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Abstract
Sepsis is a life-threatening condition driven by the dysregulation of the host immune response to an infection. The complex

and interacting mechanisms underlying sepsis remain not fully understood. By integrating prior knowledge from literature

using mathematical modelling techniques, we aimed to obtain a deeper mechanistic insight into sepsis pathogenesis and to

evaluate promising novel therapeutic targets, with a focus on Toll-like receptor 4 (TLR4)-mediated pathways. A Boolean

network of regulatory relationships was developed for key immune components associated with sepsis pathogenesis after

TLR4 activation. Perturbation analyses were conducted to identify therapeutic targets associated with organ dysfunction or

antibacterial activity. The developed model consisted of 42 nodes and 183 interactions. Perturbation analyses suggest that

over-expression of tumour necrosis factor alpha (TNF-a) or inhibition of soluble receptor sTNF-R, tissue factor, and

inflammatory cytokines (IFN-c, IL-12) may lead to a reduced activation of organ dysfunction related endpoints. Over-

expression of complement factor C3b and C5b led to an increase in the bacterial clearance related endpoint. We identified

that combinatory blockade of IFN-c and IL-10 may reduce the risk of organ dysfunction. Finally, we found that combining

antibiotic treatment with IL-1b targeted therapy may have the potential to decrease thrombosis. In summary, we

demonstrate how existing biological knowledge can be effectively integrated using Boolean network analysis for

hypothesis generation of potential treatment strategies and characterization of biomarker responses associated with the

early inflammatory response in sepsis.
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Introduction

Sepsis is a complex syndrome with high morbidity and

mortality associated with multi-organ dysfunction driven

by the host inflammatory response to an infection. The

initial inflammatory response is mainly activated by pattern

recognition receptors, where Toll-like receptor 4 (TLR4)

activation is one of the key receptors associated with

Gram-negative bacterial infections commonly producing

sepsis [1, 2]. Organ dysfunction is a major cause of sepsis-

associated mortality and morbidity, although the underly-

ing mechanisms for these effects are only partly understood

[3]. Besides treatment with antibiotics, very limited treat-

ment options are currently available for sepsis. Consider-

able efforts in the past decades towards developing novel

therapeutics against sepsis have failed during clinical trials

[4, 5]. The complexity of underlying immune system

interactions in sepsis in relation to harmful effects on organ

systems may be an important reason for these failures,

warranting more holistic approaches.

A wealth of knowledge of isolated cellular and bio-

chemical processes and their interactions associated with

inflammation and sepsis is available in literature, but the

utility of this is hampered by a lack of integration. To this

end, the use of mechanistic mathematical modelling may

help to integrate this knowledge in order to rationalize the
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design of treatment strategies, and the discovery of novel

biomarkers that may be used to stratify patients and indi-

vidualize therapies [6, 7]. Indeed, quantitative ordinary

differential equation models have been used extensively in

systems biology and systems pharmacology for this pur-

pose. However, a requirement for constructing such models

is the availability of kinetic parameters, which are lacking

for various sepsis and inflammation associated interactions

and processes.

Boolean network (BN) models offer an attractive

mathematical modelling strategy where inhibitory and

stimulatory interactions that are commonly available in

literature can be utilized, allowing a much more compre-

hensive integration of available biological knowledge. BN

modelling approaches have been used previously to

describe the behaviour of complex systems and to support

identification of treatment targets [8, 9]. Briefly, a BN

model consists of nodes and edges. Nodes can have an

active or inactive state and typically represent biological

components such as cells, mediatory molecules or genes

[10]. Edges represent the interactions between the different

nodes. The BN network is defined according to logic

functions that determine the activation state of each node,

which will also depend on the activation state of other

nodes in the network. Within specific Boolean modelling

tools, e.g. SPIDDOR [10], interactions between compo-

nents can also be refined to cause specific activation,

inhibition, and modulation of the nodes. Performing sim-

ulations with BNs can be used to identify stable states

(known as attractors) of the system, which may be con-

sidered to correspond to phenotypes [11], thus providing

insight into the probability of activation of endpoint nodes

with clinical relevance. Comparing the attractors under

different perturbations of nodes alone or in combination

may be used to identify novel treatment strategies [12].

The aim of this study is to identify cellular or mediator-

specific factors which modulate key clinically-relevant end-

points of sepsis, either as explanatory factors of inter-indi-

vidual variation in treatment outcome, or, as target for

potentialmono- and combination treatment strategies. To this

end, we developed a BN model for the TLR4-mediated host

inflammatory response that plays an important role in the

systemic inflammatory response in the early phase of sepsis.

