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Abstract
Determining and understanding the target-site exposure in clinical studies remains challenging. This is especially true for

oral drug inhalation for local treatment, where the target-site is identical to the site of drug absorption, i.e., the lungs.

Modeling and simulation based on clinical pharmacokinetic (PK) data may be a valid approach to infer the pulmonary fate

of orally inhaled drugs, even without local measurements. In this work, a simulation-estimation study was systematically

applied to investigate five published model structures for pulmonary drug absorption. First, these models were compared

for structural identifiability and how choosing an inadequate model impacts the inference on pulmonary exposure. Second,

in the context of the population approach both sequential and simultaneous parameter estimation methods after intravenous

administration and oral inhalation were evaluated with typically applied models. With an adequate model structure and a

well-characterized systemic PK after intravenous dosing, the error in inferring pulmonary exposure and retention times was

less than twofold in the majority of evaluations. Whether a sequential or simultaneous parameter estimation was applied

did not affect the inferred pulmonary PK to a relevant degree. One scenario in the population PK analysis demonstrated

biased pulmonary exposure metrics caused by inadequate estimation of systemic PK parameters. Overall, it was

demonstrated that empirical modeling of intravenous and inhalation PK datasets provided robust estimates regarding

accuracy and bias for the pulmonary exposure and pulmonary retention, even in presence of the high variability after drug

inhalation.
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Introduction

One key assumption of pharmacokinetic/pharmacodynamic

(PK/PD) analyses is that the local drug concentration at the

target site, i.e. the target organ, is driving the efficacy.

While determining the local tissue PK might be possible in

preclinical experiments [1], adequate determination of the

local concentration–time profile in clinical studies is

challenging. While there are methods to determine tissue

concentrations in humans (e.g. microdialysis [2] or imag-

ing techniques [3]), data based on these methods is rarely

available due to the related complexity [2, 4]. Furthermore,

more invasive methods may be difficult to justify in routine

clinical studies. Therefore, plasma concentration–time

profiles are often considered as a surrogate in PK/PD

analyses assuming to provide an adequate representation

also for the tissue concentrations [5].

For inhaled drugs, high local tissue concentrations and

consequently high pulmonary efficacy can be achieved

even before drug absorption into the systemic circulation.

This also means that directly considering the plasma con-

centration as a surrogate for pulmonary tissue concentra-

tion and pulmonary efficacy might be of limited value.

Instead, it is essential to make best use of the plasma PK

data to indirectly infer the local pulmonary PK, which can

be considered a better surrogate for pulmonary efficacy. In

theory, deconvoluting the plasma PK profiles by numerical

deconvolution methods (e.g., point-area deconvolution)

allows to infer on pulmonary PK [6, 7]. However, these

traditional deconvolution methods often assume linear
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systemic disposition kinetics and / or a single linear (pul-

monary) absorption process, which might often not hold

true [8]. Instead, model-based deconvolutions can account

for these complexities and (pulmonary) absorption models

of varying complexity were applied to infer on pulmonary

exposure and residence time after oral drug inhalation,

which are relevant for the extent and duration of efficacy,

respectively [9–11]. These two PK characteristics can

subsequently facilitate the comparison between different

drugs or inform whether an inhaled drug qualifies for twice

daily or even once daily dosing. To perform a (model-

based) deconvolution, it is essential to have both data after

drug inhalation and after intravenous (i.v.) dosing [12].

However, even having both datasets available, different

model structures as well as different approaches combining

i.v. and inhalation data in a model building process were

published [9, 10, 12–16]. So far, however, a systematic

comparison of all available models and whether sequential

or simultaneous parameter estimation is best for inhalation

PK models is missing. Potentially even more important, it

was also never quantitatively evaluated if un-biased and

precise inference of the extent of pulmonary exposure and

retention time can be achieved based on realistic clinical

datasets.

This modeling and simulation study aims at evaluating

the overall suitability of PK modeling for inferring the

extent and duration of pulmonary exposure based on

plasma PK data and, if suitable, identify the best modeling

strategy for this purpose. The focus lays on (1) to evaluate

the impact of the choice of a pulmonary absorption model

on inferring pulmonary exposure, and (2) to compare

whether sequential or simultaneous parameter estimation

based on i.v. and inhalation PK is meaningful, and (3) to

quantify bias and imprecision of the different methods

when inferring on extent and duration of pulmonary

exposure. To this end, different model structures and

modelling strategies were compared based on previously

applied clinical studies for inhaled drug programs. Ulti-

mately, this analysis gives insights into what modelling

based on clinical data can provide and what the limitations

might be.

Methods

Investigated pulmonary absorption models

Models with structurally different pulmonary absorption

components were built and parameterized based on the

respective publications [9, 12, 14–16], and are shown in

Fig. 1. All parameter values used in this study can be found

in the supporting information (Supplementary Material

S2.2, Table S2). Concomitant absorption of swallowed

drug via the gastro-intestinal tract was not accounted for to

reduce unnecessary complexity, as this absorption process

can be prevented by ingesting active charcoal parallel to

drug inhalation in clinical studies [17, 18].

