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Abstract
In drug development decision-making is often supported through model-based methods, such as physiologically-based

pharmacokinetics (PBPK). Global sensitivity analysis (GSA) is gaining use for quality assessment of model-informed

inference. However, the inclusion and interpretation of correlated factors in GSA has proven an issue. Here we developed

and evaluated a latent variable approach for dealing with correlated factors in GSA. An approach was developed that

describes the correlation between two model inputs through the causal relationship of three independent factors: the latent

variable and the unique variances of the two correlated parameters. The latent variable approach was applied to a set of

algebraic models and a case from PBPK. Then, this method was compared to Sobol’s GSA assuming no correlations,

Sobol’s GSA with groups and the Kucherenko approach. For the latent variable approach, GSA was performed with

Sobol’s method. By using the latent variable approach, it is possible to devise a unique and easy interpretation of the

sensitivity indices while maintaining the correlation between the factors. Compared methods either consider the parameters

independent, group the dependent variables into one unique factor or present difficulties in the interpretation of the

sensitivity indices. In situations where GSA is called upon to support model-informed decision-making, the latent variable

approach offers a practical method, in terms of ease of implementation and interpretability, for applying GSA to models

with correlated inputs that does not violate the independence assumption. Prerequisites and limitations of the approach are

discussed.

Keywords Latent variable � Correlated factors � Global sensitivity analysis � Physiologically based pharmacokinetic

models � Model-informed drug discovery and development

Introduction

In pharmaceutical research and development (R&D) deci-

sion-making is often supported by modelling and simula-

tion (M&S), referred to as model-informed drug discovery

and development (MID3) [56]. Physiologically-based

pharmacokinetic (PBPK) M&S provides a framework for

mechanistic predictions of in vivo drug exposure. PBPK

M&S has replaced/supplemented clinical trials and

informed labelling for numerous drugs, most notably for

dosage recommendations following metabolic drug–drug

interactions [22, 59, 59].

Uncertainty and variability are prominent in biological

data. In this context, uncertainty mainly relates to inter-

and intra-experimental variability and errors, as well as

translation of parameters. Variability mainly relates to

interindividual variability in physiology, interoccasion

variability and more. Correlations between input parame-

ters are often implemented in PBPK models to account for

physiological constraints, otherwise causing implausible

combinations of parameters [44, 53]. For example, organ

weights are constrained by body weight. With the emer-

gence of novel ‘omics techniques, the correlation of pro-

teins is also of increasing interest [12, 37].

Sensitivity analysis (SA) and global SA (GSA) are

essential instruments for the quality assessment of model-

based inference [43] and their use has gained interest from
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pharmaceutical industry and academia in recent years

[10, 26, 34, 36–38, 58, 60]. Moreover, both the United

States Food and Drug Administration (FDA) and European

Medicines Agency (EMA) have highlighted the importance

of SA and GSA as best practice in PBPK to inform model

development and refinement [6, 7]. GSA is key for eluci-

dating the relationship between the uncertainty and vari-

ability in model inputs and variation in a given model

output. For example, GSA can be a valuable method for

testing if the model behaves as expected and, if not, it can

provide useful information that helps in identifying the

reasons and possible errors in the model assumptions or

implementation. Moreover, GSA can help identify what

parameters may need to be more precisely characterised to

allow reliable model predictions [36, 38, 50]. Therefore, by

extension, the method is relevant for decision-making

informed by modelling in drug development and clinical

practice [17, 36, 37, 47, 58].

In this work, we focused on the variance-based GSA

(also referred to as Sobol’s method) [36, 38]. This choice

was made as variance-based GSA is able to handle non-

linear and nonmonotonic relationships between the input

factors and the model outputs [49–51]. Moreover, with this

method it is possible to quantify the effect of each factor

taken singularly and the extent of its interaction effects. As

we have reported in our previous work, understanding the

extent of the interaction effects can be particularly

important for an informed use of PBPK models during drug

development [38].

The classical variance-based GSA works under the

assumption that model inputs (commonly referred to as

model parameters in pharmacometrics) are independent

[49–51]. Under this assumption, the variance decomposi-

tion is unique [51] and reflects the structure of the model

itself [40]. In this context, the variance-based sensitivity

indices have a clear interpretation [21, 49]. However, it is

not uncommon that PBPK models violate the independence

assumption [26, 37, 53]. In practice this may lead to cor-

relations being ignored in the analysis, or the use of one of

several proposed methods for GSA that deal with depen-

dent inputs. Perhaps, the most simple and elegant way of

treating dependent inputs in GSA is by grouping the cor-

related factors and then performing a GSA with the inde-

pendent groups. The intrinsic limitation of this approach is

that it is not possible to distinguish the contribution of the

single variables within each group.

In the literature, several methods have been developed

to deal with dependent inputs while retaining the infor-

mation, or sensitivity indices, of each individual factor.

These methods can be classified into two categories:

parametric and non-parametric methods [11, 31]. The

parametric methods, also called model-based methods,

(e.g., [9, 25, 57]) assume an a priori model for the input-

output relation. Instead, the non-parametric approaches do

not assume any specific shape for this relation and thus,

they are referred to as model-free or non model-based

methods [11, 31]. These approaches were considered to be

more suitable for computer-based modelling [11]. Gener-

ally, the non-parametric methods employ a transformation

technique for dealing with correlated factor distributions

[11]. For example, Kucherenko et al. [24] used copula

transformations to generalise the first order and total Sobol

indices for the case of dependent input factors. Mara et al.