Methods

Model development

An extensive literature search was performed in order to

build the Boolean network model for TLR4-mediated

sepsis. We collected experimental in vitro and in vivo data

on activation or inhibitory events between key immune

cells, intracellular signalling mediatory molecules such as

inflammatory cytokines and membrane receptors, and

sepsis pathogenesis endpoints including bacterial phago-

cytosis and thrombosis. The development of the initial

version of the model was guided by several comprehensive

reviews of the inflammatory response after TLR4 activa-

tion and sepsis, from where we systematically searched for

each cell and/or mediator for all relevant additional inter-

actions. The BN model was created by translating regula-

tory interactions between identified cells, receptors and

molecules into Boolean functions: interactions of activa-

tion or inhibition between nodes were described as flexible

combinations of Boolean operators AND, OR and NOT in a

mathematical expression. The network was visualized

using Cytoscape (v3.8.2) [13].

Model implementation

The Boolean network analysis was performed in R (v 4.1.2)

using the package SPIDDOR (v 1.0) [10], which hasmultiple

essential functionalities for capturing the behaviour of

immune responses. One of these functionalities is the

introduction of time delays in the network interactions. Such

delays are incorporated using threshold arguments (THR)

that represent lag times for the initiation of node activation or

inhibition. In addition, SPIDDOR allows for modulating the

intensity of the activations and inhibitions of the network, by

adding a duration for these interactions to occur [10]. In that

sense, a regulator node could activate or inhibit the regulated

node for only some time steps in the simulation.

To capture the stochasticity associated with biological

systems, an asynchronous updating method was imple-

mented for the simulations. This method assumes that only

one node can be updated in a single time step and every

node is equally likely to be updated [14]. In a BN simu-

lation, each node is updated according to its Boolean

function over the time steps, to either remain in, or switch

to, one of the two possible states: 0 (inactive) or 1 (acti-

vated). The initial state of this BN is the onset of infection

(i.e. Infection = 1, all other nodes = 0). The state sets of

attractors for each simulated scenario, i.e. the percentage of

activation (% activation) of each node in 100 repetitions,

were used as readout.

Simulation endpoints

Simulation scenarios were evaluated based on two types of

endpoints: the ability of the immune system to fight the

infection, through endpoint nodes Phagocytosis and mem-

brane attack complex (MAC), and endpoints associated

with organ damage, i.e. Thrombosis and angiopoietin-2

(Ang2). These aspects could be indirectly represented by

nodes in the Boolean network. The extent of activation of
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these endpoint nodes was used to assess the effect of per-

turbations of the network.

Node activation analysis to explore inter-
individual variation in clinical endpoints

We studied how variation in immune cell nodes activation

can explain differences in activation of selected endpoint

nodes to better understand potential causes for variation in

clinical outcomes between patients. To this end, we per-

formed a sensitivity analysis by specifying the % activation

of each immune cell node in the network from 0 to 100%

activation. The sensitivity analysis allowed us to investi-

gate the impact of immune components on clinical end-

point node activation. These analyses were implemented

using the polymorphism functionality in SPIDDOR, which

modifies the fractional activation patterns of nodes. For

instance, when a polymorphism of 50% activity is intro-

duced in a node, this node is only activated 50% of the

times in which its regulator nodes are activated [10],

therefore, decreasing the normal activity of the node by

50%.

Perturbation analysis to identify novel mono-
and combination treatment targets

Mediatory molecules such as pro-inflammatory cytokines

TNF-a and IL-1 are commonly investigated as therapeutic

targets in drug development for sepsis [5]. For this analy-

sis, we evaluated the potential of targeting each individual

mediatory molecule that was included in the final network.

Perturbations were performed via knocking-out or over-

expressing a certain mediator node, either at infection onset

or at a later stage of the infection until the activation of all

nodes in attractors would not change over time steps. We

then repeated this analysis where we modulate two nodes at

the same time to study the effect of a combination treat-

ment. Here, either we targeted to mediator nodes, or we

combined modulation of a mediator with inhibition of the

bacterial node to mimic antibiotic treatment. The resulting

endpoints activations of attractors were compared to their

activations without perturbation. An efficacy cut-off of

20% for the relative activation change between perturbed

and non-perturbed scenarios was used to identify promising

therapeutic targets.

Results

Boolean network development

A Boolean network (Fig. 1) associated with early phase

TLR4-mediated sepsis was informed by data extracted

from 108 publications (Table S1). The developed BN

consisted of 42 nodes and 183 interactions. The underlying

Boolean functions are defined further in Table 1 and

Table S1. The developed network describes several dif-

ferent mechanisms underlying the disease progression of

sepsis, including the regulation of immune cells, endothe-

lial cells, complement and coagulation cascades, which

contribute to bacterial clearance but may also lead to

activation of harmful effects associated with organ damage.

