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Abstract
This article evaluates the performance of pharmacokinetic (PK) equivalence testing between two formulations of a drug

through the Two-One Sided Tests (TOST) by a model-based approach (MB-TOST), as an alternative to the classical non-

compartmental approach (NCA-TOST), for a sparse design with a few time points per subject. We focused on the impact of

model misspecification and the relevance of model selection for the reference data. We first analysed PK data from phase I

studies of gantenerumab, a monoclonal antibody for the treatment of Alzheimer’s disease. Using the original rich sample

data, we compared MB-TOST to NCA-TOST for validation. Then, the analysis was repeated on a sparse subset of the

original data with MB-TOST. This analysis inspired a simulation study with rich and sparse designs. With rich designs, we

compared NCA-TOST and MB-TOST in terms of type I error and study power. With both designs, we explored the impact

of misspecifying the model on the performance of MB-TOST and adding a model selection step. Using the observed data,

the results of both approaches were in general concordance. MB-TOST results were robust with sparse designs when the

underlying PK structural model was correctly specified. Using the simulated data with a rich design, the type I error of

NCA-TOST was close to the nominal level. When using the simulated model, the type I error of MB-TOST was controlled

on rich and sparse designs, but using a misspecified model led to inflated type I errors. Adding a model selection step on the

reference data reduced the inflation. MB-TOST appears as a robust alternative to NCA-TOST, provided that the PK model

is correctly specified and the test drug has the same PK structural model as the reference drug.
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Introduction

In bioequivalence (BE) studies with pharmacokinetic (PK)

endpoints (for generics), or PK similarity studies (for bio-

logicals), we aim to compare the exposure after adminis-

tration of different drug formulations by comparing two PK

parameters of interest: the area under the curve (AUC) of

the plasma concentration as a function of time, and the

maximal concentration (Cmax).

BE studies are an essential part of drug development and

still an active research field. Currently, a key science and

research priority at the U.S. Food and Drug Administration

(FDA) is to ‘‘improve quantitative pharmacology and BE

trial simulation to optimise the design of BE studies for

generic drug products and establish a foundation for

model-based BE study designs’’ [1].

The classical statistical test used to assess BE is the Two

One Sided Tests (TOST) proposed by Schuirmann in 1987

[2]. It consists of two t tests, on PK parameters of interest,

comparing the difference of treatment effects computed to

a threshold d. The FDA as well as the European Medicines

Agency (EMA) fix this threshold to d ¼ logð0:8Þ and d ¼
logð1:25Þ [3, 4].

FDA and EMA recommend estimating BE treatment

effects via non-compartmental analysis (NCA) for both

crossover and parallel study designs [3, 4]. However,

assessment of PK equivalence may be challenging for PK

BE studies with sparse sampling, such as in participants

receiving ophthalmic or oncology drug products. PK BE

studies for ophthalmic drug products typically involve a

sparse design with one sampling time point per subject (or

per treatment group per subject in a crossover design). In

such studies, FDA recommends BE to be assessed using a

non-parametric bootstrap NCA-based approach or a para-

metric method [5, 6]. This type of sparse study design may

be useful for certain drug products or may occur from study

interruptions due to the COVID-19 pandemic or other

causes.

An alternative proposed by Dubois et al. [7] is to use a

model-based (MB) approach, using the empirical Bayes

estimated (EBE) individual parameters of a non-linear

mixed effects model instead of NCA parameters. They

showed that this method leads to an increase in type I error

when the EBE shrinkage is above 20%, which is frequent

in case of sparse design. Dubois et al. [8] also proposed a

MB approach, this time inferring on the population

parameters. They showed that this MB approach works as

well as the NCA on rich designs and can be applied on

sparser designs. Currently, it is unclear when MBBE

methods would be preferred over traditional BE approa-

ches. As such, FDA has actively supported research

focused on MBBE approaches for PK BE studies with

sparse designs [9–11]. Indeed, MB tests can lead to an

inflation of the type I error because of an underestimation

of the standard error (SE) of treatment effects on sparse

designs in presence of large variability, which led Loin-

geville et al. to propose and evaluate methods of correction

of the standard errors in MB studies [10]. Shen et al. [12]

also proposed a MB alternative to traditional BE tests. In

this MBBE approach, rich individual PK profiles are sim-

ulated from the model and NCA is performed to estimate

individual AUC and Cmax values. Since TOST was based

on individual predicted values, the authors assessed dis-

tributional assumptions.

MB approaches involve the selection of a PK model to fit

the data, which raises the question of the impact of model

misspecification on the results of the equivalence tests.

In this study, we define a ’’sparse’’ design as any study

with only a few sampling points and that challenges the

identifiability of the model, which means that the sparse

nature of data depends on the complexity of the model of

interest.

Our work was based on data collected during the

development of gantenerumab, a monoclonal antibody for

the treatment of Alzheimer’s disease. As this drug has a

very long half-life, the clinical trials were conducted using

a parallel design (more than 13 weeks of follow up), which

is not the classical design for PK equivalence studies that

are usually conducted using a crossover design.

In this real case, we compared the PK data gathered in

participants treated with two formulations of gan-

tenerumab. Then, we evaluated the performance of the MB

approach on simulations based on data from this study and

assessed the impact of study design, model misspecifica-

tion, and the relevance of a model selection step. Although

this assessment was based on PK data from a monoclonal

antibody, our novel method may potentially be used to

evaluate BE studies in generic drug development when

there is sparse PK sampling.

We first present the theoretical background, i.e., the

NCA and MB approach for equivalence TOST tests. We

then describe the observed data, the methodology to anal-

yse it and the results of this real case study. We finally

present the design, methods and results of the simulation

study, and discuss our findings in the last section.

Theoretical background

Two One-Sided Tests

Showing the PK equivalence of two drug formulations, one

reference (R) and one test (T), means showing their

exposure is equivalent.
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In PK BE studies, drug exposure is typically charac-

terised by two PK parameters, variables of the plasma

concentration versus time profiles : the Area Under the

Curve (AUC), which can be computed from 0 to the last

sampling point (AUCtlast) or extrapolated to infinity

(AUC1), and the maximum plasma concentration (Cmax).

Treatment effects on AUC and Cmax, namely hAUC and

hCmax
, are defined as the difference of the expectation of the

log individual values of these variables under test and

reference treatment. For instance:

hAUC ¼ EðlogðAUCTÞÞ � EðlogðAUCRÞÞ ð1Þ

Since we wish to reject the assumption that the two for-

mulations have different exposures, we write the null

hypothesis as [2]:

H0 : fh� � d or h� dg ð2Þ

where d is the tolerance. The regulatory guidances for

equivalence studies fix the threshold d ¼ logð1:25Þ [3, 4].
By decomposing this null hypothesis in two, we perform

Two One-Sided Tests (TOST):

H0;�d : fh� � dg and H0;d : fh� dg ð3Þ

The two t test statistics are rejected at a ¼ 5% if:

Z�d ¼
hþ d
SEðhÞ � q1�a and Zd ¼

h� d
SEðhÞ � qa ð4Þ

with qa the quantile of order a of a reference distribution.

Equivalently, we can reject the null hypothesis if the

confidence interval of h is within ½�d; d�, that is if the

confidence interval of the exponential of h is within [0.8 ;

1.25]. The exponential of h is often shown in the results of

the test and is called the geometric mean ratio (GMR).

Non-compartmental analysis

The standard method for PK equivalence studies is to

compute individual AUC and Cmax and use an ANOVA or a

linear mixed model to estimate the treatment effect.

AUCtlast can be computed using the trapezoidal method and

AUC1 can be estimated by linear extrapolation. For this,

FDA recommends that sampling continues for at least three

or more terminal elimination half-lives of the drug and

there are at least three sampling points after the peak [3].

Cmax is defined as the maximal concentration measured

among the study sampling times.