Evaluation of the structural identifiability
of pulmonary absorption models

A simulation-estimation analysis with models I (a single

absorption process), II (two parallel absorption processes),

IIIa (three parallel absorption processes), Transit, and NaL

(single absorption process with parallel non-absorptive

loss) was performed in R (Version 3.2.2) utilizing the

package ‘‘deSolve’’ (Version 1.28) [19, 20]. All of these

structural models were used to simulate plasma and lung

concentration–time profiles over 48 h, resulting in five

datasets (one for each model in Fig. 1, except for Model

IIIb). To avoid distortion in the identifiability analysis,

these profiles were simulated without residual error, which

however was included in the second analysis to evaluate

the performance of pulmonary absorption models in a

clinical trial setting (see below). A lung volume of 0.84 L

[21] was assumed to convert unabsorbed amounts to pul-

monary concentrations. The models applied in this step will

be referred to as the ‘‘Simulation Model’’. A very rich

sampling scheme with concentration data simulated every

0.01 h was selected to rule out the impact of sparse sam-

pling designs and thereby to focus on the structural iden-

tifiability between the different models. Afterwards, each

of the five models was applied for parameter estimation

(‘‘estimation model’’) based on the simulated plasma con-

centration data resulting from each of the Simulation

Models. Thus, in total 25 estimation analyses were per-

formed. Since the focus of this part of the work laid on the

comparison of pulmonary absorption models, the systemic

disposition parameters of the Estimation Models were fixed

to the published values and only the pulmonary PK

parameters were estimated. If identifiability of the

absorption parameters was given based on a non-singular

Fisher information matrix and non-infinite standard errors,

full plasma and inferred lung concentration–time profiles

were generated with the newly estimated parameter values.

Both these predictions were compared to the before sim-

ulated plasma and lung concentration–time profiles. For

each Estimation Model, ten retries were performed to avoid

convergence to local minima (Supplementary Material

S2.2). Only when plasma equivalence was given (see

‘‘evaluation criteria’’ below), the model-based simulations

were further compared with regard to the pulmonary

exposure. A schematic representation of this workflow can

be found in Fig. 2.

136 Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:135–149

123



Link between empiric and mechanistic PK
modeling

All empirical models described here consider the pul-

monary drug absorption one-directionally, i.e. no back flow

from the systemic disposition to the lung is accounted for.

To evaluate the potential bias caused by this simplification,

all models were additionally fitted to data generated using a

semi-mechanistic PK model for salmeterol [1] (Supple-

mentary Material S2.3). This semi-mechanistic model was

previously developed with both plasma and lung concen-

tration data and accounted for back-flow from the systemic

disposition to the lung. Thus, five additional simulation-

estimation analysis were performed, finally resulting in 30

different combinations of the Simulation and Estimation

Models.

Performance of pulmonary absorption models
in a clinical trial setting

Models I-III cannot be differentiated based on prior

mechanistic understanding of the pulmonary PK. There-

fore, these models are often discriminated solely based on

their description of the available (plasma and urine) PK

data [9, 15]. To explore the performance of these models to

infer extent and duration of pulmonary exposure based on

real-life clinical datasets, population PK analyses were

carried out in NONMEM� Version 7.4.3 (ICON devel-

opment solutions, Ellicot City, USA). Here, the chosen

Simulation Models (‘Models II’ and ‘IIIa’) were repro-

duced in NONMEM� with the model structure, parameter

values for population as well as all variability estimates,

number of subjects, and sampling schemes taken directly

from the respective publications (Supplementary Material

S2.2, Table S2) [9, 15, 22]. As these models were built on

some of the richest datasets for PK after both i.v. admin-

istration and inhalation published to date, these examples

were taken as best-case examples to investigate how

meaningful and accurate model-based deconvolution

methods can be. Slight adjustments were made to the

stochastic part of the original models, i.e., only up to four

inter-individual and/or inter-occasional variabilities were

included. This was done to prevent selecting a model

structure over another model structure only due to a dif-

ferent number of included variability parameters. The

residual variability was assumed to be proportional, oral

absorption processes for ‘Model II’, and the inter-

Fig. 1 Structural models for pulmonary absorption. Structure and

parameterization were based on published models [6, 7, 9–12]. CMT
compartment, FPul pulmonary bioavailability or designated lung dose,

Fslow/med/fast fraction of the lung dose slowly/intermediately/fast

absorbed, kslow/med/fast slow/intermediate/fast absorption rate con-

stants, ktrans transit rate constant, knal non-absorptive loss rate constant
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individual variability on the first proportionality factor

(PF1) identified for ‘Model IIIa’ were not included. A

summary of the dataset characteristics as provided in the

respective publications, including the modifications to the

stochastic models made in this study, can be found in

Table 1.

The Simulation Models were used to generate PK

datasets after i.v. administration and oral inhalation, this

time including residual, inter-individual, and inter-occasion

variability. Analogous to the first analysis, related models

(parallel absorption models that were proven to be

structurally identifiable, see Table 1) were fitted to the

simulated plasma concentration–time datasets. The Esti-

mation Models were chosen to evaluate the influence of

capturing the right number of absorption processes on the

extent and duration of exposure (AUC0-inf for both plasma

and lung and tC24h,lung). These PK metrics were calculated

based on the population parameters. Furthermore, the

influence of the systemic model on the same metrics was

investigated in the analysis with ‘Model II’ as the Simu-

lation model.

Fig. 2 Schematic of structural identifiability evaluation workflow. PK pharmacokinetics, GMFE geometric mean fold error of the plasma PK

profile simulated with the estimation models
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As the i.v. and inhalation study arms for ‘Model II’

(AZD5423) were conducted in the same individuals, the

generated PK data from this model was used to compare

different modeling approaches: These were.

(i) sequential modeling of i.v. and inhalation data,

with either fixed systemic population PK param-

eters as well as their variance (PPP, theta and

omega values estimated in a first step based on i.v.

data),

(ii) fixed individual systemic PK parameters (IPP,

fixed empiric Bayesian estimates), and

(iii) simultaneous estimation of both systemic and

pulmonary PK parameters based on the combined

dataset of i.v. and inhalation data (ALL) [23].

Estimation of parameters based on PK datasets gener-

ated with ‘Model IIIa’ was done sequentially, using the

PPP approach. Here, the individual PK parameters (i.e., the

Empirical Bayes Estimates) of the four compartmental

systemic model in the inhalation trial could vary within the

pre-estimated inter-individual variability. To evaluate the

probability of choosing the ‘‘right’’ model, model fits to the

same dataset were compared with regard to the Akaike

Information Criterion (AIC, [24]).