[31] proposed the use of the Rosenblatt transformation, and

Tarantola and Mara [52] used both the Rosenblatt and

Nataf transformation within the context of variance-based

GSA. Moreover, other methods such as the variogram

analysis of response surfaces (VARS) and the Shapely

effects have been extended for the case of correlated input

factors [11, 21].

The copula-based method, developed by Kucherenko

et al. [24], has recently been proposed for PBPK models

[26]. However, how to interpret variance-based GSA

results in presence of dependent variables is not straight-

forward and still debated among GSA practitioners. In

presence of correlation between the input factors, the cor-

respondence between the variance-based indices and model

structure is lost and the variance decomposition can no

longer provide a description of the model structure

[3, 40, 42]. This was illustrated by Oakley and O’Hagan in

2004 with the use of a simple example [40]. In this context,

Pianosi et al. reported that counterintuitive results may be

obtained [42]. Iooss and Lemaı̂tre reported that SA for

dependent inputs has also been discussed by several

authors [...], but this issue remains misunderstood [20].

Moreover, Iooss and Prieur reported that The so-called

Sobol’ indices [...], present a difficult interpretation in the

presence of statistical dependence between inputs [21].

Finally, a recent position paper Razavi et al. reported that

The field of SA in terms of methods to handle input con-

straints and correlation structures is still embryonic [43].

Several dedicated software platforms exist for PBPK

M&S [23], providing accessible tools for non-expert users.

As GSA gains use in the community (such as through

software implementation) the issue of interpretability

becomes increasingly relevant.

Here we propose a latent variable approach for treating

correlated input parameters in variance-based GSA. The

method expresses the correlation between two parameters

as causal relationships between uncorrelated variables.

This is done in order to allow the use of classical variance-

based GSA and avoids the usage of methods whose inter-

pretation is still a matter of debate. Latent variable models

and sub-varieties of them, such as factor analysis, path

analysis and structural equation modelling, are widely used

in social sciences [28]. In latent variable models, the
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correlation between more than one observed measure (or

model parameter) is described by one, or more, unobserved

(latent) variable(s). Parameters are correlated as they share

a common cause [4]. Here we focus on the case of two

linearly correlated random variables whose correlation is

explained by one latent variable. With this approach,

instead of two correlated factors, three independent factors

(the latent variable and the two independent variances of

the correlated parameters) are considered in the GSA.

The approach is then applied to a set of algebraic models

and a whole-body PBPK model for the drug midazolam

(MDZ). MDZ is a sedative primarily metabolised by

Cythochrome P450 (CYP) 3A4 and CYP3A5 [16]. The

expression of CYP3A5 is polymorphic and present in

around 10–20% [48] of Caucasians where it is correlated

with CYP3A4 through a shared mechanism for expression

[29]. The latent variable approach was then compared with

the classic Sobol’s variance-based GSA, Sobol’s GSA

performed by grouping together the correlated factors, and

the Kucherenko approach.

Materials and methods

Variance-based sensitivity analysis
and the Kucherenko approach

Let us consider the generic model in Eq. 1:

Y ¼ f ðXÞ; ð1Þ

where Y is the scalar model output, X is the vector

including the k independent input factors (Xi, i ¼ 1; . . .; k)

and f is the input–output relationship. In variance-based

GSA, two sensitivity indices are derived from the func-

tional decomposition of the variance (V) of Y, in Eq. 2.

VðYÞ ¼
Xk

i¼1

Vi þ
X

i

X

j[ i

Vi;j þ � � � þ V1;...;k ð2Þ

The functional decomposition of the variance presented in

Eq. 2 is also known as functional ANOVA [50, 51]. Vi is

called the first order term and it is the portion of V(Y)

explained by the variation of each Xi taken alone [49],

where E is the expectation operator. Vi;j is the second order

term and it is the portion of V(Y) explained by the inter-

action between Xi and Xj. Similarly, it is possible to define

all the higher order interaction terms. Variance-based, or

Sobol, sensitivity indices can be defined from 2 as in Eq. 3

[18, 50].

Si ¼
Vi

VðYÞ ¼
VXi

ðEX� i
ðY jXiÞÞ

VðYÞ

STi ¼
EX� i

ðVXi
ðY jX� iÞÞ

VðYÞ

ð3Þ

Si is the so called first order index (or main effect) and ST ;i

is the total effect. X� i represents a vector including all the

factors except Xi. Si is related with the part of V(Y)

explained by the variation of Xi taken singularly and ST ;i is

the sum of Si with all the interaction effects of Xi with the

other inputs [49, 50]. When the parameters are indepen-

dent, the relationships Si � ST ;i and
P

Si � 1 are always

valid and ST ;i � Si gives information about the extent of

interaction effects involving Xi [49, 50].

The GSA method proposed by Kucherenko et al. [24]

extends the variance based methods for models with

dependent input factors. Here, the main and total effects of

the variance-based GSA are calculated with a copula-based

method. With this approach, Si includes the effects of the

dependence of Xi with other factors [31] and can be higher

than ST ;i. As reported by [31], ST ;i includes only the effects

of Xi that are not due to its dependence with X� i. A given

factor whose importance is only due to the correlation with

another factor would have ST ;i ¼ 0, but Si can differ from 0

[31]. Moreover, ST ;i approaches 0 as the correlation jqj !
1 [24]. A possible explanation for this behaviour is that as

the correlation approaches 1, the value of Xi is completely

informed by X� i and thus VXi
ðY jX� iÞ will tend to 0.

Latent variable approach for GSA

The latent variable approach expresses the inter-correlation

between two parameters as causal relationships between

uncorrelated variables and therefore, it allows the use of

classical variance-based GSA.