Depending on the study design, there can be a period

and a sequence effect on the variables of interest. In par-

allel studies, there is only one period: each group of par-

ticipants receives one treatment only. Our present work

focuses on a drug with a long half-life which warrants a

parallel study design instead of the classical crossover

design for PK equivalence studies. In this case, there is no

period or sequence effect and intra-individual variability

cannot be properly evaluated. The models to fit are simply:

logðAUCiÞ ¼lAUC þ hAUCTi þ �AUCi
ð5Þ

logðCmaxiÞ ¼lCmax
þ hCmax

Ti þ �Cmaxi
ð6Þ

with:

– l: mean value of variable for the reference treatment;

– Ti: treatment covariate variable for individual i;

– h: coefficient of treatment effect;

– �i �N ð0; r2Þ: residual error.
The treatment effects on the variables of interest and their

standard errors are obtained directly from the linear model

inference.

The geometric mean ratio is, e.g. for AUC:

GMR ¼ expðEðlogðAUCTÞÞÞ
expðEðlogðAUCRÞÞÞ

¼ expðlAUC þ hAUCÞ
expðlAUCÞ

¼ expðhAUCÞ

In non-compartmental PK equivalence analyses (hereafter

called NCA-TOST), the standard error is obtained with the

Fisher Information Matrix (FIM), which is asymptotically

the inverse of the lower bound of the variance-covariance

matrix of regression coefficients. With balanced groups,

the reference distribution to use in NCA-TOST is a Stu-

dent’s t distribution with N-2 degrees of freedom, N being

the number of participants in the study.

Model-based approach

Regulatory requirements may not be met in studies with

sparse sampling design, and NCA-TOST may then become

less accurate. Indeed, it can be hard to compute individual

AUC and Cmax if we only have a few points per subject. In

an effort to leverage population data over time to inform

predictions for individuals, a model-based alternative has

been proposed [8, 10], in which we build a structural PK

model and use a non-linear mixed effect model (NLMEM)

to estimate the treatment effect. The corresponding statis-

tical model can be written as follows in the case of parallel

studies:

yij ¼f ðtij;/iÞ þ gðtij;/iÞ�ij ð7Þ

logð/ilÞ ¼logðllÞ þ hlTi þ gil ð8Þ

with:

– tij: time j for individual i;

– yij: concentration for individual i at time tij;
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– /i: vector of parameters for individual i (typically of

size 3 to 10);

– f ðtij;/iÞ: non-linear structural PK model depending on

/i;

– gðtij;/iÞ: error model;

– �ij �N ð0; 1Þ: residual error;
– ll: fixed effect for parameter l;

– Ti: treatment covariate variable;

– hl: coefficient of treatment effect for parameter l;

– gil �N ð0;xlÞ: between subject random effect for

parameter l;

– xl: standard deviation of the inter-individual random

effect for parameter l.

g() describes the error model, with usual models being:

– Additive error model: gðtij;/iÞ ¼ ra ;

– Multiplicative error model:gðtij;/iÞ ¼ rb f ðtij;/iÞ ;
– Combined error model: gðtij;/iÞ ¼ ra þ rb f ðtij;/iÞ .
In the context of BE studies, we usually have previous

knowledge on the underlying PK characteristics of the

reference product, which could be described by a subset of

structural PK models f().

In this study, we only fitted and compared PK models

that differed in terms of number of compartments, order of

absorption, and presence of an absorption delay. A

description of all the models used in this study can be

found in Appendix 1, defining the vector l of l parameters

related to each model.

Computation of standard errors

In this study, we used and compared three different

methods of computation of SE in the MB approach, that are

described below, and called ’’Asympt’’, ’’Gallant’’ and

’’Post’’. These three methods have also been evaluated in

the context of BE studies by Loingeville et al. [10].

Asympt

AUC and Cmax are secondary PK parameters of the models,

i.e., functions derived from the PK model direct parame-

ters, and their treatment effects are also functions of the PK

model direct parameters and treatment effect:

h ¼ hðlPK ; hPKÞ. For instance, for all PK models with a

linear elimination, AUC1 ¼ FD

CL
, where D is the dose

administered, F the bioavailability of the drug and CL the

clearance, so the treatment effect on AUC1 can be simply

derived from the model as hAUC1 ¼ �hCL=F and

SEðhAUC1Þ ¼ SEðhCL=FÞ. In one compartment models,

there are analytical solutions for all secondary PK param-

eters, so the delta-method can be used to compute the

standard errors of treatment effects. In two-compartment

models, there is no analytical solution for Cmax, so we need

to compute hCmax
and its standard error by simulation. This

method consists of sampling parameters from a multi-

normal distribution with maximum likelihood estimates as

the mean vector and the inverse of the FIM as the variance-

covariance matrix, to simulate rich concentration profiles

for reference and test treatments (see Appendix 2 for a

more precise description of the method).

In this approach (which will be designated hereafter by

MB-TOST Asympt), the standard error computed in

NLMEM is also obtained with the FIM, using a linearisa-

tion of the PK model.

The reference distribution we use in MB-TOST Asympt

is a Gaussian distribution with zero mean and a standard

deviation equal to 1.

In the MB approach, an underestimation of the asymp-

totic standard errors of the treatment effects has been

observed which resulted in an inflation of type I error when

performing PK equivalence tests [8]. To address this,

several methods of correction of the asymptotic standard

errors have been suggested. Here, we use two methods of

correction, designated Gallant and Post, which were pro-

posed for equivalence tests by Loingeville et al. [10].

Gallant

The Gallant correction [13] (MB-TOST Gallant) aims to

take into account the number of parameters estimated

towards the available data to correct for the underestima-

tion of the standard errors of treatment effects. It involves

re-weighting the standard errors using the following

formula:

SEGallant ¼ SE

ffiffiffiffiffiffiffiffiffiffiffiffi

N

N � p

s

ð9Þ

with N the number of participants in the study and p the

number of fixed and covariate effects (here, we only have

the treatment as a covariate).

We also switch the reference distribution used in the

tests from a Gaussian distribution to a Student’s t distri-

bution with N � p degrees of freedom.

Post

This method (MB-TOST Post) uses posterior distribution

samples to compute the standard errors of treatment effects

[10].

Samples of population parameters are generated by

Bayesian inference, with the Hamiltonian Monte Carlo

algorithm. Maximum likelihood estimates obtained with

NLMEM are used as initial values. Uniform priors are used
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for the fixed and treatment effects and Half-Cauchy dis-

tributions with zero mean and a standard deviation equal to

1 for the random effects and residual error variance

parameters.

When the data are not informative enough given the

number of model parameters to estimate, these priors can

result in chains with low Neff and high R̂. When Neff � 400

and R̂� 1:05, log normal priors can be used for the fixed

effects, with mean equal to the maximum likelihood esti-

mation and a standard deviation equal to 0.5 and normal

priors with zero mean and standard deviation equal to 0.5

for the treatment effects as in [10].

The standard errors of treatment effects are computed

using samples from the posterior distribution.

The reference distribution, as for MB-TOST Asympt, is

a Gaussian distribution with zero mean and a standard

deviation equal to 1.

Case study: gantenerumab

Data

In our analysis, PK data was collected from two phase I

randomised clinical trials on healthy male or female sub-

jects between 40-70 years of age. These trials investigated

the relative bioavailability, tolerability, and dose-exposure

relationship of a high concentration liquid formulation

(HCLF G3) versus a lyophilised formulation (LyoF G2) of

gantenerumab, a monoclonal antibody used for the treat-

ment of Alzheimer’s disease. Hereafter we considered the

high concentration liquid formulation as the reference

formulation. Both formulations were administered by

subcutaneous injection. The first study (NCT01636531,

here called S1) was composed of five parallel arms with 24

participants each: three reference arms at different dose

levels (105, 225 and 300 mg) and two test arms (105 and

225 mg). In the second study (NCT02133937, here called

S2), composed of one reference arm of 25 participants and

one test arm of 23 participants, the dose tested was 225 mg.

PK sampling was performed in participants for up to 13

weeks using the following scheme: 0.25, 1, 2, 3, 4, 7, 13,

20, 42, 63, and 84 days post dose. There was one additional

sampling time in S2, one hour post dose (0.04 days). We

evaluated PK equivalence of the two formulations in terms

of Cmax and AUC1.