The network used modulations to account for changes in

expression, auto-secretion and feedback relationships in a

more refined manner (Fig. 1). Threshold parameters (see

Methods) were applied to account and differentiate bio-

logical time delays for different events, including the

clearance of bacteria (B_CL), early and late phagocytosis

(Phag_E and Phag_L), cell apoptosis (Apop), production of

tissue factor (T_TF), formation of membrane attack com-

plex (T_MAC) and the release of anti-inflammatory

cytokines (Anti_inflam). Thresholds were set to two time

steps to represent the binding and functioning steps, while

the threshold relating to early phagocytosis was set to one

since it occurs earlier than the phagocytosis caused by

other immune cells. The threshold of anti-inflammatory

cytokines production, mainly IL-10, was set to three due to

an additional required signal transduction for the cytokine

synthesis [15].

Node activation analysis to explore inter-
individual variation in clinical endpoints

We performed a sensitivity analysis to evaluated the impact

of node activation alterations on innate and adaptive

immune cell nodes as well as activated endothelial cells, by

performing simulations where we decreased the activation

of these nodes a 10% in each simulation and then compared

the effect caused on the endpoints with the state of these

endpoints on attractors with no alteration (100% activa-

tion). As a result, we identified three cell nodes whose

activation situation had considerable effect on the selected

endpoints: (1) activated endothelial cells (Act-EC) on

angiopoietin-2 (Ang2), (2) activated monocytes (Act-Mon)

on thrombosis (Thrombosis), and (3) activated platelets

(Act-PLT) on thrombosis (Thrombosis) (Fig. 2).

The activation level of endothelial cells was positively

correlated with angiopoietin-2 activity, with higher acti-

vation of Act-EC as initial state leading to a higher acti-

vation of Ang2 on attractors. This finding is in line with

previous studies, where activated endothelial cells have

been shown to release more angiopoietin-2 into circulation

during inflammation compared to non-inflammatory
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condition [16]. The risk of thrombosis, i.e., activation of

the Thrombosis node in our network, was correlated with

increasing monocyte and platelet activation. These two cell

types play key roles in thrombosis as monocytes are the

direct production source of tissue factor (TF) [17], while

TF and platelet activation form the very foundation of

thrombotic events. The increased activation of platelets

could partly explain the increased risk of thrombosis and

thromboembolism seen in the elderly patients [18].

Perturbation analysis to identify novel mono-
and combination treatment targets

We compared the relative change (Eq. 1) in % activation of

endpoints between scenarios with different perturbation

initiation times. In this analysis, we found that the relative

changes were similar over perturbation initiation time in

both singular and combination perturbation analysis. The

result may indicate that variation in timing of the

perturbation does not lead to relevant differences on the %

activation on attractors of our selected endpoints

(Fig. S1A–B).

We identified a set of potential mono-therapeutic targets

that were associated with a decreased activation of Ang2

and Thrombosis and/or to increase MAC (Fig. 3A). Two

targets (sTNF-R and TNF-a) were identified for Ang2, six

targets (IL-12, sTNF-R, IFN-gama, TNF-a and TF) were

selected for Thrombosis, and two targets (C3b and C5b)

were selected for MAC. No single perturbation displayed

an impact on Phagocytosis based on our evaluation criteria.

Furthermore, we found that either over-expressing tumour

necrosis factor alpha (TNF-a) or blocking soluble TNF

receptor (sTNF-R) could lead to a reduction of both of the

organ dysfunction endpoints (Ang2 and Thrombosis).

Blocking TLR4, TF or inflammatory cytokines interferon

(IFN)-c or interleukin (IL)-12 could reduce the risk of

thrombosis but showed no beneficial effect on

Fig. 1 Boolean network model structure representation for the TLR4

activation in early sepsis. Shapes and colors represent different node

types, including 3 pathogen related nodes (in red), 13 host cell nodes

(in blue), 19 mediator nodes (in green), 4 selected outcome nodes (in

yellow) and 3 other nodes (in grey). Size of nodes represents the

number of interactions related to a certain node, with the bigger size

indicating more interactions. Lines represent the regulations where

black solid lines for activation, black dashed lines for positive

modulation including auto-secretion and red dashed lines for inhibi-

tion (Color figure online)

Relative change ¼ % activation under perturbation�% activation without perturbation

% activation without perturbation
ð1Þ
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Table 1 Boolean functions of the developed model for TLR4-mediated early sepsis

Nodes Boolean functionsa

Infection Infection = Infection

Bacteria Bacteria = Infection &! (Bacteria & (THR_MAC[B_CL]b | THR_Phagocytosis[B_CL] | THR_ROS[B_CL] |

THR_NETs[B_CL]))

LPS LPS = Bacteria

TLR4 TLR4 = LPS | (TLR4 & IFN-gamma)

Act-Mon Act-Mon = (TLR4 | IL-1B | (Act-Mon & IFN-gamma)) &! (Act-Mon & (Apoptosis &! IFN-gamma))