Latent variable methods partition the observed variance

of each correlated parameter (observed variable) into two

parts: a common variance, caused by the latent variable and

a unique variance, specific to the parameter itself [4]. In

this work, we focus on the case of two linearly correlated

random variables whose correlation is explained by one

latent variable. The relationship between the observed,

common and unique variances for two correlated parame-

ters and one latent variable is reported through a path

diagram as shown in Fig. 1 [28]. Following the notation of

latent-variable methodology, g is the latent variable, and is

conventionally represented by a circle in the path diagram.

Unidirectional arrows represent the causal relationships

between latent and dependent factors Xi, i ¼ 1; 2 (depicted

by a box) and ei represents the unique variance associated

with Xi [4]. X1 and X2 are considered linearly correlated,

with a linear (Pearson) correlation coefficient of q12. Here
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we assume that g, Xi and ei are distributed as in Equa-

tion system 4 and that g and ei are independent.

g�Nð0; 1Þ

Xi �Nð0; 1Þ

ei �N 0; r2
i

� �
ð4Þ

A common assumption is that the causal relationships

between g and Xi are linear. In this case, it is possible to

write the following Equation system 5 [4, 28].

X1 ¼ k1 gþ e1

X2 ¼ k2 gþ e2

ð5Þ

k1 and k2 are called the factor loadings and represent the

correlations of X1 and X2 with g [14]. Given that our

hypothesis is that g and Xi are standard normal random

variables, and that ei is distributed normally with a mean

equal to 0 and variance r2
i , by calculating the variance of

both sides of the equations in Equation system 5, it is

possible to derive that r2
i ¼ ð1 � k2

i Þ, i ¼ 1; 2.

Now, to correctly express X1 and X2 as functions of g,

we need to define k1, k2 and r2
1, r2

2. According to path

analysis theory, the correlation between X1 and X2 can be

expressed as q12 ¼ k1 � k2 [28]. With the hypotheses that

q12 [ 0 and that X1 and X2 have the same relationship with

g, thus k1 ¼ k2 ¼ k, it is possible to define k as in Eq. 6

[28].

k ¼ ffiffiffiffiffiffiffi
q12

p ð6Þ

Another possible solution is k ¼ � ffiffiffiffiffiffiffi
q12

p
, where the latent

variable has a negative correlation with both X1 and X2. In

case of q12\0, the absolute values of both factors loadings

are equal to
ffiffiffiffiffiffiffi
q12

p
, while their signs are opposite.

According to Eq. 5, k2 is the portion of the variance of

Xi that is attributed to the latent factor. With our approach,

k2 is the average variance extracted (AVE). AVE can be

defined as the average amount of variation that a latent

construct is able to explain in the observed variables [14].

Intuitively, this is the overall amount of variance that ‘is

taken’ from our dependent factors Xi and attributed to the

latent variable g, in order to define the causal relationships

in Eq. 5. As shown in the Appendix 5, with our hypothesis

that X1 and X2 have the same relationship with g, the AVE

is minimised. This means that we are explaining the cor-

relation between two observed variables by attributing (on

average) the minimum variance possible to the latent

construct.

With the latent variable approach, instead of two cor-

related random variables (X1 and X2), three independent

random variables (g, e1 and e2) will be considered in the

variance-based GSA. In this context, the impact of e1 and

e2 on the model output can be uniquely attributed to X1 and

X2, respectively. Instead, it would be impossible to dis-

tinguish if the impact of g on the model output is primarily

mediated by X1 or X2.

For simplicity, we have considered standardised vari-

ables. However, the latent variable approach can easily be

extended to data in original units with the use of simple

transformations. Nevertheless, in order to use this method

several assumptions must be satisfied (summarised in

Table 1) and some limitations still exist. The sums of the

random variables representing the latent and independent

variances must follow the distributions of Xi. This condi-

tion is satisfied if both the parameters are normally dis-

tributed and it can easily be extended to the case of the two

parameters being log-normally distributed. However, the

condition in Equation system 5 is not easily satisfied for

Fig. 1 Relationship between the observed, common and unique

variances for two correlated parameters and one latent variable. X1

and X2 are the observed variables, g is the latent variable, e1 and e2 are

the unique variances and k are the factor loadings

Table 1 Assumptions for the use of the latent variable approach

Assumptionsa

Only two correlated input factors X1 and X2

A linear correlation between X1 and X2

g, e1, e2, X1, X2 normally distributed as in Eq. 4

Linear relation between g and X1, X2, as in Eq. 5

Same relation between X1, X2 and g, thus jk1j ¼ jk2j ¼ jkj in Eq. 5

aX1, X2 are the dependent input factors

g is the latent variable

e1, e2 are the unique variances
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other types of distributions. The method presented here is

valid when considering two correlated factors and it can be

extended to three mutually correlated factors, by using the

so called method of triads to derive a unique solution for

the factor loadings [28]. However, it is possible that there is

no unique solution when more than three mutually corre-

lated factors are considered [28]. In this situation, the

application of the latent variable approach for GSA would

become more challenging.

The practical implementation of the latent variable

approach is relatively straightforward. First, k is defined as

per Eq. 6, where q12 is the linear correlation between the

two variables of interest, X1 and X2. Then, the values for g
are extracted from a standard normal distribution, while the

ones for e1 and e2 are extracted from a normal distribution,

with mean 0 and variance r2 ¼ 1 � k2. X1 and X2 are then

defined as per Eq. 5. By doing this, X1 and X2 would be

standard normal random variables. Then, they can be easily

transformed to normal variables with the desired mean and

standard deviation. As previously stated, the approach can

be extended to X1 and X2 being log-normally distributed,

although in this case logðX1Þ and logðX2Þ should be linearly

correlated.