Methods

We performed separate analyses for each study and dose

tested, hereafter called S1-105, S1-225 and S2-225,

discarding the 300 mg arm of S1 as this study did not

include a test treatment arm at this dose.

On the original rich design data (11 sampling points per

subject), different structural PK models and residual error

models were fitted on the reference arms, and compared for

selection purposes. The structural PK models tested dif-

fered in terms of number of compartments (one or two),

order of absorption (zero or one) and presence of an

absorption delay. A description of all these models can be

found in Appendix 1. As we work on a drug administered

by sub-cutaneous injection, the parameters of the PK

models used are apparent parameters scaled by the

bioavailability of the drug F. Inter-individual variability

followed a log-normal distribution for all parameters.

Three types of error models were tested: additive, multi-

plicative and combined. Models were compared using the

Bayesian Information Criterion (BIC) computed by

Importance Sampling, combined with a second criteria of a

relative SE (RSE) below 50% for all parameters. Inter-

individual variability parameters that did not meet this

second criteria were removed. We also explored the rele-

vance of adding a correlation between the inter-individual

variabilities. Goodness of fit was assessed with Visual

Predictive Checks (VPC) and Normalised Prediction

Distribution Errors (NPDE) [14]. The selected PK model

was then fitted on both the reference and test arms and

treatment effects were estimated on all parameters. We

compared the results of MB-TOST, using only the Asympt

computation method for the SE, with results obtained with

NCA-TOST which usually performs well on such rich

designs.

MB analyses were also run on a sparse subset of the data

to explore the impact of the study design. The sparse subset

for each study contained 5 points per subject because it is

the maximum number of population parameters that we

needed to estimate, in order to make the model identifiable.

These points were obtained by optimisation of the design

with PFIM [15] (Population Fisher Information Matrix, an

algorithm for the evaluation and optimisation of designs),

using the model fitted on the rich reference and test arms.

Given that this manuscript focuses on the investigation of

MB methods as an alternative for sparse design, we tested

the PK equivalence only with MB-TOST, selecting again

the PK structural model on the reference arm. Three

methods to compute the SE were used: Asympt, Gallant

and Post.

Implementation

Analyses were run on R version 4.0.2. Parameters of the PK

models were estimated by maximising the likelihood using

the Stochastic Approximation of Expectation Maximisation

algorithm (SAEM) [16], in the saemix R package [17]
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(development version: https://github.com/saemixdevelop

ment/saemixextension). For NCA-TOST, AUC1 was com-

puted by extrapolation with the PKNCA R package [18]

version 0.9.4, using the observed concentration at tlast.

Sampling points for the sparse designs were chosen with the

PFIM [15] R package version 4.0 which enables to optimise

population design using the Fedorov–Wynn algorithm.

Results

Figure 1 shows spaghetti plots of the plasma concentra-

tions of gantenerumab versus time in log-scale, for the two

lower doses in each study.

The same model, a two-compartment model (V1=F:

apparent volume of the principal compartment, V2=F:

Fig. 1 Individual concentration

versus time profiles, in log

scale, in studies S1 and S2 per

dose (105 and 225 mg), in the

reference (HCLF G3) and test

(LyoF G2) treatment arms

(colour figure online)

Fig. 2 Geometric mean ratios (GMR) and their 90% confidence

intervals for AUC and Cmax, with NCA-TOST and MB-TOST Asympt

on observed data and with MB-TOST Asympt, Gallant and Post on

sparse data S1-105 denotes Study 1 with dose=105mg reference and

treatment arms and similarly for S1-225 and S2-225. Grey lines are

the limits of the null hypothesis interval, GMR ¼ 0:8 and
GMR ¼ 1:25, and the black line represents GMR ¼ 1. PK equiva-
lence is shown as green intervals while blue intervals highlight the
parameters and datasets for which PK equivalence was not
established
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apparent volume of the peripheral compartment, Q/F:

apparent inter-compartmental clearance) with linear

absorption (ka: absorption constant) and elimination (CL/

F: apparent clearance constant) with an absorption delay

(Tlag), was selected to be the best (among the considered

candidates) at describing the drug PK across studies/arms

(taken as three separate datasets). A treatment effect was

estimated on all 6 parameters (hTlag, hka, hCL=F , hV1=F , hQ=F ,
and hV2=F). On all datasets, based on BIC, the inter-indi-

vidual random effect on V2=F was withdrawn, and a cor-

relation between the inter-individual random effects of CL/

F and V1=F was estimated. On S1-105 and S1-225, the

error model was multiplicative. On S1-225, no inter-indi-

vidual random effect was kept on Q/F. On S2-225, the

error model was combined. The models selected were

therefore very similar. Table 4 in Appendix 3 gives the

parameter estimates obtained across datasets. As shown in

Fig. 2, illustrating the GMR and their confidence intervals

in the different datasets investigated, the different methods

gave consistent results: for S1-105, with both NCA-TOST

and MB-TOST Asympt, the 90% confidence interval of the

GMR of AUC and Cmax fell within [0.8; 1.25], but for S1-

225, equivalence could not be shown on Cmax with either of

the two methods. On S2-225, equivalence could not be

shown on Cmax with both methods. For AUC, equivalence

was shown using MB-TOST but not using NCA-TOST,

although the estimates were close (MB-TOST Asympt:

90% CI=[0.801;1.218], p-value=0.049; NCA-TOST: 90%

CI=[0.782;1.205], p-value=0.070). The data used to pro-

duce Fig. 2 are provided in Table 5 in Appendix 3.

The sparse design optimised using PFIM led to the

following sampling scheme: 0.25, 3, 7, 20, 84 days post

dose for S1-105, 0.25, 4, 20, 42, 84 days for S1-225, and

0.04, 4, 13, 42, 84 days post dose for S2-225. The selected

PK model was a one compartment model with linear

absorption and an absorption delay on the two S1 datasets,

and a one compartment model with zero order absorption

and no absorption delay on S2. Again, a treatment effect

was estimated on all apparent parameters in each case. On

all datasets, a correlation between the inter-individual

random effects of CL/F and V/F was selected. On S1-105

and S1-225, the error model selected was multiplicative.

On S2-225, the error model selected was combined. On S1-

225 and S2-225, no inter-individual random effect was kept

on Tlag. Table 4 in Appendix 3 gives the parameters esti-

mated on all these subsets. Although the PK models

selected on the sparse data were different from the ones

selected on the observed data, the results of the equivalence

study using MB-TOST were consistent, across all compu-

tation methods of SE, and comparable to those obtained on

rich design (Fig. 2).

Fig. 6 shows the VPC and Fig. 7 reports the normality

of residuals for S1-225 original and sparse design. These

goodness of fit plots have also been checked for S1-105

and S2 (not shown).

Simulation study

Methods

The real case study inspired our simulation settings with

rich and sparse design. We simulated parallel studies with

reference and test treatment arms, 24 participants per arm.

The vector of rich sampling times was taken from S1-225 :

0.25, 1, 2, 3, 4, 7, 13, 20, 42, 63, and 84 days post dose.

The PK model used to simulate data was the one

selected to describe the data of the reference arm of S1-

225, corresponding to a two-compartment model with

linear absorption and elimination. We removed the

absorption delay. Moreover, the simulation study was

performed prior to the availability of the data for publi-

cation. At the time, we only had access to scaled values of

the doses that were divided by 15. Table 1 gives a graph-

ical representation of the model simulated, and Table 2

gives the values of the fixed, random and error parameters

simulated that were taken from the fit of S1-225.