For all population analyses, the parameter estimation

was performed using first-order conditional estimation

(FOCE) with interaction. If the estimation step failed, up to

two retries with varying initials were performed. The

simulation-estimation process was repeated 500 times for

each analysis.

Non-compartmental analysis of simulated
datasets

In addition, or instead of analyzing clinical PK data with

population approaches, non-compartmental analyses

(NCA) [25] are often applied and can be used to infer

absorption kinetics. Therefore, model-based predictions

were compared to results from the NCA. To infer the

pulmonary AUC0-inf, the equation for AUC calculation in

plasma (Eq. 1) was adjusted to the lung, inserting FPul as

the bioavailability (F) and the pulmonary absorption rate ka
as the elimination rate from the lung:

AUC0�Inf ¼
Dose � F

CL
ð1Þ

AUC0�inf ;lung ¼
Doseinhaled � FPul

ka � Vlung
ð2Þ

VLung was set to 0.840 L based on literature values for

lung weight [21]. A more detailed description of the NCA

can be found in the supplementary material (Supplemen-

tary Material, S4). The above-mentioned metrics were

calculated separately for each individual. Mean values

were used for comparison to model-predicted population

values.

Evaluation criteria

Evaluation of the structural identifiability of pulmonary
absorption models

Pulmonary absorption models were deemed equivalent

with regard to the systemic exposure if the newly predicted

Table 1 Data summary for the two simulation models used in the population PK approach

Population analysis I Population analysis II

Simulation model II (AZD5423) IIIa (Olodaterol)

Number of subjects

Inhalation (intravenous)

13 (13) 88 (48)

Inhalation and intravenous PK in the same subjects? Yes No

Urine data No Yes

Type of trial Single dose (cross-over intravenous and

inhalation)

Single dose (intravenous)

Single and multiple dose

(inhalation)

Systemic PK model Four compartment model Four compartment model

Inter-individual variability Fpul, CL, V1, Q2 CL, V1, Q2

Inter-occasion variability – Fpul

Estimation models II, I

Three or four compartment systemic model

IIIa, II, IIIb

CL systemic clearance, V1 central volume of distribution, Q2 intercompartmental clearance to the second systemic compartment
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plasma concentration–time profiles deviated from the

originally simulated PK profiles by less than five percent,

based on the geometric mean fold error (GMFE) compar-

ing both profiles [26]. The GMFE was considered the best

metric for this comparison, as it simultaneously compares

the full plasma concentration–time profiles and equally

weights under- and overpredicted concentrations:

GMFE ¼ 10

P
log10

Predi
Obsi

� ��
�
�

�
�
�

N ð3Þ

with Obsi denoting the ith plasma concentration simulated

by the original Simulation Model, and Predi being the ith

plasma concentration predicted by the Estimation Model. N

denotes the total number of simulated data points.

Two different pulmonary exposure metrics were con-

sidered to determine the overall pulmonary exposure (area

under the lung concentration–time curve, AUC0-inf,lung) and

the retention in the lungs (time to reach the before simu-

lated pulmonary concentration after 24 h, tC24h,lung). The

tC24h,lung was considered to evaluate the duration of expo-

sure instead of the more common terminal (pulmonary)

elimination half-life, due to the fact that the terminal pul-

monary half-life would be mainly dependent on the slowest

absorption rate, whereas tC24h,lung is a compromise by all

(up to three) parallel pulmonary absorption processes.

Furthermore, we are not aware of any inhaled drugs, for

which the dosing interval is longer than 24 h so that we

consider tC24h,lung the better surrogate for this analysis than

the terminal half-life. Adequate inference of lung exposure

was considered for both metrics if the reevaluated value

was within 80–125% of the originally simulated values,

analogous to commonly applied bioequivalence criteria

[27].

Performance of pulmonary absorption models in a clinical
trial setting

For the population PK analyses, the acceptance criterion

was 80–125% for AUC0-inf,plasma. As the pulmonary PK

metrics were inferred rather than measured, the related

predictions of the pulmonary exposure were considered

acceptable if predictions were within twofold of the true

value for both the extent and duration of pulmonary

exposure.

The accuracy of the exposure metrics was further

evaluated based on the respective distribution (median,

2.5th and 97.5th percentiles of the predicted metrics).

Furthermore, the relative bias of the mean (%Bias) was

evaluated as follows, inserting the newly predicted and

originally simulated exposure metrics as Pred and Obs,

respectively, and the total number of predicted values as N:

%Bias ¼ 1

N
�
X ðPred � ObsÞ

Obs
� 100 ð4Þ

Results

Evaluation of the structural identifiability
of pulmonary absorption models

The results of the evaluation of structural identifiability can

be grouped into four different scenarios regarding the

predefined criteria (deviation of plasma profiles by less

than 5%, and pulmonary AUC0-inf,lung and tC24h,lung within

80–125% of the simulated values), as shown in Table 2.

Scenario (1) both plasma and lung exposure were described

adequately; Scenario (2) plasma exposure was described

adequately, but pulmonary exposure was not; Scenario (3)

plasma concentration–time profiles were not captured well;

and Scenario (4) the parameters were not identifiable

(model not structurally identifiable). Only scenario 2 would

result in inferring wrong pulmonary exposure without the

possibility to discriminate the models based on plasma

concentration data. One example for scenario 2 is the

simulation with ‘Model NaL’ and re-estimation with

‘Model I’, as shown in Fig. 3. In this case, choosing the

‘wrong’ pulmonary absorption model would result in a

49.0-fold error in pulmonary AUC. Even though this might

be expected, the analyses still underlined that these models

can theoretically well describe clinical plasma PK data but

would result in completely different pulmonary PK profiles

(compare Fig. 3).