Algebraic models

The latent variable approach was initially tested on three

algebraic models, namely model 1, 2 and 3, in Eqs. 7, 8

and 9 respectively.

Y ¼X1 þ X2 þ X2 � X3 ð7Þ

Y ¼X1 þ X2 þ X1 � X3 ð8Þ

Y ¼X1 þ X2 þ X3 þ X4 ð9Þ

For all the models, all factors were considered to be nor-

mally distributed with means equal to 0 and variances

equal to 1, Xi �Nð0; 1Þ, i ¼ 1; 2; 3; 4. X1 and X4 were

considered linearly correlated, with a Pearson correlation

coefficient of q14. Model 1 and model 2 differ in the fact

that in model 1, X1 is not involved in any interaction, while

in model 2, X1 interacts with X3.

X4 does not appear in the model 1 or model 2 equations,

consequently, its ‘causal impact’1 on the model output Y

must be null. Intuitively, for both model 1 and 2, the results

of a variance-based GSA in absence of correlation, con-

sidering only X1, X2 and X3, will correctly reflect the

structure of the model.

Whole-body PBPK model for midazolam

A whole-body PBPK model was developed, describing the

pharmacokinetics of the drug MDZ following an intra-

venous (IV) bolus injection in a population of human

healthy subjects. The model is represented in Fig. 2. This

section provides a brief description of the model. For a

detailed account of the model equations, the parameters

used for the PBPK construction and the algorithm used for

generating the population, see the Supplementary Material.

The typical equation used to describe the mass balance

in a given organ or tissue t within a PBPK model is

reported in Eq. 10. For a detailed description and the

underlying theories of this model, called well-stirred per-

fusion-limited PBPK, please refer to [2].

dxt

dt
¼ Qt

�
xart

Vart
� xt=Vt

Pt:p=B : P

�
ð10Þ

Equation 10 is valid for all organs and tissues except the

liver, the lungs, the arterial and venous blood. xt is the drug

amount in compartment t, while Vt is the volume. Subscript

art stands for arterial blood. Qt is the blood flow to com-

partment t. B : P is the blood-to-plasma ratio and Pt:p is the

tissue-to-plasma partition coefficient.

MDZ is primarily metabolised in the liver by the two

enzymes, CYP3A4 and CYP3A5. For MDZ both enzymes

catalyse two reactions, leading to the formation of two

metabolites,1-hydroxy midazolam (1-OH-MDZ) and 4-hy-

droxy midazolam (4-OH-MDZ) [16, 54]. For this reason,

two mass flows corresponding to MDZ metabolism leave

the PBPK system from the liver compartment, as repre-

sented in Eq. system 11.

dxliv

dt
¼ Qliv

�
xart

Vart
� xliv=Vliv

Pliv:p=B : P

�
þ
X

t2S

"
Qt

�
xt=Vt

Pt:p=B : P

�#

� MET3A4 � MET3A5

ð11Þ

Subscript liv stands for liver, S represents the splanchnic

organs (spleen, pancreas, stomach, small and large intes-

tine). cu;liv is the unbound liver concentration. MET3A4 and

MET3A5 are the fluxes representing the reactions catalysed

by CYP3A4 and CYP3A5. All the chemical reactions are

described using Michaelis–Menten equations [39]. The

Michaelis–Menten parameters for MDZ are taken from

in vitro studies [16] and they are scaled to the in vivo

context as per [46]. One of the main parameters used for

the in vitro to in vivo scaling is the microsomal protein per

gram of liver (MPPGL) (see supplementary materials for a

detailed description of this process).

The population variability of physiological parameters

such as the compartment volumes and blood flow was

1 Here we refer to ‘causal impact’ as the impact of an input factor Xi

on the model output Y that is not due to the dependence of Xi with

other factors.
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generated with a simple algorithm having as inputs the sex

of the subject, the height and the body mass index (BMI).

To simulate an IV bolus injection of 5 mg of MDZ, the

initial condition of the venous blood compartment was set

equal to 5, while the remaining compartments were set to

equal 0. The area under the curve (AUC) of the venous

plasma compartment from time 0 to 24 � 7 h was consid-

ered the output of interest for the GSA. The distributions of

the model parameters considered in this analysis are

reported in Table 2.

Analysis overview

For the GSA, the following methods were applied to both

the algebraic and the PBPK models:

– classical variance-based GSA considering all the

parameters uncorrelated;

– variance-based GSA grouping together the two corre-

lated parameters;

– the method developed by Kucherenko for computing

the variance-based GSA indices in presence of corre-

lation [24];

– the latent variable approach.

Concerning the algebraic models, the analysis was carried

out varying q14, from - 0.9 to 0.9. When q14 [ 0, the

latent variable was considered to be positively correlated

with both X1 and X4 (k[ 0). Instead, when q14\0, the

latent variable was considered to be positively correlated

with X1 and negatively correlated with X4.

For the PBPK model, the (Pearson) correlation between

the logarithms of CYP3A4 and CYP3A5 abundances

q3A4;3A5 was considered to equal 0.52, based on proteomic

data from human liver samples [1], for the variance-based

GSA with grouped factors, for the Kucherenko and the

latent variable approaches. In this analysis, all simulated

individuals were assumed to express CYP3A5.

All analysis was performed in MATLAB R2020a2 [33].