Different levels of treatment effects were simulated on

the apparent parameters, in order to get a treatment effect

on AUC and Cmax at the desired levels. To compute type I

errors, we simulated data with treatment effects on AUC

and Cmax at boundaries of the null hypothesis, log(0.8) and

log(1.25). These scenarios are denoted as H0:0:8 and H0:1:25,

respectively. To study the power, we simulated data with

treatment effects on AUC and Cmax at and close to 0

(log(0.9), log(1) and log(1.11)). These scenarios are

denoted as H1:0:9, H1:1 and H1:1:11. The treatment effects

were simulated on clearance (CL/F) and central volume

(V1=F), with no treatment effect on ka, Q/F and V2=F. In

practice, the treatment effect on CL/F was fixed (e.g.

hCL=F ¼ logð0:8Þ to get hAUC ¼ logð1:25Þ) and then the

treatment effect on V1/F was varied to obtain the desired

treatment effect on Cmax without impacting the treatment

effect on AUC. Table 3 gives the values of the different

levels of treatment effects simulated. For each of the 5

treatment effects, 1000 datasets were simulated.

On rich design simulations, we compared the perfor-

mances of NCA-TOST and MB-TOST Asympt in terms of

type I error and study power. We first fitted the simulated

structural PK model, estimating treatment effects on all 5

apparent parameters (referred to as model 2cpt_par). We

also explored the performance of MB-TOST Asympt when

modeling the treatment effects differently, i.e., two-
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compartment model with treatment effects estimated on the

absorption parameter only, i.e., ka, and an additional scale/

bioavailability parameter defined by F, with lF fixed to 1,

and xF estimated (called hereafter 2cpt_F). Table 1 rep-

resents the structure of both models fitted to the rich design

data.

In a second step, we also analysed sparse optimal design

subsets, using PFIM: we selected 5 time-points, assuming

2cpt_par was true. The same 5 time points were selected

Table 1 Graphical representation of the model simulated and the models fitted on the rich and sparse design simulations, with the corresponding

fixed and treatment effects and inter-individual variability parameters

The graphical representation 1cpt par corresponds to the third model presented in Appendix 1 (one compartment model with linear absorption

and elimination) and the three other graphical representations correspond to the fifth model presented in Appendix 1 (two compartment model

with linear absorption and elimination)

Table 2 Fixed coefficient values for fixed effects and standard devi-

ations of the inter-individual random effects and residual errors, under

which data were generated in the simulation study

lka (d) lCL=F (L.d�1) lV1=F (L) lQ=F (L.d�1) lV2=F (L)

0.45 0.04 0.96 0.03 0.34

xka (%) xCL=F (%) xV1=F (%) qCL=V1
rb (%)

57 26 36 0.8 15

Table 3 Treatment effects simulated on CL/F and V1=F and GMR

obtained on AUC and Cmax on each simulation scenario

Scenario Treatment effect on GMR on

CL/F V1=F AUC Cmax

H0:0:8 log(1.25) log(1.279) 0.8 0.8

H1:0:9 log(1.11) log(1.124) 0.9 0.9

H1:1 log(1) log(1) 1 1

H1:1:11 log(0.9) log(0.889) 1.11 1.11

H0:1:25 log(0.8) log(0.778) 1.25 1.25
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Fig. 3 Boxplots of estimation errors (EE) (top row) and standard

errors (SE) (bottom row) of the treatment effects estimated on AUC
and Cmax, on (a) rich design simulations with NCA-TOST and MB-

TOST Asympt, using the simulated PK structural model and

treatment effects estimated and all apparent parameters (2cpt_par)

or only on ka and F (2cpt_F), and (b) sparse design simulations with

MB-TOST Asympt using the simulated PK structural model (2cpt_-

par) or a misspecified one compartment model (1cpt_par), with

treatment effects estimated on all apparent parameters

Fig. 4 Type I errors for AUC and Cmax, under H0:0:8 and H0:1:25, on (a) rich design simulations with NCA-TOST and MB-TOST Asympt, and on

(b) sparse design simulations with MB-TOST Asympt, Gallant and Post
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regardless of the level of treatment effect considered: 0.25,

7, 20, 42, and 84 days post dose. On these sparse design

simulations, we challenged MB-TOST by exploring the

impact of a structural PK model misspecification: the

model used to fit the data was either 2cpt_par or a mis-

specified one-compartment model with treatment effects

estimated on all apparent parameters (1cpt_par). Table 1

represents the models fitted on sparse design simulations.

As on the case study, three methods of computation of the

SE were used on the sparse design simulations: Asympt,

Gallant and Post.

We also explored the relevance of a PK model selection

step, on the reference arm, on the BIC, prior to the

equivalence test, on rich and sparse design simulations

(two models to compare in each case). We observed the

impact of this approach in terms of type I error.

Estimation Errors (EE) and Standard Errors (SE) of

treatment effects were computed to evaluate the agreement

between the estimations of NLMEM and the real values

under which we simulated the data. Empirical SE were

computed as the standard deviation on the 1000 estimates

of each parameter in each scenario.

Implementation

A script detailing the analysis of one simulated dataset with

saemix and stan is available on Zenodo (https://doi.org/10.

5281/zenodo.6500556).

Results

Rich design

Figure 3a shows the boxplots of estimation errors (EE, top)

and standard errors (SE, bottom) of the treatment effects on

AUC and Cmax in the different simulation scenarios with a

rich design. We see that the treatment effects estimated

with 2cpt_par (the structure of which is similar to the one

of the model we simulated except treatment effects are

estimated on all parameters) showed no bias and good

precision : the EE were close to 0 and the estimated SE

were close to the empirical SE. As expected on this rich

design, NCA also provided good estimations of the treat-

ment effects.

Figure 4a shows the type I errors of the TOST for AUC

and Cmax using NCA or a MB approach on rich design. The

type I errors obtained with MB-TOST Asympt, using

2cpt_par, were similar to those obtained with NCA-TOST

and close to the nominal value of 5%.

When we modelled the treatment effects differently

from how they were simulated (i.e., using the misspecified

model 2cpt_F), the model misspecification led to unsatis-

factory results: the graph of EE (Fig. 3a Top) shows that

the treatment effect on AUC was underestimated. In the

scenario H0:0:8, the relative bias in the estimation of the

treatment effect on AUC is - 0.038, 0.016, and 0.016 for

2cpt_F, 2cpt_par, and NCA, respectively. In the scenario

H0:1:25, the relative bias in the estimation of the treatment

effect on AUC is - 0.104, - 0.021, and - 0.030 for

Fig. 5 Study power for AUC and Cmax, under H1:0:9, H1:1 and H1:1:11, on (a) rich design simulations with NCA-TOST and MB-TOST Asympt,

and on (b) sparse design simulations with MB-TOST Asympt, Gallant and Post
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2cpt_F, 2cpt_par, and NCA, respectively. The asymptotic

SE boxplots appear lower than the empirical SE, though

the relative root mean square errors (RMSE) are approxi-

mately - 0.35 for both 2cpt_par, 2cpt_F, and NCA,

respectively. Increasing bias led to inflated type I errors we

see in Fig. 4a.

A selection step using the BIC, prior to the test, on

reference data helped in correcting the bias. Indeed, the

difference of BIC between 2cpt_par and 2cpt_F ranged

from - 22.1 to 10.3 with a median of - 3.4. The simu-

lation model was found in 85% of the cases thanks to the

selection procedure. Consequently, the type I error of MB-

TOST was within the 95% prediction interval of the

nominal value of 0.05 for each simulated level of treatment

effect .

Study power for each study design, with NCA or MB-

TOST, was low due to the parallel design of the clinical

trial and the sample size (N=24 per arm, see Fig. 5).

Sparse design

On the simulations with sparse design, the treatment effects

were still well estimated using 2cpt_par (Fig. 3b). Fig-

ure 4b shows the type I errors on sparse simulations with

the MB approach where MB-TOST Asympt led to type I

errors close to the 95% prediction interval of the nominal

value of 0.05 with 2cpt_par.