Examples for Scenarios 1 and 3 can be found in the

supplementary material (Supplementary Material S3,

Fig. S3). Plasma PK was described well in most simula-

tion-estimation evaluations, except for simulations with

‘Model IIIa’. As expected, non-identifiable parameters

were generally encountered when trying to fit more com-

plex models (with more parameters) to data generated with

simpler models, e.g. estimation with ‘Model II’ and ‘IIIa’

on simulated data of models ‘I’, ‘Transit’, and ‘NaL’.

‘Model NaL’ was unidentifiable if used for re-estimation,

due to the correlation between FPul and kNaL.

Link between empiric and mechanistic PK
modeling

Of all models, only ‘Model II’ allowed adequately inferring

on pulmonary exposure that was simulated with the semi-

mechanistic model. The omission of redistribution of drug

from plasma to the lung did not impact on inferred pul-

monary exposure, showing a deviation from the simulation
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of\ 1% for both extent and duration of pulmonary expo-

sure (Supplementary Material S2.3, Fig. S2).

Performance of pulmonary absorption models
in a clinical trial setting

Simulation with ‘Model II’

Most of the Estimation Models used in the population

simulation-estimation study involving ‘Model II’, with the

exception of estimation with ‘Model I’ using the PPP

method, were able to describe both plasma and pulmonary

AUC0-inf adequately, with over 90% of the runs within

80–125% of the true value. However, when comparing the

retention in the lung, as determined by tC24h,lung, both

Estimation Models including ‘Model I’ for pulmonary

absorption deviated substantially from the true value with a

bias of -60% to -50% (see Table 3). Applying the correct

model resulted in all but one of the evaluations (using the

PPP method) within twofold of the true AUC0-inf,lung. For

the tC24h,lung, 100% %were within twofold. In all cases, the

true model (four compartment systemic model and/or

‘Model II’) performed best with regard to the AIC. When

using the PPP method, the estimates returned by the true

model were slightly less precise in comparison to the other

model structures with a median and 2.5th and 97.5th per-

centiles of 101% (62.8%, 147%) of the true value for

AUC0-inf,lung (see Table 3). Figure 4 shows an exemplary

distribution of these exposure metrics.

Choosing a three compartmental systemic disposition

model instead of four compartments resulted in only

slightly worse predictions in this analysis. However, the

combination of a three-compartment systemic model with

‘Model II’ for pulmonary absorption converged in only

Table 2 Description of systemic and pulmonary exposure

Estimation Model
Model I Transit NaL II IIIa

noitalu
miS

M
od

el

I 1 1 4 1 4
Transit 2 1 4 4 4
NaL 2 2 4 4 4
II 2 2 4 1 4
IIIa 3 3 3/4 1 1
Semi-

mechanistic 2 2 4 1 4

Rows: simulation model, columns: estimation model. 1: Adequate description of plasma and lung exposure; 2: adequate description of plasma,

inadequate description of pulmonary exposure; 3: inadequate description of plasma PK (lung PK not investigated); 4: non-identifiable param-

eters. The color coding denotes the severity of error in inferring on pulmonary PK by choosing the Estimation Model over the true model: green:

No relevant error, yellow: theoretically relevant error, but distinction based on plasma PK data possible; red: relevant error, no distinction

possible based on plasma PK data (Color figure online)

Fig. 3 Simulated plasma (left)

and lung (right) concentration–

time profiles. Solid lines:

‘Model NaL’ used for

simulation. Dashed lines:

Predictions based on ‘Model I’

used for re-estimation
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50–70% of runs vs. convergence of[ 85% in the other

scenarios. In terms of stability, the PPP method performed

best, while the ALL method was slightly more unsta-

ble than the IPP approach.

Regarding the modeling approaches, PPP, IPP, and ALL

performed comparable with regard to predicted systemic

but also inferred extent and duration of pulmonary expo-

sure (see Table 3). One notable exception was the combi-

nation of the PPP approach with ‘Model I’ as the

Estimation Model. In this case, AUC0-inf,plasma after

inhalation was less often predicted well (only 55% and

45% of successful runs within 80% to 125% of the true

value, for a three and four compartmental systemic PK

model, respectively). However, the prediction of tC24h,lung
was marginally better than with the other two approaches

(28.7% and 40.5% of predictions within twofold of the true

value, compared to 3–5% with the other methods). A

comparison of the precision and the parameter estimates

acquired using the three methods for the true model can be

found in the supplementary material (Supplementary

Table 3 Median [2.5th and 97.5th percentile], and width of the 95% interval of PK metrics inferred for oral drug inhalation

Absorption

model

Systemic

model

AUC0-inf,plasma AUC0-inf,lung (extent of pulmonary

exposure)

tC24h,lung (duration of pulmonary

exposure)