Act-Mac Act-Mac = (TLR4 | Act-Mon | C5a | (Act-Mac & (TNF-a | IFN-gamma)) | (IFN-gamma & TNF-a) | (Act-Mon & IL-1B)) &! (Act-

Mac & (IL-10 | (Apoptosis &! IFN-gamma)))

Mac-M1 Mac-M1 = (Act-Mac & (TNF-a | IFN-gamma)) | (Act-Mon & IL-1B) | (Mac-M2 & (TNF-a | IFN-gamma | IL-1B))

Mac-M2 Mac-M2 = (Act-Mac & (IL-10 | IL-1Ra)) | (Mac-M1 & (IL-10 | IL-1Ra))

Act-DC Act-DC = (TLR4 | Act-Mon) &! (Act-DC & (Treg | IL-10 | Apoptosis))

Act-Neu Act-Neu = (TLR4 | C5a | IL-8) &! (Act-Neu & Apoptosis)

Act-NK Act-NK = (IL-12 | Act-DC | (Act-NK & (IL-12 & IL-18))) &! (Act-NK & Apoptosis)

Act-EC Act-EC = (TNF-a | NETs) &! (Act-EC & Apoptosis)

Phagocytosis Phagocytosis = (THR_C3b[Phag_L] & THR_Bacteria[Phag_L]) | THR_Act-Mon[Phag_L] | THR_Act-Mac[Phag_L] | THR_Act-

Neu[Phag_E] | THR_Act-DC[Phag_L] | (Phagocytosis & IFN-gamma) | (Phagocytosis & IL-18)

Apoptosis Apoptosis = THR_TNF-a[Apop] | THR_Bcell[Apop] | (Apoptosis & LPS)

ICAM-1 ICAM-1 = Act-EC | (ICAM-1 &TNF-a)

VCAM-1 VCAM-1 = Act-EC | (VCAM-1 & TNF-a)

E-selectin E-selectin = Act-EC | (E-selectin & ROS)

P-selectin P-selectin = Act-EC | Act-PLT

NETs NETs = Act-Neu | ROS | (Act-Neu & C5a) | (NETs & Act-PLT)

Act-PLT Act-PLT = LPS | TLR4 | TF | Thrombosis | (Act-PLT & (NETs | IFN-gamma))

TF TF = THR_Act-Mon[T_TF] | (TF & (THR_Act-EC[T_TF] & (TNF-a | LPS))) | (TF & (THR_Act-Mon[T_TF] & (TNF-a | LPS)))

Thrombosis Thrombosis = NETs & (TF & Act-PLT)

C3b C3b = Bacteria

C5a C5a = C3b

C5b C5b = C3b

MAC MAC = THR_C5b[T_MAC]

ROS ROS = Act-Neu | (Act-Mac | Mac-M1) | Act-EC | (ROS & (TNF-a | IL-18))

Ang2 Ang2 = Act-EC

TNF-a TNF-a = (Mac-M1 | Act-Mon | Act-NK | Act-DC | CD4T | CD8T | (TNF-a & (IFN-gamma | Act-Mac | ROS )) | (IL-1B & Act-

EC)) &! (TNF-a & ((IL-10 &! IFN-gamma) | sTNF-R))

IL-1B IL-1B = (Act-Mon | Mac-M1 | (IL-1B & (TNF-a | Act-Mon | Act-PLT))) &! (IL-1B & (IL-10 | IL-1Ra))

IFN-gamma IFN-gamma = (Act-NK | (IFN-gamma & (Act-DC & IL-12)) | (Mac-M1 & (IL-12 & IL-18)) | ((CD4T | CD8T) & (IL-12 | (IL-12

& IL-18))) | (IFN-gamma & (CD4T & IL-6))) &! (IFN-gamma & IL-10)

IL-6 IL-6 = ((Act-Mon & IL-1B) | Mac-M1 | Act-EC | Act-DC | Bcell) &! (IL-6 & IL-10)

IL-8 IL-8 = (Act-Mon | Mac-M1 | Act-EC | (IL-8 & TNF-a)) &! (IL-8 & IL-10)

IL-12 IL-12 = (Act-Mon | Mac-M1 | Act-DC | (IL-12 & (Act-NK | IFN-gamma | IL-1B))) &! (IL-12 & IL-10)

IL-18 IL-18 = (Mac-M1 | Act-DC | Act-EC) &! (IL-18 & IL-10)

IL-10 IL-10 = (THR_Mac-M2[Anti_inflam] | THR_Act-DC[Anti_inflam] | (THR_CD4T[Anti_inflam] | THR_CD8T[Anti_inflam] |