When the structural PK model was misspecified, with

only one compartment for the drug to distribute to, we

observed a large inflation of the type I error on Cmax, which

we infer from Fig. 3b to be due to an underestimation of

both the treatment effect and its SE. Indeed, in the scenario

H0:0:8, the relative bias in the estimation of the treatment

effect on Cmax is - 0.079 and 0.037 for 1cpt_par and

2cpt_par, respectively. In the scenario H0:1:25, the relative

bias in the estimation of the treatment effect on Cmax is

- 0.139 and - 0.015 for 1cpt_par and 2cpt_par, respec-

tively. In the scenario H0:0:8, the relative RMSE in the

estimation of the treatment effect on Cmax is - 0.40 and

- 0.48 for 1cpt_par and 2cpt_par, respectively. In the

scenario H0:1:25, the relative RMSE in the estimation of the

treatment effect on Cmax is 0.40 and 0.47 for 1cpt_par and

2cpt_par, respectively.

MB-TOST Post gave results similar to MB-TOST

Asympt (Fig. 4b). MB-TOST Gallant corrected the infla-

tion of type I errors partly but could not correct for the bias

in the estimations.

The numbers used to produce Figs. 4 and 5 are provided

in Tables 6 and 7 in Appendix 3.

Here, a selection step using the BIC, prior to the test, to

choose the number of compartments of the structural PK

model on reference data, led to the selection of the simu-

lated structural model in most cases (at least 99.0%). The

difference of BIC between 2cpt_par and 1cpt_par ranged

from -69.1 to 6.0 with a median of - 20.8. This allowed

for control of type I error with MB-TOST.

We checked the assumption of normality of the test

statistics under the null with Asympt in both rich and

sparse design (data not shown).

Discussion

In this article, we compare the PK data gathered in par-

ticipants treated with two formulations of gantenerumab, a

monoclonal antibody for the treatment of Alzheimer’s

disease. The data used was originally collected to study the

relative bioavailability of these two formulations. In this

work, we use the data to compare the conventional NCA-

TOST to the MB-TOST approach for PK equivalence

testing. The data evaluated in our study is based on a

parallel design instead of the more conventional crossover

design in equivalence studies. The data is then used to

generate a simulation study to explore the impact of sparse

design and of model misspecification on the MB approach

to test for PK equivalence.

After finding a dose effect on the pooled data, we per-

formed the analyses separately on each study and dose

evaluated. In our evaluation of these PK BE studies, we

assume that the PK characteristics of the reference drug are

well-known and the change of treatment does not affect the

underlying PK structural model. In our simulations, we

assumed the residuals are independent of the treatment

covariate in the model. Also, we assumed that the study

population would be adequately randomised to avoid

imbalance between the treatment arms, so we did not

evaluate the impact of covariates in our MB approaches.

However, it is important to acknowledge that covariates

would likely have a greater impact on a PK BE study with

a parallel study design as compared to a crossover design.

Moreover, adding covariates that affect the PK would

decrease the between subject variability. Thus, future

research may be warranted in this area. Using the real data,

we evaluated the models selected to assess the assumptions

made on the residuals as part of model building process.

Also, the distributions of the MB-TOST statistics under the

null from our simulations were verified as recommended

by Shen et al. [12].

Using the original data, the NCA and MB-TOST

approaches generally provide consistent results with the

original rich design and the MB-TOST approach provides

consistent results after sparsifying the data.

Previous studies by Dubois et al. and Reijers et al. have

shown that MB approaches evaluating studies with a

crossover design [19] and a parallel design [20], respec-

tively, have performed as well as NCA methods for
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biosimilarity studies in the case of rich sampling. Dubois

et al. also explored MB approaches on a sparse version of

their data.

In the present study, we performed a simulation study to

explore the influence of the design and model specification

on the performance of the approaches and the relevance of

the model selection.

Here, as in the previous works [8, 10], we only con-

sidered average BE. With average BE, by contrast with

individual and population BE [21], we only take into

account the average treatment effect at population level.

Population BE would also take into account the variability

of this effect, and individual BE would take into account

the within-subject and subject-by-formulation variabilities.

In this parallel study, population BE could be done,

because variability is not correctly accounted for. Indi-

vidual BE requires replicated cross-over studies so this

approach would not be feasible on our data.

In the simulation study, when using the simulated

model, MB-TOST Asympt achieved controlled type I

errors that were similar to those obtained with NCA-TOST

on rich designs. These results complement previous studies

showing the efficiency of MB approaches for equivalence

tests [8]. In general, regulatory authorities recommend that

PK sampling includes 12–18 samples with at least three

sampling points after the peak [3, 4]. These recommenda-

tions present unique challenges for PK studies with sparse

designs. Indeed, the sparse design we extracted from the

full design did not comply with those requirements, con-

sequently we did not apply NCA-TOST to the datasets

simulated with the sparse design. In this setting, we used

MB-TOST as it relies on NLMEM which demonstrated

improved accuracy of the estimates in particular when

dealing with sparse designs [22]. However, Dubois et al.

[8] showed that MB tests can lead to an inflation of the type

I error because of an underestimation of the standard error

of treatment effects when it is estimated asymptotically on

sparse design with high variability. As such, Loingeville

et al. proposed and evaluated methods of correction of the

standard errors in MB studies, with satisfying results [10].

Notably, they compared the three methods we present here,

along with a bootstrap method, but considering one model

only (one-compartment) and without exploring the interest

of model selection. One of the correction methods for SE in

MB studies, Gallant, has been used outside the context of

BE. To illustrate, Bertrand et al. [23] considered various

methods of correcting the number of degrees of freedom in

a Student distribution and found that the Gallant correction

was a good compromise in NLMEM to handle the infor-

mation carried by the number of subjects. In this research,

the use of Gallant leads to the same reference distribution

in MB-TOST Gallant as in NCA-TOST, instead of the

Gaussian distribution used in MB-TOST Asympt and MB-

TOST Post.

Our results showed that MB-TOST Asympt was ade-

quate with sparse designs, with a slightly conservative type

I error for Cmax that was corrected using MB-TOST Post.

Here, the Post method was used only as an alternative to

produce SE. This algorithm is sensitive to the choice of

prior distribution, and this could be further investigated.

Nevertheless, the performance of the different MB methods

were very similar on the sparse design in our work.

Actually, we obtained asymptotic SE close to the empirical

SE which explains that the results of the tests were not

affected by the correction methods.

As the treatment effect on Cmax is not directly linked to

the parameters, we estimated it via simulations. We used an

approximation simulating the treatment effect on a profile

using the mean parameters; in Appendix 2, we provide a

more computationally intense method. In this example, the

first approximation gave equivalent results, but the second

approximation should be used in the presence of higher

variability.

A sparse design is commonly seen in PK BE studies for

ophthalmic drug products where only one sample of

aqueous humor is collected from the eye at a single time

point. Currently, FDA recommends a non-parametric

bootstrap NCA-based approach or a parametric method in

the BE assessment for these drug products [5, 6]. In our

assessment, we evaluated a study design with only five

sampling points, which were optimally selected using

PFIM. One limitation of this work is that we did not

evaluate the performance of the classical NCA-TOST

approach on sparse design as our focus was to evaluate the

MB-TOST approach. The limitation of few sampling

points per subject apply to both approaches as the NCA-

TOST approach may become less accurate when there are

few sample points whereas the MB-TOST approach may

select a wrong PK structure model-based. Indeed, in our

application study, the model parameter estimates varied

considerably between the rich and sparse design (see

Table 4 in Appendix 3).

The MB approach was previously evaluated only in

simulations assuming the true model to be known [8–10].

In our present study, we investigate this question by fitting

PK models different from the one used to simulate the data.

The two-compartment model with treatment effects esti-

mated on ka and F only, fitted on the rich designs, is the

same structural PK model as the simulated one but with an

alternative way of parameterising the treatment effects. It

has already been used in other studies as the simulated

model [11]. Here, it cannot properly fit the data as hF
reflects a treatment effect on all distribution and elimina-

tion parameters, which does not agree with the way we

simulated the data (i.e., without an effect on the peripheral
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clearance and volume). This explains why the effect on

AUC is underestimated. With biosimilars, differences in

the PK characteristics of a drug may be due to factors other

than differences in the absorption phase. In contrast, the

misspecified one-compartment model with treatment

effects estimated on all apparent parameters, fitted on

sparse designs, is a different PK structural model than the

simulated one. The choice of the number of compartments

is an essential step in structural PK model building. It is

very sensitive to the study design and is therefore highly

susceptible to misspecification. A less complex model

would more likely be selected on a real study in case of

non-optimised sparse design because of the lack of infor-

mation. The treatment effect on AUC is still quite well

estimated because it is a mean PK parameter, unlike Cmax

which is more sensitive to the misspecification because it is

driven by only one point.