PPP IPP ALL PPP IPP ALL PPP IPP ALL

Model II 4 CMT 98.5%

[83.1%,

118%],

34.9%

99.5%

[85.7%,

116%],

30.3%

98.6%

[84.7%,

116%],

31.3%

101%

[62.8%,

147%],

84.2%

102%

[74.1%,

134%],

59.9%

103%

[76.5%,

135%],

58.1%

24.0 h

[19.2 h,

29.4 h],

10.2 h

23.9 h

[19.0 h,

29.0 h],

10.0 h

23.8 h

[19.1 h,

28.8 h],

9.69 h

Model II 3 CMT 91.9%

[76.6%,

107%],

30.4%

97.3%

[83.3%,

113%],

29.3%

96.6%

[82.5%,

111%],

28.5%

85.1%

[60.3%,

118%],

57.7%

82.4%

[55.5%,

117%],

61.5%

79.3%

[59.3%,

107%],

47.7%

19.6 h

[16.0 h,

24.1 h],

8.07 h

19.9 h

[15.7 h,

25.9 h],

10.2 h

18.9 h

[16.0 h,

22.4 h],

6.41 h

Model I 4 CMT 80.7%

[68.3%,

97.1%],

28.8%

94.4%

[81.0%,

111%],

30.0%

93.6%

[80.4%,

110%],

29.6%

96.5%

[74.0%,

128%],

54.0%

96.0%

[74.1%,

119%],

42.5%

90.6%

[68.4%,

118%],

49.2%

11.7 h

[9.20 h,

14.7 h],

5.50 h

9.88 h

[7.50 h,

12.5 h],

5.00 h

9.46 h

[7.15 h,

12.3 h],

5.19 h

Model I 3 CMT 79.2%

[67.2%,

94.6%],

27.4%

91.2%

[78.4%,

107%],

28.6%

90.1%

[77.2%,

105%],

27.8%

94.1%

[75.1%,

118%],

42.9%

91.4%

[72.0%,

115%],

43.0%

91.0%

[74.2%,

114%],

40.2%

11.3 h

[9.10 h,

13.9 h],

4.80 h

9.52 h

[7.50 h,

12.1 h],

4.60 h

9.62 h

[7.62 h,

12.1 h],

4.48 h

Values for AUCs are given as percentage of the true value, tC24h,lung is given as absolute values. Simulation Model: ‘Model II/4CMT’. CMT:

compartments. PPP: fixed systemic population parameters; IPP fixed individual parameters; ALL: simultaneous fit of all parameters

Fig. 4 Exposure metrics

estimated on data simulated

with ‘Model II’/4cmt using the

PPP method. 3 CMT and 4

CMT denote the number of

systemic PK compartments;

‘Model I’ or ‘II’ describes the

pulmonary absorption model,

with one or two parallel

absorption processes,

respectively. The shaded area

represents the accepted range

(80–125% for plasma, twofold

deviation for lung metrics).

Number of successful

estimations: 424 (II/4 CMT),

361 (II/3 CMT), 464 (I/4 CMT),

and 471 (I/3 CMT)
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Material S6, Table S5). Model predictions were also

compared to the results from the NCA. While the AUC0-

inf,plasma was described adequately for most evaluations,

calculation of the MAT resulted in negative values for

some subjects, preventing the calculation of AUC0-inf,lung.

Melin et al. [15] also encountered this in the original

publication.

Simulation with ‘Model IIIa’

The simulation/re-estimation analysis with ‘Model IIIa’ as

the Simulation Model resulted in a systematic overesti-

mation of lung exposure, regardless which model was used

for estimation (Fig. 5). AUC0-inf,plasma was mostly esti-

mated well. In this case too, the true model (‘Model IIIa’)

was superior with regard to the AIC. All model predictions

tended towards overestimation (bias of 23.4%, 26.4%, and

27.8% for ‘Model IIIa’, ‘IIIb’, and ‘II’, respectively).

‘Model IIIa’ gave overall more precise but slightly biased

estimates, 105% (87.4%, 253%) of the original value

(median, 2.5th and 97.5th percentiles) for AUC0-inf,plasma,

153% (89.0%, 299%) for AUC0-inf,lung, and 38.1 h (22.4 h,

65.0 h) for tC24h,lung. 74.8%, 97.9%, and 100% of the

evaluations were within twofold, threefold, and fivefold of

the true AUC0-inf,lung. For the tC24h,lung 82.4%, 99.2%,

100% were within twofold, threefold, and fivefold,

respectively. In comparison, the estimates by the other two

models were less precise. The respective median values

with 2.5th to 97.5th percentiles for all Estimation Models

can be found in Table 4.

To further investigate potential reasons for the overes-

timation and imprecision of lung exposure, the estimates of

the systemic PK parameters were further investigated. The

parameter estimates characterizing the distribution to the

deep tissue compartment (Q2 and V2) showed high vari-

ability, with V2 ranging from 10 to 2000% of the true value

used for data simulation. Further investigations revealed a

correlation between V2 and the pulmonary absorption

rates. As a follow-up, AUC0-inf,lung and tC24h,lung were

compared between runs with accurate parameters (Q2 and

V2 within 80–125% of the true values) and those with

inaccurate parameters. The resulting distributions can be

seen in Fig. 6. The runs with Q2 and V2 estimates close to

their true values showed no overestimation of pulmonary

exposure; all predictions were within twofold and over

75% of runs within 80–125% for both pulmonary exposure

metrics. Precision of the predictions also improved greatly

(median and 2.5th and 97.5th percentiles: 105% (81.5%,

120%) of the true value for AUC0-inf,lung; 24.7 h (18.7 h,

29.6 h) for tC24h,lung, ‘Model IIIa’). While the difference

between the models was marginal, ‘Model IIIa’ resulted in

the best predictions (Table 4). Given the published clinical

designs for the i.v. study, the systemic disposition param-

eters could only be adequately estimated in 11.6% of the

simulation estimation studies. The majority of runs with

inaccurate systemic PK parameters presented a substantial

overestimation of both AUC0-inf,lung and tC24h,lung with

approximately 30% showing a deviation of greater than

twofold from the original.

