
https://doi.org/10.1515/fca-2016-0044
https://doi.org/10.1080/00207160802624331
https://doi.org/10.1007/s10928-021-09770-z
https://doi.org/10.1007/s10928-021-09770-z

	Implementation of non-linear mixed effects models defined by fractional differential equations
	Abstract
	Introduction
	Fractional calculus
	Theory
	Numerical methods
	The Laplace transform
	Fractional linear multi-step methods
	Impulsive fractional differential equation


	Methods
	Numerical solver for fractional differential equations
	NONMEM implementation and interface
	Evaluation by simulation study
	Linear model
	Non-linear model
	Diazepam data analysis

	Results
	Numerical results
	Simulation study
	Diazepam data analysis

	Discussion
	Conclusions
	Funding
	References