THR_Treg[Anti_inflam] | THR_Bcell[Anti_inflam]) | (IL-10 &(Act-DC | IL-12)) | THR_Apoptosis[Anti_inflam]) &! (IL-10 &

IFN-gamma)

sTNF-R sTNF-R = THR_Act-Mon[Anti_inflam] | THR_CD4T[Anti_inflam] | THR_CD8T[Anti_inflam] | (sTNF-R & IL-10)

IL-1Ra IL-1Ra = (THR_Act-Neu[Anti_inflam] | THR_Act-Mon[Anti_inflam]) &! (IL-1Ra & IFN-gamma)

CD4T CD4T = (Act-DC | IL-6 | (CD4T & (IL-12 | IFN-gamma))) &! (CD4T & (IL-10 | Treg | Apoptosis))

CD8T CD8T = (Act-DC | IL-18 | (CD8T & Act-NK)) &! (CD8T & (Treg | IL-10 | Apoptosis))

Treg Treg = (CD4T | (Treg & IL-10)) &! (Treg & (IL-6 | Apoptosis))
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Table 1 (continued)

Nodes Boolean functionsa

Bcell Bcell = (TLR4 | (Act-DC & LPS) | (Bcell & IL-6)) &! (Bcell & (Treg | IL-10 | Apoptosis))

aBoolean functions were mathematical expressions with different nodes and flexible combinations of logic operators AND (&), OR (|) and NOT

(!), where ‘‘&’’ and ‘‘|’’ mainly represented for different activation mode and ‘‘!’’ for inhibition. For example, the Boolean function for node

bacteria, ‘‘Bacteria = Infection &! (Bacteria & (THR_MAC[B_CL] | THR_Phagocytosis[B_CL] | THR_ROS[B_CL] | THR_NETs[B_CL]))’’,

means bacteria appears upon infection while either membrane attack complex or host cell phagocytosis or reactive oxygen species or neutrophil

extracellular traps works to clear bacteria with certain time delays. Definitions of all nodes and related regulatory interactions were shown in

supplemental Table S1
bThreshold arguments were shown in [ ] referring to time delay, where for bacterial clearance (B_CL), late phagocytosis (Phag_L), apoptosis

(Apop), membrane attack complex (T_MAC) and tissue factor (T_TF) the thresholds were set as 2, for early phagocytosis (Phag_E) and anti-

inflammatory markers (Anti_inflam) thresholds were set as 1 and 3, respectively

Fig. 2 Sensitivity analysis of the effect of immune cells activation on

four selected endpoints. The heatmap (A) showed the effect of

decreased activation of different immune cells, ranging from 0

(deactivated) to 100% (normal activation), on four endpoints

compared with their normal activation pattern (100% activation),

colors of the heatmap represented the negative, neutral and positive

relative changes of endpoints % activation on attractors with blue,

white and orange, respectively; The scatter plot (B) with lines showed

three identified effects of immune cells on selected endpoints:

activation variation of activated endothelial cells (Act-EC) on

angiopoietin-2 (Ang2), and activation variations of activated mono-

cytes (Act-Mon) and activated platelets (Act-PLT) on thrombosis

(Thrombosis). Effect of B cells (Bcell) activation on Thrombosis and
Ang-2 were not identified due to the small relative changes of %

activation of endpoints on attractors (Color figure online)

650 Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:645–655

123



reducing angiopoietin-2. For the bacterial clearance related

endpoint MAC, the over-expression of complement com-

ponent C3b and C5b showed to increase its average long-

term activation. This is in line with the well-established

role of C5b as an essential composition of membrane attack

complex (MAC) and that the cleavage of C5 to C5b

requires C3b [19]. Although the interaction between the

complement system and MAC is not an unexpected find-

ing, it adds towards building confidence in the model

predictions.

We identified a total of six multi-target treatment

strategies that showed potential benefit (Fig. 3B) in which

one combination, by blocking IFN-c and IL-10 together,

could reduce both the risk of thrombosis and vessel leakage

which is represented by activation of node Ang2 based on

our network. Another combination shown to decrease the

activation of Ang2 was blocking cytokines IL-10 and IL-12

together. Three of all the other four combinations to

decrease the activation of Thrombosis included targeting

TLR4, while the last one relied on the simultaneous

blocking of IL-1b and IL-18. For therapy directed towards

improving bacteria clearance by increasing MAC or

Phagocytosis, no effective combinations were identified.

When combining an immune targeting therapy with

antibiotic treatment, where the antibiotic has a rapid and

direct effect on bacterial clearance, the timing of initiation

of treatment is of importance. The effect of clearing bac-

teria based on our selected endpoints differed over time

and showed to be most beneficial during the early stage of

infection (i.e. before 4 time steps, Fig. S2). This finding

adds to the evidence of rapid initiation of antibiotic therapy

improves outcomes in septic patients [20]. Although the

use of antibiotics as mono-therapy showed a reduction of

Thrombosis activation by more than 20%, our perturbation

analysis suggests that there are still potential beneficial

options of combining antibiotics with a Thrombosis

focused therapy.