The systems of differential equations were solved with the

ode15s MATLABsolver, for a timespan ranging from 0 to

24 � 7 h. GSA was performed using the software UQLab

[32] except for the variance-based GSA with groups, where

an ‘ad hoc’ MATLAB code was developed. For the

numerical estimation of the sensitivity indices, within

UQLab, the homma estimator was used for the Sobol

approach, while the default estimator embedded in the

software was used for the Kucherenko approach. Con-

cerning the ‘ad hoc’ MATLAB code, we used the estimator

reported in [50] (the errata corrige version). For all the

methods, the sample size was fixed to 10,000. The uncer-

tainty of the sensitivity indices estimates was assessed by

using 1000 bootstrap samples, with the exception of the

Kucherenko method, where the convergence plots were

used.

Results

Algebraic models

The GSA results for the algebraic models 1, 2 and 3, with

q14 ¼ 0:7 and q14 ¼ 0:9, are reported in Tables 3, 4 and 5,

respectively. In Fig. 3 the GSA results obtained with the

latent variable and the Kucherenko approaches for the

algebraic model 1 are given as a function of q14, ranging

from - 0.9 to 0.9. For the models 2 and 3, the equivalent

information is shown in Figs. 4 and 5, respectively. Here

we begin by reporting the results of model 1 and 2 and

then, model 3.

Fig. 2 Structure of a general whole-body PBPK model. Each box

corresponds to a specific compartment. The red and blue arrows

represent the arterial and venous blood flow, respectively. The black-

dashed arrow represents elimination through metabolism in the liver.

The yellow arrow represent the drug intravenous administration. S
intestine and L intestine are the small and large intestine, respectively

2 The codes are made available at the following link https://github.

com/NicolaMelillo/latent_variable_GSA.
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The parameter X4 does not appear in Eqs. 7 and 8.

Regardless of presence or absence of correlation between

X1 and X4 its ‘causal’ impact on the output should therefore

be null. Hence, intuitively, the results of a variance-based

GSA with the classic Sobol’s method considering only X1,

X2 and X3 should be the ones that truly represent the model

structure. Any differences in main and total effects for the

Kucherenko approach, the latent variable approach and the

variance based GSA with grouped factors are therefore due

to how these methods handle the correlation.

Concerning the Kucherenko approach, in Fig. 3 the

higher the absolute value of q14 is, the higher the main

effect of X4 is, while its total effect always remains equal to

0. This substantially confirms the findings of [31], where it

was highlighted that an input whose importance is due to

the dependencies with other inputs has a total effect equal

to 0, but a main effect that can be higher than 0. Moreover,

as the absolute value of the correlation increases, the total

effect of X1 decreases, while the main effect remains

stable. From [31] we know that S1 includes the impact of

the correlation of X1 with X4, while ST ;1 just includes the

‘uncorrelated’ effects. From our example is possible to

appreciate that the higher jq14j is, the lower the ‘uncorre-

lated’ effect of X1 is. In this context it is actually chal-

lenging to distinguish between the ‘causal’ effect of X1 and

X4 on Y and the effect due to their dependence. Similar

conclusions can be made for the model 2. By limiting the

analysis to the Kucherenko indices, it is challenging to

understand how much X1 is involved in interaction effects

and, ultimately, to determine any ranking of importance of

the parameters as can be used in practical applications.

Concerning the latent variable approach, presented in

Figs. 3 and 4, the higher the absolute value of q14 is, the

higher the importance of the latent variable over the unique

variances. Ultimately, with q14 approaching 1 the whole

variance of both X1 and X4 becomes fully explained by the

latent factor and thus, the residual variances’ effect on the

output variance tends to 0. Given that the latent variable

affects both the correlated factors equally, it is not possible

to elucidate if the impact of g on the output variance is

primarily mediated by X1 or X4. However, the impact of the

unique variances can be uniquely attributed to the corre-

lated factors. In fact, for both models 1 and 2, both the

main and total effect of e4 are always equal to zero, as seen

in Figs. 3 and 4. This is unlikely the case for traditional

variance-based GSA with groups (see Tables 3 and 4),

where, independently of the values of q14, it is not possible

to determine the impact of the variable within the groups.

Notably, if jqj is close to 1, the latent variable will fully

explain both X1 and X4, resembling the case of the

grouping approach. Given that in both the grouping and the

latent variable approach we are performing a standard

Sobol’s GSA with uncorrelated factors, the interpretation

of the sensitivity indices and the factor ranking is

straightforward.

In model 1, X1 is not involved in any interactions. This

is discernible when Si ¼ ST ;i. In this case, S1 ¼ ST ;1, as

seen in Table 3 and Fig. 3. Neither g or e1 are involved in

any interactions. This is quite intuitive as the model is

linear and X1 is defined as the sum of the latent variable

and the unique variance in the latent variable approach.

However, interaction effects between the latent variable

Table 2 Variable parameters

used for the MDZ PBPK model
Parameters Distribution parameters Distribution type Units References

Sexd 0, 1

height (male)e 176.7 (6.15) Normala cm [5]

Height (female)e 163.3 (5.85) Normala cm [5]

BMIf 18.5, 24.9 Uniformb
kg=m2 [55]

½CYP3A4�g 137 (41%) log-normalc ðpmol CYPÞ=ðmg MPÞ [8]

½CYP3A5�g 103 (65%) log-normalc ðpmol CYPÞ=ðmg MPÞ [8]

MPPGLh 39.79 (27%) log-normalc ðmg protÞ=ðg liverÞ [30]

aFor distribution parameters, mean (standard deviation) of the normal variable
bFor distribution parameters, minimum, maximum of the parameter
cFor distribution parameters, mean (CV) of the log-normal variable
dSamples from an uniform distribution are extracted: if the extracted value is \0:5 the subject is female

(0), otherwise male (1)
eHeight for a 20 years old Italian population
fBody mass index corresponding to the nutritional status of ‘Normal weight’ according to the World Health

Organization
gCYP abundance per mg of microsomal protein
h mg of microsomal proteins for gram of liver
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and the unique variance will arise, for example, in case of

X1 having a nonlinear effect (e.g., quadratic) on Y3. In

model 2, X1 and X3 show interaction effects, as noted in the

Sobol’s GSA results. This happens when ST ;i [ Si. In

Table 4 and Fig. 4 we can see that both the latent variable

and the unique variance of X1 show interaction effects.