Adding a step of model selection on the reference data

allowed to select the simulated model in most cases. When

the simulated model is not selected, the difference of BIC

between the models is very low. In this case, we assume

that the misspecified model can adequately describe the

data because the overall type I errors are controlled after

the selection step. Most importantly, we mimic a real

model development setting, where model selection is

always part of the PK analysis. The selection of the model

is based on data from the reference product only in order to

avoid a bias in the MBBE evaluation from using test pro-

duct data to fit the model used in the BE assessment.

However, it is possible that using the reference arm for the

model selection, and then for the assessment of a treatment

effect, could inflate the type I error of the BE assessment.

Therefore, this issue may warrant further investigation.

Moreover, this can cause a problem if the underlying PK

model is different in the test arm. Another limit of our

simulation study is that we only selected between two

different PK models. We could extend this approach to test

and compare more features of the PK structural (absorption

and elimination phases) and/or variability (random effects

and residual errors) models as we performed in the real

case study. We could also consider more complex data

exhibiting, for example, double peaks which can be very

challenging to evaluate, or that the magnitude of the vari-

ability depends on the treatment arm. It is likely that, in this

case, the simulated model would not be recovered as often,

potentially affecting the type I errors. However, the impact

may not be very large if there were more candidate models

in the selection step, as the models retained would have

adequate goodness of fit. Hence, the estimated AUC and

Cmax would all be acceptable despite the diversity of

underlying structural PK models. It would therefore be

interesting to further evaluate the impact of small model

variations on the model selection process and the ensuing

ability to estimate Cmax and AUC and the associated

treatment effects. Competing models could also be taken

into account via model averaging, which has been shown to

work at least as well as model selection in dose finding

studies using NLMEM [24, 25], as it allows to take into

account the uncertainty on the model.

The methods presented in our study may be applied to

PK similarity for large molecules (i.e., biologics) as well as

PK BE studies for small molecules. By re-scaling the time

frame, we could transpose our simulation settings and

results to a BE study framework. In both cases, the test

product or new drug contains the same active substance as

the reference product, for which the PK is likely well

characterised. To shorten the development phase of the

new drug, it is recommended to demonstrate that there is

no difference of treatment effect on the PK. In both cases,

MB approaches may serve as an alternative method to

NCA for sparse designs, and thus, are increasingly

explored [26]. However, it is acknowledged that the per-

formance of NCA and MB methods will drop in case of

large inter-individual variability in PK or deviations from

working assumptions.

Thus, we propose the use of MB-TOST when NCA-

TOST may not be feasible or reasonable, as MB approa-

ches are more informative and flexible than NCA.

This is consistent with recent proposals for MB

approaches to serve as an alternative BE approach in

generic drug development in situations for which conven-

tional BE approaches are not feasible [27].

Conclusions

Our novel MB BE approach appears to be a robust alter-

native to the conventional NCA approach provided that the

PK model is correctly specified and the test drug has the

same PK structural model as the reference drug. Our sim-

ulation studies show that the selection of the PK model is a

key step in the implementation of a model-based approach

for PK equivalence studies. However, MB methods rely on

numerous assumptions which need further investigation to

determine when MB could offer a viable alternative to

NCA in the context of PK BE studies.
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Appendix 1 : Pharmacokinetic models
equations and parameters

One compartment model with zero-order
absorption, linear elimination

CðtÞ ¼

D

Tk0CL

�

1� expð�CL

V1

tÞ
�

if t� Tk0

D

Tk0CL

�

1� expð�CL

V1

Tk0Þ
�

exp
�

� CL

V1

ðt � Tk0Þ
�

if t[ Tk0

8

>

>

<

>

>

:

with:

– C(t) the concentration at time t;

– D the dose administered;

– Tk0 the absorption duration;

– V1 the volume of distribution of the compartment;

– CL the clearance of the drug;

– k ¼ CL

V1

the elimination rate constant.

Here, there are l ¼ 3 parameters: l ¼ cðTk0;V1;CLÞ.
One compartment model with zero-order
absorption, linear elimination, with a lag time

CðtÞ ¼

0 if t� Tlag
D

Tk0CL

�

1� expð�CL

V1

ðt � TlagÞÞ
�

if Tlag\t� Tlag þ Tk0

D

Tk0CL

�

1� expð�CL

V1

Tk0Þ
�

exp
�

� CL

V1

ðt � Tlag � Tk0Þ
�

if t[ Tk0

8

>

>

>

>

<

>

>

>

>

:

The lag time Tlag adds a period of latency before the

concentration starts rising. It works the same for all

models.

Here, there are l ¼ 4 parameters:

l ¼ cðTk0;V1;CL; TlagÞ.

One compartment model with first-order
absorption, linear elimination

The model 1cpt par represented in Table 1 corresponds to

the equation:

CðtÞ ¼ D

V1

ka
CL
V1

� ka

�

expð�katÞ � expð�CL

V1

tÞ
�

ð10Þ

with ka the absorption constant rate.

Here, there are l ¼ 3 parameters: l ¼ cðka;V1;CLÞ.

Two compartment model with zero-order
absorption, linear elimination

CðtÞ ¼

D

Tk0

�A

a
ð1� expð�atÞÞ þ B

b
ð1� expð�btÞÞ

�

if t� Tk0

D

Tk0

�A

a
ð1� expð�aTk0ÞÞ expð�aðt � Tk0ÞÞ if t[ Tk0

þB

b
ð1� expð�bTk0ÞÞ expð�bðt � Tk0ÞÞ

�

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

with:

– A ¼ 1

V1

k21 � a
b� a

the first macro-constant;

– B ¼ 1

V1

k21 � b
a� b

the second macro-constant;

– a ¼ k21k

b
the first rate constant;

– b ¼ 1
2

�

k12 þ k21 þ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk12 þ k21 þ kÞ2 � 4k21k

q

�

the

second rate constant;

– k12 ¼
Q

V1

the distribution rate constant between the

principal and the peripheral compartment;

– k21 ¼
Q

V2

the distribution rate constant between the

peripheral and principal compartment;

– Q the inter-compartmental clearance;

– V1 the volume of distribution of the principal

compartment;

– V2 the volume of distribution of peripheral

compartment.

Here, there are l ¼ 5 parameters:

l ¼ cðTk0;V1;CL;V2;QÞ.

Two compartment model with first-order
absorption, linear elimination

The model used to generate the data in the simulation, and

the models 2cpt par and 2cpt F, are represented in

Table 1 and correspond to the equation:

CðtÞ ¼ D
�

A expð�atÞ þ B expð�btÞ � ðAþ BÞ expð�katÞ
�

ð11Þ

with:

– A ¼ ka

V1

k21 � a
ðka� aÞðb� aÞ;

– B ¼ ka

V1

k21 � b
ðka� bÞða� bÞ .

Here, there are l ¼ 5 parameters: l ¼ cðka;V1;CL;V2;QÞ.
Note: in the two compartment models under study here,

the clearance occurs only from the central compartment via

the clearance constant CL. The drug in the peripheral

compartment can only return to the central compartment

via the inter-compartmental clearance constant Q.

Parameterisation with F

Implicit in the equations above is the notion of bioavail-

ability, defined as the fraction of dose reaching the system.

Including bioavailability as an explicit parameter F corre-

sponds to replacing D with D� F in the equations above.

We can easily see from equations 10 and 11 that this is

equivalent to dividing both CL and V1 by F, so that the
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latter, when estimated from data collected after oral

absorption, are called apparent clearance and volume, and

sometimes denoted CL/F and V1=F to show their depen-

dency on F.