Overall, we identified four therapeutic targets that could

be beneficial to target in combination with antibiotic

therapy to decrease the activation of Thrombosis (Fig. 3C),

in which three of them were already identified in mono-

therapy evaluation, i.e. IFN-c, sTNF-R or TF, but blocking

them could almost deactivate Thrombosis when combined

Fig. 3 Therapeutic targets identified through perturbation analyses.

The bar plots A represented the effect of selected mono-therapeutic

targets on endpoints; B represented the effect of both mono and

combine-therapeutic targets on their corresponding endpoints;

C represented the effect of antibiotic and/or combined therapeutic

target with antibiotic on endpoint Thrombosis. Colors of the bar plots
represented the no perturbation, knocking out and over expression

with blue, dark blue and orange, respectively (Color figure online)
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with antibiotics. Another identified target, pro-inflamma-

tory cytokine IL-1b, was not identified in mono-therapy but

appeared in combined mediators specific therapies. For

node Ang2, no combination showed a benefit to decrease its

activation. Predictably, no increased immune regulated

antibacterial effect could be identified due to the rapid

bacterial eradication mediated by the antibiotics.

Discussion

A novel Boolean network model was developed, which

leveraged prior knowledge of immune response-related

processes for the TLR4-mediated host response associated

with early phase sepsis. The developed network incorpo-

rated key immune cells and mediatory molecules, as well

as key clinical endpoint nodes to assess inter-individual

variability and treatment interventions. By using a simu-

lation approach, we identified several potential targets

showing promise of improving bacterial clearance and/or

reducing the possibility of organ dysfunction. The identi-

fied mediators might constitute potential therapeutic targets

for treatment of sepsis and could be considered in further

clinical studies.

The long-term behaviour, i.e. attractors, of this devel-

oped network showed to be stable according to the overall

single perturbation analysis, where either knocking-out or

over-expression of most nodes did not trigger considerable

changes on the activation of the rest nodes on attractor

(Fig. S3). This stabilization could be a result of the com-

plex interactions within the network, which might explain

in part the failures of many clinical trials investing treat-

ments against sepsis. Recently, selective or non-selective

targeting of endogenous mediator molecules have been

investigated as strategies to modify the systemic inflam-

matory response, such as blocking TNF-a and IL-1b [4, 5].

However, none of these agents showed significant

improvement on septic survival rate. These results are

comparable to our single node perturbations in which

knocking-out TNF-a mainly lead to decreasing cell apop-

tosis while knocking-out IL-1b showed no big influence on

other nodes.

We utilized a Boolean network as a tool to screen

promising treatment targets for sepsis based on endpoints

related to bacteria clearance (Phagocytosis and MAC) and

vessel leakage and multi-organs dysfunction (Ang2 and

Thrombosis). When evaluating mono-target therapies, we

found over-expressing TNF-a, instead of blocking it, was

associated with a decreased activation of Ang2 and

Thrombosis, which can be related to decreased organ

dysfunctions. This finding is inconsistent with previous

clinical studies where TNF-a was blocked but have not

shown a significantly improved survival rate in sepsis

patients [5]. Additionally, treatments blocking either TF or

IFN-c were identified to reduce Thrombosis in our analysis.
These targets have also been studied in clinical trials, but

so far no clinical effect has been identified [4]. One reason

for these inconsistent results might be the differences in

selected endpoints. Clinical trials for sepsis mainly use

mortality as the primary endpoint, while we used four

surrogate endpoints.

Our simulations suggest a decrease in activation of Ang2

after over-expressing TNF-a. In contrast, a previous

in vitro study suggested TNF-a can induce both

angiopoietin-2 mRNA expression and protein levels in

human umbilical vein endothelial cells [21] at 2 h after

TNF-a exposure. Importantly, the positive interaction

between angiopoietin-2 and TNF-a is in fact included in

our model, with activated endothelial cells as intermediate

node (Table 1). However, unlike the in vitro experiment

involving a single cell type, our Boolean model also

incorporates other relevant interaction events derived from

other additional experiments, thereby illustrating the value

of deriving expected outcomes which are the results of

multiple cellular interaction events.

The effect of TNF-a on thrombosis remains inconclu-

sive. Previous studies suggested either an antithrombotic

activity through the stimulation of nitric oxide [22] or a

prothrombotic effect via acting on TNF-a receptor subtype

2 [23]. Recently, a in vivo study in mice showed a positive

regulation of TNF-a/TNF receptor p55 singling axis in the

resolution of venous thrombus [24]. In our simulations,

long term over-expression of TNF-a was likely to decrease

the activation of node Thrombosis, which might be a result

of its beneficial role in thrombus resolution as indicated in

the animal study. Worth noting are the inevitable inter-

species differences when using animal models to mimic

pathophysiological features in humans [25].