Discussion

It is challenging to evaluate the local pharmacokinetics

after drug administration, especially when the target organ

is identical to the site of administration. However, for many

locally administered drugs it is assumed that local drug

concentrations provide efficacy [28]. In these cases, a good

understanding of the local PK is desirable. PK modeling

based on plasma PK data might be one of the easiest

approaches to infer pulmonary exposure after drug

inhalation. In contrast to experimental determination of

Fig. 5 Exposure metrics

estimated on data simulated

with ‘Model IIIa’. The shaded

area represents the accepted

range (80–125% for plasma,

twofold deviation for lung

metrics). Number of successful

estimations: 473 (IIIa), 472

(IIIb), and 474 (II)
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Table 4 Median [2.5th and 97.5th percentile], width of the 95% interval, and relative bias of the mean (%Bias) for the population analysis based

on datasets simulated with ‘Model IIIa’

Absorption

model

AUC0-inf,lung

(extent of pulmonary exposure)

tC24h,lung
(duration of pulmonary exposure)

Total Inadequate

systemic

PK

Adequate

systemic PK

Total Inadequate

systemic PK

Adequate

systemic PK

Median [2.5th, 97.5th percentiles],

width of the 95% interval

Model IIIa 153%

[89.0%, 299%],

210%

162%

[100%,

299%],

199%

105%

[81.5%,

120%],

38.5%

38.1 h

[20.0 h,

64.5 h],

44.5 h

38.1 h

[22.4 h,

65.0 h],

42.6 h

24.7 h

[18.7 h,

29.6 h],

10.9 h

Model IIIb 144%

[69.3%, 337%],

268%

153%

[68.1%,

340%],

271%

90.2%

[71.1%,

107%],

35.9%

41.4 h

[15.1 h,

84.8 h],

69.6 h

38.4 h

[14.9 h,

85.2 h],

70.2 h

21.8 h

[16.6 h,

26.8 h],

10.3 h

Model II 145%

[70.1%, 341%],

271%

155%

[69.2%,

345%],

276%

91.2%

[71.6%,

108%],

36.4%

41.8 h

[15.6 h,

85.5 h],

69.8 h

38.8 h

[15.3 h,

86.3 h],

70.9 h

22.1 h

[16.8 h,

27.1 h],

10.3 h

NCA 160%

[92.8%, 339%],

246%

176%

[110%,

338%],

228%

158%

[89.0%,

336%],

247%

– – –

%Bias (mean) Model IIIa 67.0% 76.7% 2.88% 58.6% 67.1% 2.86%

Model IIIb 66.2% 77.9% - 11.0% 72.7% 86.6% - 7.89%

Model II 67.7% 79.5% - 10.2% 74.2% 85.1% - 8.99%

NCA 126% 124% 139% – – –

Fig. 6 Exposure metrics estimated on data simulated with ‘Model

IIIa’ separated by the adequacy of systemic PK parameters (deep

compartment). Left panel: adequate systemic PK; right panel:

inadequate systemic PK. Adequate systemic PK: Parameters Q2 and

V2 within 80–125% of the true values and the corresponding NCA

predictions. The shaded area represents the accepted range (80–125%

for plasma, twofold deviation for lung metrics). Number of estima-

tions with adequate systemic PK: 58 (each of the models). Number of

estimations with inadequate systemic PK: 415, 414, and 416 for IIIa,

IIIb, and II, respectively
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pulmonary exposure, modeling does not require additional

invasive exposure measurements or imaging data. There-

fore, the aim of this work was to evaluate the possibilities

and limitations of using empirical PK models for pul-

monary absorption to infer both the extent and duration of

pulmonary PK. This investigation showed that empirical

PK modeling can be a valuable tool to infer pulmonary PK.

Finally, based on the results a strategy for PK (modeling)

analyses was developed, including (1) the right choice of

pulmonary absorption models, and (2) a quantitative

evaluation of bias and precision of inferring the extent and

duration of pulmonary exposure based on realistic clinical

datasets.

As a first step of performing a modeling analysis to infer

the pulmonary PK, suitable model structures should be

selected based on prior knowledge about relevant pul-

monary PK processes. The reason is that most of the here

investigated absorption models were discussed to have a

physiological interpretation, ranging from non-absorptive

loss via mucociliary clearance or pulmonary metabolism

[16] to parallel absorption processes in different lung

regions [9]. The only investigated model without an

obvious underlying physiological reasoning is the ‘Model

Transit’, as drug absorption can start everywhere in the

lung simultaneously (e.g., conducting airways and alveolar

space). Therefore, and as this empiric transit absorption

model is rarely applied to characterize pulmonary absorp-

tion, this model structure will not be further discussed.

Pre-selection of plausible models can be done for

example based on in vitro experiments (e.g. dissolution

measurements [29] and/or metabolic stability in lung slices

[30]), or preclinical in vivo studies. Without this data, this

modeling analysis showed that no inference on pulmonary

PK is possible (i.e., different models describing the plasma

PK adequately resulted in approximately 50-fold differ-

ences with regard to pulmonary exposure). If prior

knowledge suggests that pulmonary metabolism is present

or that mucociliary clearance is relevant due to slow dis-

solution, a model-based approach with implementation of

these processes is necessary to achieve adequate predic-

tions of pulmonary exposure (e.g., ‘Model NaL’). It has to

be noted that, even when selecting the right model for a

drug with non-absorptive loss, the parameter estimation

process resulted in unidentifiable parameters. Sakagami

et al. suggested that this instability can be circumvented by

fixing the lung dose [31]. However, this requires detailed

information about the lung dose, which is subject to great

variability, both between subjects and between occasions

[9, 32, 33]. It is therefore debatable, if empirical PK

analysis based on plasma data will provide valuable

insights into pulmonary PK for this scenario.

If the relevance of pulmonary metabolism and

mucociliary clearance is negligible, it is possible to explore

pulmonary PK by implementation of parallel absorption

processes (‘Model I’–‘III’). The structural identifiability

evaluation showed, that in one case (simulation with

‘Model II’ and re-estimation with ‘Model I’), the pul-

monary absorption models could not be distinguished

based on plasma PK data, according to the predefined

criteria, yet yielded different outcomes for pulmonary

exposure. While both model candidates provided adequate

predictions of systemic PK and the extent of pulmonary

exposure, the duration of lung retention metric tC24h-lung
was significantly underestimated with the less complex

‘Model I’. This might have consequences for selecting

dosing schemes when the dosing intervals are pre-selected

based on PK rather than PD readouts.