This leads to an alternative way of parameterising the

model, by including F in the model. Because F cannot be

identified without intravenous data, we fix the population

value at F=1 and only allow for some inter-individual

variability. We put a treatment effect only on the absorp-

tion parameters and F. Also, no correlation is allowed

between the random effects of volumes and clearances, as

these correlations are assumed to be carried by F. This

parameterisation allows to compute fewer treatment effect

coefficients.

Appendix 2: Method to compute
the treatment effect on Cmax and its SE

As part of a PK equivalence analysis, after fitting a

NLMEM, we want to compute treatment effects on the PK

parameters of interest and their SE when there is no explicit

relationship with the direct parameters of the model. We

simulate typical concentration versus time profiles, taking

into account the variance covariance matrix of the fixed

parameters.

Let cðl; hÞ be the vector of fixed effects and treatment

effects obtained with the NLMEM and M�1
F the asymptotic

variance-covariance matrix of the fixed effects and treat-

ment effects, obtained by solving the Fisher Information

Matrix of the model.

We simulate K parameter sets with a multivariate nor-

mal distribution.

cðlk; hkÞ�N ðcðl; hÞ;M�1
F Þ

with k=1,...,K, here K=1000.

For each parameter set, we compute a profile of con-

centrations with the population parameters and a short time

step, under reference treatment and under test treatment.

For example, with a two-compartment model with first

order absorption:

CR
k ¼ Cðtime; kak;CLk;V1k;Qk;V2kÞ

and

CT
k ¼Cðtime; kak ehka;k ;CLk ehCL;k ;V1k ehV1;k ;

Qk e
hQ;k ;V2k e

hV2;kÞ

Then we compute the treatment effect as the log ratio of the

PK parameter of interest under test and reference treat-

ment. For instance, with CR
max;k the maximum over the

vector CR
k and CT

max;k the maximum over the vector CT
k :

hCmax;k
¼ log

CT
max;k

CR
max;k

 !

We obtain a vector of K estimated treatment effects. We

estimate the global treatment effect as the mean of this

vector meanðhCmax;kÞ, and its standard error as the standard

deviation of this vector sdðhCmax;kÞ.
Consequently, the geometric mean ratio is computed as

the exponential of the point estimate of h computed,

GMRCmax ¼ expðmeanðhCmax;kÞÞ for instance.
We evaluate the performance of this method on the esti-

mated standard error of the treatment effect onAUC, because

it has an explicit formulation with direct parameters:

AUC ¼ D

CL

AUCR
k ¼ D

CLk

AUCT
k ¼ D

CLk ehCL;k

hAUCk
¼log

AUCT
k

AUCR
k

� �

¼ �hCL;k

Eð dsdðhAUCÞÞ ¼E½sdððhCL;kÞÞ� ¼ sdðhCLÞ

That shows that the method would give an estimate of the

standard error of hAUC consistent with the method based on

the explicit link with the direct parameters. However, we

compute hk as the treatment effect on a concentration

profile in the mean parameters. The definition of h is the

mean of the treatment effect on each individual profile. In

this example, the relationship between hAUC and hCL is

linear, so these two quantities are equal, but this does not

apply for Cmax. A more accurate simulation method would

take into account the interindividual variability by simu-

lating individual time-concentration profiles using the

variance-covariance matrix of the random effects. This

method would be much more computationally intensive

because simulating too few participants would lead to the

poor estimation of the variability of the treatment effect,

even more if the random variability of the direct parame-

ters influencing Cmax is high.

In this study, a comparison between the two approxi-

mations showed us that they gave similar results in terms of

estimation of h for Cmax and its SE: it seems its relationship

with the direct parameters treatment effect is close enough

to linear, so we decided to use it for its computational

conservativeness. It is likely that in a study with more

random effects, for instance if there is some intra-indi-

vidual variability, the second method would be preferable.

We also checked that this simulation method gave

results similar from the FIM-based method for hAUC , but
decided to keep the FIM-based method for hAUC because it

is less time-consuming.
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Appendix 3: Tables

Table 4 Parameters estimates and treatment effect coefficients (relative standard errors), given by saemix on all separate studies, with the original
and sparse design

Parameters (RSE, %)

S1-105 Rich S1-105 Sparse S1-225 Rich S1-225 Sparse S2-225 Rich S2-225 Sparse

lTk0 3.892 (7.6)

hTk0 0.076 (141.7)

lka (d) 0.327 (16.0) 0.844 (18.0) 0.469 (15.9) 2.947 (57.5) 0.361 (12.6)

hka 0.418 (54.0) 0.271 (110.7) 0.272 (82.6) -1.220 (50.9) 0.019 (953.5)

lCL=F (L.d�1) 0.632 (6.0) 0.622 (6.1) 0.632 (5.4) 0.621 (5.6) 0.681 (8.8) 0.698 (8.9)

hCL=F - 0.075 (113.7) - 0.052 (166.3) - 0.070 (108.6) - 0.032 (245.9) 0.013 (1013.4) - 0.003 (3806.2)

lV1=F (L) 11.611 (14.8) 21.858 (6.0) 14.698 (9.1) 19.709 (6.1) 15.615 (12.8) 23.181 (8.6)

hV1=F 0.200 (102.4) - 0.014 (622.2) 0.194 (64.3) 0.077 (113.6) 0.095 (200.2) 0.108 (114.4)

lQ=F (L.d�1) 1.882 (30.2) 0.415 (30.9) 0.601 (28.9)

hQ=F 0.421 (114.3) - 0.460 (140.4) 0.773 (51.1)

lV2=F (L) 9.343 (11.5) 4.828 (15.0) 6.234 (13.3)

hV2=F - 0.235 (90.9) - 0.444 (67.1) 0.126 (166.2)

lTlag (d) 0.062 (26.5) 0.129 (13.0) 0.037 (31.8) 0.208 (11.1) 0.050 (23.9)

hTlag - 0.744 (68.9) - 0.209 (149.1) - 0.079 (608.5) - 0.974 (37.5) - 0.529 (69.7)

xTk0 0.226 (23.4)

xka 0.492 (13.1) 0.548 (15.1) 0.659 (11.2) 0.807 (11.0) 0.448 (11.9)

xCL=F 0.287 (10.7) 0.283 (11.6) 0.257 (10.7) 0.261 (11.3) 0.438 (10.4) 0.441 (10.4)

xV1=F 0.430 (12.2) 0.255 (13.1) 0.328 (11.4) 0.268 (13.0) 0.526 (10.8) 0.419 (10.7)

xQ=F 1.129 (17.0) 0.412 (41.0)

xTlag 0.926 (19.8) 0.258 (42.6) 0.869 (25.0) 1.005 (14.8)

qCL=V1
0.694 (34.1) 0.843 (31.5) 0.762 (30.5) 0.844 (31.3) 0.931 (26.7) 0.940 (26.3)

ra 0.064 (11.8) 0.048 (14.6)

rb 0.168 (3.9) 0.194 (7.4) 0.153 (3.7) 0.171 (7.2) 0.112 (4.9) 0.099 (9.5)
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Table 5 Gantenerumab