For multi-target treatment strategies, the combination of

blocking IFN-c and IL-10 was identified as a potential

treatment to decrease the risk of organ dysfunction, via

reducing activation of both Ang2 and Thrombosis. Cyto-

kine IFN-c functions as a positive modulator of activated

platelets [26], which plays a crucial role in the process of

thrombosis. Although IL-10 shows an inhibitory effect on

the production of most pro-inflammatory cytokines,

increased IL-10 blood levels has been associated with the

development of organ failure in septic shock [27]. Never-

theless, since IFN-c and IL-10 are negative modulators of

each other, few studies have addressed the co-operative

action of these combination, while Yoshiki et al. found

simultaneous treatment with IL-10 and IFN-c can signifi-

cantly suppress the function of murine bone marrow-

derived dendritic cells [28]. Due to the complexity of

regulatory interaction between cytokines, the blockage of
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IFN-c and IL-10 together could potentially reduce the risk

of organ dysfunction.

When treating with antibiotics in the very early phase of

infection, all nodes in this network remained inactive or

returned to baseline immediately (Fig. S2). This behaviour

is in line with the clinical recommendation of administer-

ing antibiotics as early as possible for adults with possible

septic shock or a high likelihood for sepsis [2]. A delayed

start of antibiotic therapy, simulated by removing bacteria

after 4 time steps, showed to be ineffective in inhibiting the

initiation of the immune cascade reaction, which can be

seen from the unchanged activation on attractors (Fig. S4).

This phenomenon may explain the failures of clinical trial

focusing on anti-endotoxin agents [5], where neither

human antiserum to endotoxin nor monoclonal IgM anti-

bodies that inactivates endotoxin could significantly

improve survival in sepsis.

Local thrombosis contributes to the initial defence

against bacterial invasion in mammals [29]. We find that

combination therapies with delayed initiation of antibiotic

therapy, such as antibiotic treatment combined with IL-1b
blockade, may show beneficial effects, decreasing Throm-

bosis node activation. These results are in line with a

previous study where an increase in IL-1b mRNA

expression in patients who suffered thrombotic episodes

compared with healthy age-matched controls [30] was

observed. Another clinical study showed the anti-inflam-

matory therapy targeting IL-1b pathway led to a signifi-

cantly lower rate of recurrent cardiovascular events than

placebo [31]. These data indicate that IL-1b might be a

relevant therapeutic target, although treatment of inhibiting

IL-1b alone did not show sufficient decrease of Thrombosis

activation in our analysis.

Interleukins have been of recent interest as potential

treatment in sepsis due to their contribution to thrombosis

and their potential therapeutic effect in animal models [32],

including pro-inflammatory IL-6 [33] and anti-inflamma-

tory IL-10 [34]. However, a population-based study sug-

gested that an altered inflammatory profile of these

interleukins is more likely to be associated with a result

rather than an increased risk of venous thrombosis [35]. IL-

12 was another identified target in our simulations. How-

ever, a previous study concluded that IL-12 can activate

both coagulation and fibrinolysis in patients with renal cell

carcinoma [36]. The potential of these inflammatory targets

thus still need to be evaluated in well-controlled clinical

studies.

Antibiotic treatment was mimicked by setting the node

Bacteria to 0% activation in our simulation. The dynamic

pattern over time steps of other nodes varies after deacti-

vating Bacteria (Fig. S2), in which the simulated activation

of complement factors, i.e., C3, C5a and C5b, as well the

complex MAC returned to baseline immediately. This

consistency indicates the potential of complement factors

as biomarkers for monitoring antibiotic treatment efficacy

in early sepsis. Indeed, a recent prospective study evaluated

complement levels in bacteremia patients, and hypothe-

sized the measurement of C3, C4 and C9 levels may help

stratify Gram-negative bacteremia patients at increased risk

for mortality [37]. Activation of complement system is a

key event in the pathogenesis of sepsis [38], adapting

crucial complement factors as biomarkers might be of

prognostic value, when their sensitivity and specificity

were carefully evaluated.

Although the use of a Boolean network approach can

support developing understanding the behaviour of com-

plex systems, especially in the lack of quantitative data, the

approach is associated with inherent limitations. The time

steps in a Boolean network are not related to real time.

Thus, simulation results cannot be directly linked to time-

concentration data, such as specific biomarker peak times,

which further complicates model validation using clinical

data. The attractors of mono perturbations on our BN were

compared with previous experimental results under certain

intervention, revealing some similarities between our

simulations and in vivo animal studies. However, human

studies with comparable endpoints are still required to

validate both of the identified mono and multi therapeutic

targets.