While the first part of our study was based on full PK

profiles without any simulated variability to evaluate the

structural identifiability and inter-changeability of the

models, clinical data is typically analyzed with a popula-

tion (PK) approach to quantify different variability com-

ponents (inter-individual, intra-individual, inter-occasion,

etc.). Both inhalation and i.v. data are required to perform

deconvolutions. Unfortunately, i.v. data is rarely available

in the same individuals as inhalation data. Therefore, an

understanding of the implications is required, and a strat-

egy has to be developed, how to best perform such a

population approach. To this end, it is helpful to have an

overview about the opportunities and limitations of the

available options. The PPP method is the most widely

applicable method and can always be applied if i.v. and

inhalation data are present. Both IPP and ALL were found

to be reasonable methods if i.v. and inhalation PK have

been measured in the same subjects. However, in light of

the marginal differences regarding parameter estimates

(Supplementary Material, Table S5) and estimated PK

metrics in this investigation, it is debatable if the added

effort of conducting i.v. and inhalation trials in the same

subjects is justified. A decision tree showing the require-

ments for each approach is shown in Fig. 7.

In general, modelling provided fairly accurate predic-

tions for extent and duration of pulmonary exposure (most

predictions within twofold of the true value), given that the

correct model structure can be identified. Misspecification

of the absorption model could result in failure to capture

the duration of exposure, as could be seen in the analysis

based on ‘Model II’. Analogous to the structural identifi-

ability analysis, re-evaluation of pulmonary exposure

metrics based on simulated clinical datasets with only one

absorption process adequately predicted the pulmonary

AUC, but substantially underestimated the retention (only

3% to 40% within twofold of the true value, i.e.

tC24h,lung\ 12 h). Based on these PK estimates alone, bi-

daily dosing might be chosen instead of the ‘true’ once-

daily administration, showing that PD readouts should
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always be considered, when possible for the respective

mechanism of action, to make these decisions. However,

the true model would always have been chosen based on

statistical model-selection criteria. Therefore, when care-

fully performing such a modeling analysis, a proper dis-

crimination between these models seems possible. Finally,

based on the here presented findings, a post-hoc analysis

similar to the presented approach based on the finally

selected model structure, the estimated PK parameters, and

the investigated data set should be considered to assess the

robustness of the model-based inference on pulmonary PK.

If the results prove to be reliable and do not contradict

other available information, the predictions should provide

a reasonable basis to support dosing and posology

decisions.

It should be kept in mind that even with the ‘correct’

pulmonary absorption model and an adequate modeling

strategy there are still some critical aspects to consider. For

example, the population PK analysis based on ‘Model IIIa’

demonstrated a bias in both pulmonary exposure metrics

caused by inaccurate estimation of systemic PK parame-

ters. Here, a high correlation was found between the vol-

ume of distribution of the systemic deep tissue

compartment V2 and the slow pulmonary absorption rate.

Probably, the slow absorption rate constant (kslow) was

compensating for underestimation of the systemic terminal

half-life based on i.v. data. Lower estimates for V2 led to a

shorter terminal elimination half-life, and in the inhalation

trials with longer sampling times (up to 8 days after the last

dose), the terminal half-life of * 30 h was therefore

attributed to the slow absorption from the lung. Even in the

original publication, the absence of flip-flop kinetics could

only be demonstrated by the inclusion of urine data [9].

This potential bias in both extent and duration of pul-

monary exposure further underlines the importance of high

quality i.v. PK data and could have possibly been avoided

by extending the sampling times after i.v. administration.

However, this may not always be feasible, as orally inhaled

drugs potentially produce (dose-limiting) side effects pre-

cluding the use of higher doses to be able to observe the

‘true’ terminal phase in the PK profile [34, 35]. The

identification of flip-flop kinetics for an inhaled drug with a

high volume of distribution may indicate that the terminal

phase after i.v. administration is not adequately captured by

the PK data. This is even more likely if the long pulmonary

retention is hypothesized to be the result of high tissue

affinity to the lung, as this should be relevant after both i.v.

administration and inhalation. In these cases, the slowest

absorption constant should not be smaller than the

elimination constant. Interestingly, for’Model IIIa’, only

* 10% of the simulation-estimation analyses allowed

adequately estimating the systemic disposition parameters.

This also means that in * 90% of the analyses there would

have been a relevant risk of overestimating the extent and

duration of pulmonary exposure. However, even in these

cases, given the correct model structure, most predictions

([ 70%) were still within twofold and less than 3% outside

threefold of the true value.

Last but not least, the population PK modeling approa-

ches were also compared to the commonly applied NCA,

inferring on pulmonary retention based on the NCA-based

pulmonary absorption rate. These analyses, performed in

parallel to the population PK analyses, yielded ambivalent

results for both scenarios. While the NCA performed on the

dataset simulated with ‘Model IIIa’ resulted in plausible,

yet biased values, the simulation with ‘Model II’ could not

be analyzed with an NCA, as for some individuals the

MRT after inhalation was shorter than after i.v. adminis-

tration. Even for individuals with a positive MAT, the

mean predicted AUC0-inf,lung was over tenfold higher than

Fig. 7 Suggested decision tree for choosing a modeling approach
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the true value (a more detailed investigation of this can be

found in the online Supplementary Material). Therefore,

based on our analysis, an NCA-based deconvolution of the

data cannot be recommended to infer pulmonary exposure.