Concerning model 3, Table 5 and Fig. 5, we observe

that the sensitivity indices of X2 and X3 change in function

of q14. The traditional variance-based GSA that considers

all the factors uncorrelated does not capture this effect.

With this simple example, we can see that ignoring the

correlation within GSA could potentially bias the overall

results of the analysis. Traditional GSA with groups can

capture this effect and thus, it can be an easy and reliable

method for treating correlations. However, as explained for

models 1 and 2, it has the limitation of not distinguishing

the impact of the variables within the groups of correlated

factors.

Concerning the Kucherenko approach, S1 and S4 are

close to 0 when q14 is close to -1 and they both grow as

jq14j grows. Instead, ST ;1 and ST ;4 have almost a parabolic

shape. Both the main and total effects of X1 and X4 are low

for strong negative correlation, probably because in this

model the effect of X1 tends to cancel the one of X4 on

Y and vice versa. For a high positive correlation the total

effects tend to zero, while the main effects are close to 0.6.

Regarding the latent variable approach, one interesting

observation is that the overall tendency of the unique

variances and latent variable sensitivity indices are similar

to those of the total and main effects of X1 and X4 of the

Kucherenko approach, respectively. This probably happens

because the unique variances represents the impact of the

‘uncorrelated’ part of the factors, similarly to the total

effect of the Kucherenko approach. Instead, both the latent

3 If X1 ¼ kgþ e and Y ¼ X2
1 , it is straightforward to derive that

Y ¼ k2 g2 þ e2 þ 2kge. In this case, there are interaction effects

between g and e.

Table 3 Sensitivity indices for the algebraic model 1

Sobola Kucherenkob Latent variablea Groupeda

Factor Main Total Main Total Main Total Main Total

q14 ¼ 0:7

Xc
1 0.34 0.33 0.33 0.17 0.11 0.1 0.31d 0.34d

(0.32,0.36) (0.31,0.34) (0.09,0.13) (0.9,0.11) (0.29,0.33) (0.31,0.37)

X2 0.33 0.67 0.32 0.64 0.32 0.65 0.31 0.7

(0.31,0.35) (0.64,0.7) (0.3,0.35) (0.63,0.67) (0.28,0.33) (0.67,0.72)

X3 0 0.33 0 0.34 0.02 0.33 - 0.03 0.32

(- 0.03,0.02) (0.31,0.35) (- 0.01,0.04) (0.31,0.35) (- 0.06,0) (0.29,0.34)

Xc
4 0 0 0.16 0 0.02 0

(- 0.02,0.02) (0,0) (0,0.03) (0,0)

g 0.26 0.23

(0.24,0.28) (0.22,0.25)

q14 ¼ 0:9

Xc
1 0.33 0.35 0.33 0.06 0.05 0.04 0.33d 0.34d

(0.31,0.35) (0.33,0.37) (0.03,0.07) (0.03,0.04) (0.31,0.35) (0.31,0.37)

X2 0.32 0.66 0.33 0.69 0.33 0.65 0.35 0.67

(0.29,0.34) (0.64,0.69) (0.31,0.35) (0.63,0.68) (0.33,0.38) (0.64,0.7)

X3 - 0.01 0.33 - 0.01 0.35 0.02 0.35 0 0.33 (0.31,0.36)

(- 0.04,0.02) (0.31,0.36) (- 0.01,0.04) (0.33,0.37) (- 0.03,0.02) (- 0.03,0.02)

Xc
4 - 0.01 0 0.27 0 0.01 0

(- 0.03,0.01) (0,0) (- 0.01,0.03) (0,0)

g 0.3 0.29

(0.28,0.32) (0.27,0.3)

aValues reported in the table are mean (2.5,97.5) percentiles calculated with 1000 bootstrap samples
bConvergence plots are shown in the supplementary materials
CFor the latent variable model, this refers to the unique variance
dThis refers to the X1 and X4 group
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variable and the main effect include the ‘dependent’ part of

the factors. However, one important difference is that the

latent variable approach is a variance-based GSA per-

formed with independent variables and thus, the indices are

easily understandable, this is unlikely the case for the

Kucherenko approach. Finally, it is interesting to observe

that for negative correlations the impact of the latent

variable is zero. This happens because the factor loadings

(k) are equal in module, but opposite in sign and thus, the

latent variable term is cancelled from Eq. 9.

Whole-body PBPK model for midazolam

The simulated MDZ plasma concentration-time profiles

and AUCs for a population of 10,000 subjects are shown in

Supplementary Figs. 8 and 9, respectively. The GSA

results of Sobol’s method without accounting for the cor-

relation, of the Kucherenko method, of the traditional

variance-based GSA with groups and of the latent variable

approach are presented in Table 6.

According to the results from Sobol’s GSA, the most

important parameters in explaining the variability in AUC

are (in order of importance) the MPPGL, CYP3A4 and

CYP3A5 abundances. These factors are important because

they control the rate of metabolism in the liver. The fact

that the metabolism-related parameters are the most

important for explaining variability in AUC suggests that

the rate-limiting step of drug elimination is the metabolism

and not, for example, liver blood flow. Given that exposure

drives drug effect, the interindividual variability in effi-

cacy, due to PK, is mainly explained by genetics in this

case example. However, we need to consider that our

population is composed by healthy adults with a BMI

corresponding to the nutritional status of ‘normal weight’

[55]. The inclusion of overweight or obese subjects may

impact the results of the GSA.