The development of the Boolean network model in this

study was guided by including key biological processes

previously identified as key consensus mechanisms asso-

ciated with TLR4-activation and early sepsis. We system-

atically searched the literature to identify interaction

partners between involved cell types, receptors and their

ligands to populate a complete network. Nonetheless, the

developed Boolean network model may need further revi-

sion and additions depending on new findings and specific

objectives for applying this model. With respect to (clini-

cal) endpoint nodes we have selected biological events

which may closely relate to key clinical events in the

disease pathology of sepsis. Yet, it is important to recog-

nize this model does not directly predicts clinical out-

comes, which also complicates the comparison of our

results to existing clinical trials. These two shortcomings

could be overcome by gradually extending this network

with a higher number and clinically related nodes.

In conclusion, the developed Boolean network model for

TLR4-mediated host immune response in early phase of

sepsis exemplifies the value of using Boolean networks to

increase the knowledge of complex biological systems, and

constitutes a relevant strategy to deepen our understanding

of systemic inflammatory diseases, analyse the influences

of immune cells diversity among patient groups, and

identify potential therapeutic targets for sepsis.
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12. Schwab JD, Kühlwein SD, Ikonomi N et al (2020) Concepts in

Boolean network modeling: what do they all mean? Comput

Struct Biotechnol J 18:571–582

13. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a soft-

ware environment for integrated models of biomolecular inter-

action networks. Genome Res 13:2498–2504. https://doi.org/10.

1101/gr.1239303

14. Garg A, Di Cara A, Xenarios I et al (2008) Synchronous versus

asynchronous modeling of gene regulatory networks. Bioinfor-

matics. https://doi.org/10.1093/bioinformatics/btn336

15. Kubo M, Motomura Y (2012) Transcriptional regulation of the

anti-inflammatory cytokine IL-10 in acquired immune cells.

Front Immunol. https://doi.org/10.3389/fimmu.2012.00275

16. Hayashi SI, Rakugi H, Morishita R (2020) Insight into the role of

angiopoietins in ageing-associated diseases. Cells 9(12):2636

17. Franco RF, De Jonge E, Dekkers PEP et al (2000) The in vivo

kinetics of tissue factor messenger RNA expression during

human endotoxemia: Relationship with activation of coagulation.

Blood. https://doi.org/10.1182/blood.v96.2.554

18. Opal SM, Girard TD, Ely EW (2005) The immunopathogenesis

of sepsis in elderly patients. Clin Infect Dis 41:S504–S512

19. Serna M, Giles JL, Morgan BP, Bubeck D (2016) Structural basis

of complement membrane attack complex formation. Nat Com-

mun. https://doi.org/10.1038/ncomms10587

20. Kumar A, Roberts D, Wood KE et al (2006) Duration of

hypotension before initiation of effective antimicrobial therapy is

the critical determinant of survival in human septic shock. Crit

Care Med. https://doi.org/10.1097/01.CCM.0000217961.75225.

E9

21. Kim I, Kim JH, Ryu YS et al (2000) Tumor necrosis factor-a
upregulates angiopoietin-2 in human umbilical vein endothelial

cells. Biochem Biophys Res Commun 269:361–365. https://doi.

org/10.1006/bbrc.2000.2296

22. Cambien B, Bergmeier W, Saffaripour S et al (2003)

Antithrombotic activity of TNF-a. J Clin Investig. https://doi.org/

10.1172/jci200319284

23. Pircher J, Merkle M, Wörnle M et al (2012) Prothrombotic effects

of tumor necrosis factor alpha in vivo are amplified by the

absence of TNF-alpha receptor subtype 1 and require TNF-alpha

receptor subtype 2. Arthritis Res Ther. https://doi.org/10.1186/

ar4064

24. Nosaka M, Ishida Y, Kimura A et al (2018) Contribution of the

TNF-a (tumor necrosis factor-a)-TNFrp55 (tumor necrosis factor

receptor p55) axis in the resolution of venous thrombus. Arte-

rioscler Thromb Vasc Biol. https://doi.org/10.1161/ATVBAHA.

118.311194

25. Diaz JA, Obi AT, Myers DD Jr et al (2012) Critical review of

mouse models of venous thrombosis. Arterioscler Thromb Vasc

Biol 32(3):556–562

26. Stokes KY, Granger DN (2012) Platelets: a critical link between

inflammation and microvascular dysfunction. J Physiol

590(5):1023–1034

27. Friedman G, Jankowski S, Marchant A et al (1997) Blood

interleukin 10 levels parallel the severity of septic shock. J Crit

Care. https://doi.org/10.1016/S0883-9441(97)90030-7

28. Yanagawa Y, Iwabuchi K, Onoé K (2009) Co-operative action of
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