analysis—Geometric mean

ratios (GMR), their 90%

confidence interval and the p�
value of the test, for AUC and

Cmax, with NCA-TOST and

MB-TOST Asympt on original

data and with MB-TOST

Asympt, Gallant and Post on

sparse data

Dataset Design Method PK parameter GMR 90% CI p

S1-105 Rich NCA-TOST AUC 1.068 [0.924 ; 1.236] 0.038

Cmax 0.997 [0.836 ; 1.189] 0.021

MB-TOST Asympt AUC 1.077 [0.937 ; 1.239] 0.040

Cmax 0.972 [0.809 ; 1.167] 0.040

Sparse MB-TOST Asympt AUC 1.054 [0.913 ; 1.215] 0.025

Cmax 1.039 [0.907 ; 1.189] 0.012

MB-TOST Gallant AUC 1.054 [0.905 ; 1.227] 0.033

Cmax 1.039 [0.899 ; 1.200] 0.018

MB-TOST Post AUC 1.054 [0.902 ; 1.231] 0.035

Cmax 1.039 [0.898 ; 1.201] 0.018

S1-225 Rich NCA-TOST AUC 1.080 [0.947 ; 1.231] 0.034

Cmax 0.914 [0.771 ; 1.085] 0.098

MB-TOST Asympt AUC 1.073 [0.946 ; 1.216] 0.023

Cmax 0.925 [0.787 ; 1.087] 0.070

Sparse MB-TOST Asympt AUC 1.033 [0.906 ; 1.177] 0.008

Cmax 0.867 [0.749 ; 1.003] 0.184

MB-TOST Gallant AUC 1.033 [0.892 ; 1.196] 0.017

Cmax 0.867 [0.736 ; 1.021] 0.208

MB-TOST Post AUC 1.033 [0.904 ; 1.180] 0.009

Cmax 0.867 [0.749 ; 1.003] 0.184

S2-225 Rich NCA-TOST AUC 0.971 [0.782 ; 1.205] 0.070

Cmax 0.858 [0.674 ; 1.093] 0.314

MB-TOST Asympt AUC 0.988 [0.801 ; 1.218] 0.049

Cmax 0.863 [0.695 ; 1.071] 0.284

Sparse MB-TOST Asympt AUC 1.003 [0.812 ; 1.240] 0.044

Cmax 0.899 [0.734 ; 1.102] 0.171

MB-TOST Gallant AUC 1.003 [0.796 ; 1.265] 0.059

Cmax 0.899 [0.720 ; 1.123] 0.190

MB-TOST Post AUC 1.003 [0.807 ; 1.247] 0.048

Cmax 0.899 [0.728 ; 1.111] 0.182

Significant p-values are highlighted in bold
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Table 7 Study power to detect a treatment effect on AUC and Cmax,

under H1:0:9, H1:1 and H1:1:11, on rich (R) design simulations with

NCA-TOST and MB-TOST Asympt, and on sparse (S) design sim-

ulations with MB-TOST Asympt, Gallant and Post

Power

AUC Cmax

R0:9 NCA-TOST 0.418 0.231

2cpt_par MB-TOST Asympt 0.427 0.256

2cpt_F MB-TOST Asympt 0.490 0.377

R1 NCA-TOST 0.770 0.401

2cpt_par MB-TOST Asympt 0.795 0.407

2cpt_F MB-TOST Asympt 0.823 0647

R1:11 NCA-TOST 0.470 0.251

2cpt_par MB-TOST Asympt 0.491 0.269

2cpt_F MB-TOST Asympt 0.574 0.409

S0:9 2cpt_par MB-TOST Asympt 0.374 0.206

MB-TOST Gallant 0.329 0.144

MB-TOST Post 0.409 0.251

1cpt_par MB-TOST Asympt 0.418 0.424

MB-TOST Gallant 0.386 0.387

MB-TOST Post 0.4399 0.411

S1 2cpt_par MB-TOST Asympt 0.714 0.320

MB-TOST Gallant 0.667 0.225

MB-TOST Post 0.739 0.384

1cpt_par MB-TOST Asympt 0.780 0.683

MB-TOST Gallant 0.721 0.601

MB-TOST Post 0.762 0.667

S1:11 2cpt_par MB-TOST Asympt 0.454 0.201

MB-TOST Gallant 0.402 0.128

MB-TOST Post 0.4731 0.255

1cpt_par MB-TOST Asympt 0.470 0.482

MB-TOST Gallant 0.437 0.439

MB-TOST Post 0.450 0.467

Table 6 Type I errors for AUC and Cmax, under H0:0:8 and H0:1:25, on

rich (R) design simulations with NCA-TOST and MB-TOST Asympt,

and on sparse (S) design simulations with MB-TOST Asympt, Gallant

and Post

Type I error

AUC Cmax

R0:8 NCA-TOST 0.05 0.037

2cpt_par MB-TOST Asympt 0.054 0.036

2cpt_F MB-TOST Asympt 0.082 0.066

R1:25 NCA-TOST 0.071 0.056

2cpt_par MB-TOST Asympt 0.077 0.059

2cpt_F MB-TOST Asympt 0.123 0.074

S0:8 2cpt_par MB-TOST Asympt 0.039 0.027

MB-TOST Gallant 0.032 0.019

MB-TOST Post 0.054 0.038

1cpt_par MB-TOST Asympt 0.049 0.081

MB-TOST Gallant 0.040 0.070

MB-TOST Post 0.041 0.077

S1:25 2cpt_par MB-TOST Asympt 0.064 0.042

MB-TOST Gallant 0.055 0.034

MB-TOST Post 0.069 0.058

1cpt_par MB-TOST Asympt 0.065 0.126

MB-TOST Gallant 0.054 0.111

MB-TOST Post 0.055 0.123
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Appendix 4: Figures

Fig. 6 Visual predictive check for the S1-225 study reference (left) and test (right) arm, on original (top) and sparse (bottom) design. Note: the

predicted 5%, 50% and 95% percentiles are shown as dashed lines; the observed percentiles as solid lines (colour figure online)

Fig. 7 Distributions of normalised predictive distribution errors (NPDE) for the S1-225 study on original (left) and sparse (right) design
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Definition of Visual Predictive Checks (from Monolix

documentation) :

The VPC (Visual Predictive Check) offers an intuitive

assessment of misspecification in structural, variability,

and covariate models. The principle is to assess graphically

whether simulations from a model of interest are able to

reproduce both the central trend and variability in the

observed data, when plotted versus an independent variable

(typically time). It summarises in the same graphic the

structural and statistical models by computing several

quantiles of the empirical distribution of the data after

having regrouped them into bins over successive intervals.

More precisely, the goal is to compare the two following

elements:

Empirical percentiles: percentiles of the observed data,

calculated either for each unique value of time, or pooled

by adjacent time intervals (bins).

Theoretical percentiles: percentiles of simulated data are

computed from multiple Monte Carlo simulations with the

model of interest and the design structure of the original

dataset (i.e., dosing, timing, and number of samples). For

each simulation, the same percentiles are computed across

the same bins as for empirical percentiles. Prediction

intervals for each percentile are then estimated across all

simulated data and displayed as colored areas.

If the model is correct, the observed percentiles should

be close to the predicted percentiles and remain within the

corresponding prediction intervals.

Definition of normalised prediction distributions errors

(NPDE) from Comets et al. [28]:

The cumulative distribution function (cdf) of the pre-

dictive distribution of the concentrations observed can be

computed using Monte–Carlo simulations.

We define the prediction discrepancies (pd) as the value

of this cdf at each observation.

pd are computed as the percentiles of each observation

in the empirical distribution of the simulations.

By construction, pd are expected to follow Uð0; 1Þ, but
only in the case of one observation per subject; within-

subject correlations introduced when multiple observations

are available for each subject induce an increase in the type

I error of the test. To correct for this correlation, we

compute the empirical mean and empirical variance-co-

variance matrix over the simulations.

Decorrelation is performed simultaneously for simulated

data and for observed data. Decorrelated pd are then

obtained using the same formula but with the decorrelated

data, and we call the resulting variables prediction distri-

bution errors (pde).

If the number of Monte-Carlo simulations is large

enough, the distribution of the prediction distribution errors

should follow a uniform distribution over the interval [0,1]

by construction of the cdf. Normalised prediction

distribution errors can then be obtained using the inverse

function of the normal cumulative density function. By

construction, NPDE follow the N ð0; 1Þ distribution with-

out any approximation and are uncorrelated within an

individual.
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lence tests based on individual estimates using non-compart-

mental or model-based analyses: evaluation of estimates of

sample means and type I error for different designs. Pharm Res

27:92–104. https://doi.org/10.1007/s11095-009-9980-5

8. Dubois A, Lavielle M, Gsteiger S, Pigeolet E, Mentré F (2011)
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