Table 4 Sensitivity indices for the algebraic model 2

Factor Sobola Kucherenkob Latent variablea Groupeda

Main Total Main Total Main Total Main Total

q14 ¼ 0:7

Xc
1 0.34 0.68 0.32 0.34 0.11 0.2 0.33d 0.68d

(0.32,0.36) (0.66,0.71) (0.09,0.13) (0.18,0.21) (0.3,0.35) (0.65,0.71)

X2 0.32 0.33 0.33 0.32 0.33 0.33 0.32 0.34

(0.3,0.34) (0.32,0.35) (0.31,0.35) (0.31,0.35) (0.3,0.34) (0.31,0.37)

X3 0 0.34 0 0.34 0.01 0.33 - 0.03 0.33

(- 0.02,0.03) (0.32,0.36) (- 0.01,0.04) (0.3,0.35) (- 0.05, - 0.01) (0.31,0.35)

Xc
4 - 0.01 0 0.16 0 0.01 0

(- 0.03,0.01) (0,0) (- 0.01,0.02) (0,0)

g 0.24 0.47

(0.22,0.26) (0.45,0.49)

q14 ¼ 0:9

Xc
1 0.33 0.66 0.32 0.13 0.03 0.06 0.36d 0.65d

(0.31,0.35) (0.63,0.69) (0.01,0.05) (0.05,0.07) (0.33,0.38) (0.62,0.68)

X2 0.32 0.34 0.32 0.33 0.32 0.33 0.35 0.32

(0.3,0.34) (0.32,0.35) (0.3,0.34) (0.32,0.35) (0.33,0.37) (0.29,0.35)

X3 0 0.34 0 0.35 - 0.01 0.34 0.01 0.34

(- 0.03,0.03) (0.32,0.37) (- 0.03,0.01) (0.32,0.37) (- 0.01,0.04) (0.32,0.37)

Xc
4 0 0 0.25 0 0 0

(- 0.02,0.02) (0,0) (- 0.02,0.02) (0,0)

g 0.29 0.61

(0.27,0.32) (0.59,0.64)

aValues reported in the table are mean (2.5,97.5) percentiles calculated with 1000 bootstrap samples
bConvergence plots are shown in the supplementary materials
cFor the latent variable model, this refers to the unique variance
dThis refers to the X1 and X4 group
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Table 5 Sensitivity indices for

the algebraic model 3
Factor Sobola KucherenkoB Latent variablea Groupeda

Main Total Main Total Main Total Main Total

q14 ¼ 0:7

Xc
1 0.25 0.25 0.55 0.1 0.07 0.05 0.62d 0.63d

(0.23,0.26) (0.23,0.26) (0.05,0.09) (0.04,0.06) (0.6,0.64) (0.61,0.65)

X2 0.25 0.24 0.19 0.19 0.18 0.19 0.19 0.18

(0.23,0.26) (0.23,0.26) (0.16,0.2) (0.18,0.2) (0.17,0.21) (0.16,0.2)

X3 0.26 0.25 0.18 0.19 0.2 0.19 0.18 0.19

(0.24,0.27) (0.24,0.27) (0.18,0.22) (0.18,0.2) (0.16,0.2) (0.17,0.2)

Xc
4 0.26 0.25 0.54 0.1 0.06 0.05

(0.24,0.28) (0.24,0.27) (0.04,0.08) (0.05,0.06)

g 0.51 0.51

(0.49,0.53) (0.49,0.53)

q14 ¼ 0:9

Xc
1 0.24 0.25 0.63 0.03 0.02 0.02 0.65d 0.65d

(0.22,0.26) (0.24,0.26) (0,0.04) (0.02,0.02) (0.63,0.67) (0.63,0.67)

X2 0.24 0.25 0.17 0.17 0.18 0.17 0.17 0.17

(0.22,0.26) (0.24,0.26) (0.16,0.2) (0.16,0.18) (0.15,0.19) (0.15,0.19)

X3 0.26 0.24 0.18 0.17 0.17 0.17 0.18 0.19

(0.24,0.28) (0.23,0.25) (0.15,0.19) (0.16,0.18) (0.16,0.2) (0.17,0.21)

Xc
4 0.25 0.26 0.62 0.03 0.02 0.02

(0.23,0.27) (0.25,0.28) (0,0.04) (0.01,0.02)

g 0.63 0.62

(0.61,0.64) (0.6,0.64)

aValues reported in the table are mean (2.5,97.5) percentiles calculated with 1000 bootstrap samples
bConvergence plots are shown in the supplementary materials
cFor the latent variable model, this refers to the unique variance
dThis refers to the X1 and X4 group

Fig. 3 Algebraic model 1 GSA results of the latent variable and the method presented by Kucherenko 2012 [24]
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Concerning the GSA results obtained with the Kucher-

enko, the variance-based GSA with groups and the latent

variable approach, the sensitivity indices of MPPGL are

slightly reduced as compared to Sobol’s GSA. This is most

likely related with the fact that the correlation between

CYP3A4 and CYP3A5 tends to generate more ‘extreme’

individuals, i.e., poor metabolisers (with low CYP3A4 and

low CYP3A5 abundances) and rapid metabolisers (with

high CYP3A4 and high CYP3A5 abundances). Thus, as it

is possible to observe in Supplementary Fig. 9, the AUC

distribution in case of correlation is slightly wider with

respect to the case of no correlation. These results are in

agreement with our previous studies, where we showed

how a positive correlation between two enzymes

metabolising a given compound can cause a widening of

the systemic AUC distribution [37].