Few limitations of the present study are acknowledged:

One limitation of all the here investigated model structures

is that re-distribution from plasma to lung tissue is not

accounted for, potentially leading to underestimation of

lung concentrations at later time points. However, the

comparison of the investigated models with a semi-mech-

anistic model for salmeterol that does include backflow to

the lung showed only minimal deviations in the predicted

lung tissue. This suggests that the impact on inferred lung

exposure was negligible in this investigation. It should be

considered that salmeterol displays high systemic clearance

after drug absorption from the lung. For drugs with slower

elimination from the systemic perfusion, also the relevance

of re-distribution to the lungs would increase.

Another limitation is that investigated models cannot

discriminate between dissolution and absorption. This may

not be a problem for some of the investigated drugs (e.g.

olodaterol for ‘Model IIIa’), which are dissolving very

quickly (or are already administered as a solution). How-

ever, the absorption of fluticasone propionate (‘Model I’)

has been postulated to be limited by its dissolution rate,

possibly even masking parallel absorption of dissolved

drug with differing rates limiting the applicability of the

presented approach. Furthermore, as pulmonary concen-

trations of inhaled drugs can differ regionally due to local

physiology and deposition patterns, considering the aver-

aged drug concentrations of the whole lung might not

provide entirely accurate depictions of actual target site

concentration [1, 36]. In some cases, even making the best

use of the plasma PK data, plasma concentrations may not

be a good surrogate, e.g. due to accumulation in lung tissue

(active transport, lysosomal trapping). Here, additional

information about the relevant processes may help the

interpretation of results.

A limitation of sequentially fitting i.v. and inhalation

data from different individuals (PPP approach) is the

assumption that the systemic PK of subjects is comparable

in the i.v. and the inhalation PK studies. This might not

always hold true. For example, it might be important to

consider if the i.v. study was performed in healthy volun-

teers, and inhalation trials included in the dataset were

conducted in patients with potentially altered physiology.

In general, sequentially fitting the i.v. and inhalation data

(PPP and IPP) might result in underestimation of the

parameter uncertainty for the pulmonary absorption

parameters [23]. The influence of sequential fitting meth-

ods on parameter uncertainty was previously investigated

in more detail by Zhang et al. [37, 38]. Notably, the PK

analyses in this work were performed with only one set of

simulation parameters per pulmonary absorption model,

directly based on the original publications to ensure that the

tested scenarios and study designs are realistic. A repetition

with different simulation parameters may result in different

conclusions. For example, the lower the difference between

the parallel absorption rate constants, the harder it might be

to differentiate between different pulmonary absorption

processes.

Moreover, the analyses did not account for concentra-

tions below the lower limit of quantification, which can

have great impact on reasonable study designs and result in

distortion of parameter estimates [39] but was beyond the

scope of the present study. The impact of data below the

limit of quantification was investigated and described in the

original publications of the here chosen examples. Neither

Borghardt et al. [9] nor Melin et al. [15] reported a sig-

nificant effect of accounting for missing data in the mod-

eling process. Due to the previous investigations and

conclusions for the model drugs, we decided to not include

these characteristics in our evaluations. However, it cannot

be precluded that unaccounted-for missing data may lead to

false conclusions in other cases, especially as inhaled doses

are typically low in the lg range and this can result in high

fractions of data being below the limit of quantification.

The analysis based on clinical datasets included only

proportional residual variability, which might influence

parameter estimation, as this may not adequately represent

the measurement errors at lower concentrations. Investi-

gating the impact of identifying the correct residual vari-

ability model on inferring pulmonary exposure may be an

interesting follow-up study.

Even though the here evaluated models are based on

physiological reasoning, all of them represent empirical

modeling approaches. Until today, the link between these

empiric model structures and mechanistic PK models is not

systematically established. Adequate implementation of all

the relevant pulmonary PK processes after inhalation

would require more mechanistic PK models (compare

mechanistic PK models e.g. by Boger et al. [40] or Hartung

and Borghardt [41]). However, while these more mecha-

nistic PK models would allow simulation of time-resolved

PK profiles in different areas of the lung, these mechanistic

PK models can typically not be estimated based on avail-

able clinical data. In the future, more integrative PK

modeling approaches relying on plasma PK data, preclin-

ical in vitro, and preclinical in vivo experiments can be

expected to allow even better inference on pulmonary

exposure and retention times, when mucociliary clearance

and slow dissolution kinetics are of relevance. In any case,

checking the plausibility of parameter estimates based on

prior knowledge is always advisable.
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Conclusion

This work illustrated the value of PK modeling to infer the

extent and duration of pulmonary exposure from systemic

concentration–time profiles. When the aim is to learn about

the pulmonary fate of orally inhaled drugs, our analysis

indicated that PK modeling is superior to NCA. It was

demonstrated that when selecting the right structural sys-

temic and pulmonary absorption model, which was not

always trivial even based on rich clinical datasets, the error

in the majority of predictions of extent and duration of

pulmonary exposure was less than twofold. Sequential

versus simultaneous estimation of systemic and pulmonary

PK parameters both provided good results and only showed

marginal differences in the prediction of pulmonary PK. It

was also demonstrated that inferring the extent of pul-

monary exposure was more robust in comparison to

inferring the pulmonary retention if the wrong structural

absorption model was used. However, even with very rich

clinical datasets, still a moderate risk remains that the

pulmonary retention is not adequately inferred. Therefore,

while modelling was proven to be a useful tool to learn

about the pulmonary fate of inhaled drugs, care should be

taken when basing decisions about doses and especially

dosing posology solely on inference from plasma PK.

Given the uncertainties, a post-hoc simulation-estimation

analysis to evaluate the robustness of model predictions

would be recommended, and if possible, model-based

predictions of the pulmonary PK should always be used in

conjunction with available PD data.
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