Concerning the Kucherenko analysis, it is difficult to

confidently use either the main or the total effects for the

purpose of factor ranking. For example, by observing the

main effect the two most important parameters are

CYP3A4 and CYP3A5 abundances. However, it is difficult

to understand what the contributions of the variables

themselves are and what is due to the correlation. For this

reason, in our example, there is a risk of overestimating the

importance of the enzymatic abundances and, by extension,

underestimating the importance of the other factors. By

Fig. 4 Algebraic model 2 GSA results of the latent variable and the method presented by Kucherenko 2012 [24]

Fig. 5 Algebraic model 3 GSA results of the latent variable and the method presented by Kucherenko 2012 [24]

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:671–686 681

123



using the total effect for the factor ranking, there is instead

the risk of underestimating the importance of the correlated

factors and overestimating the importance of the remaining

inputs, as the total effects for the factors involved in the

correlation tend to 0 as jqj ! 1 [24]. Moreover, by using

these two indices, given that for both CYP3A4 and

CYP3A5 abundances the total effect is lower than the main

effect, it is difficult to understand the effect of interactions.

In the latent variable approach, the factor ranking can be

done by examining either the main or at the total effects.

This is possible because the correlation between CYP3A4

and CYP3A5 was expressed in terms of a functional rela-

tionship between three independent factors, the latent

variable and two independent variances. Thus, the classical

variance-based GSA was used. With this approach, the

most important factor in explaining the AUC is g, followed

by MPPGL and the independent components of CYP3A4

and CYP3A5. By using either the main or the total effect

for the factor ranking, we can confidently assess that the

main drivers for the plasma AUC are the metabolism-re-

lated parameters. Moreover, with this method it is possible

to appreciate the interaction effects, that in this case are

mild and do not have a great impact on the factor ranking.

A downside of this approach is that g drives both CYP3A4

and CYP3A5 variability. For this reason, given that the

latent variable is one of the two most important parameters,

it is not possible to appreciate if its importance is primarily

caused by the CYP3A4 or CYP3A5 mediated pathway. By

investigating the independent components of CYP3A4 and

CYP3A5 abundances, it is noted that they do have a similar

impact. Intuitively, if one of the two factors was not

important for the AUC, the independent component would

be equal to zero (however, it is not necessarily true for the

opposite case).

The results of the PBPK simulations presented here aim

to illustrate a GSA methodology, only. Therefore, we do

not recommend their use for other purposes.

Discussion

GSA is gaining use in modelling for pharmaceutics, espe-

cially in the field of PBPK M&S. Recent applications in the

literature [10, 26, 34, 36–38, 58, 60] and regulatory dis-

cussions [6, 7] have indicated the usefulness of these

methods and it is likely that GSA will become an important

feature of modelling in pharmaceutical R&D and for reg-

ulatory decision-making. This development is welcomed,

indeed in the field of toxicology GSA is an important part

of best practices for risk assessment of dose metric pre-

dictions [19, 34, 35, 41].

Table 6 Sensitivity indices for the MDZ PBPK model

Factor Sobola Kucherenkob Latent variablea Groupeda

Main Total Main Total Main Total Main Total

q3A4;3A5 ¼ 0:52

sex 0 0.02 0.01 0.02 0.03 0.02 0 0.01

(- 0.02,0.02) (0.01,0.03) (0.01,0.05) (0.01,0.02) (- 0.02,0.02) (- 0.03,0.04)

height 0.01 0.05 0.02 0.03 0.04 0.03 0.01 0.01

(- 0.01,0.03) (0.04,0.05) (0.02,0.06) (0.02,0.04) (- 0.01,0.03) (- 0.02,0.05)

BMI 0.03 0.05 0.03 0.03 0.04 0.03 0.01 0.03

(0.01,0.05) (0.04,0.06) (0.02,0.07) (0.02,0.05) (- 0.01,0.03) (- 0.01,0.06)

MPPGL 0.29 0.39 0.25 0.3 0.26 0.3 0.24 0.29

(0.27,0.31) (0.37,0.41) (0.24,0.29) (0.27,0.32) (0.22,0.27) (0.26,0.32)

CYP3A4c 0.27 0.33 0.49 0.22 0.12 0.15 0.61d 0.69d

(0.25,0.3) (0.31,0.35) (0.1,0.15) (0.13,0.17) (0.58,0.64) (0.67,0.72)

CYP3A5c 0.23 0.29 0.42 0.15 0.09 0.1

(0.2,0.25) (0.27,0.31) (0.07,0.09) (0.09,0.12)

g 0.43 0.48

(0.41,0.46) (0.46–0.5)

aValues reported in the table are mean (2.5,97.5) percentiles calculated with 1000 bootstrap samples
bConvergence plots are shown in the supplementary materials
cFor the latent variable model, this refers to the unique variance
dRefers to the group of CYP3A4 and CYP3A5
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In order for GSA to gain wider use, the issues of

usability and interpretation of the results need to be con-

sidered. PBPK M&S is an interdisciplinary effort highly

reliant on experts in several domains, including medicinal

chemistry, in vitro drug metabolism, pharmacokinetics,

pharmacology, toxicology, statistical and mathematical

modelling, and more. Further, modelling activities are an

important tool for supporting a wide variety of decisions in

R&D and regulatory submissions. For this reason, dedi-

cated user-friendly software platforms are widely used

[13], facilitating standardisation and easy access for non-

expert users. We suspect that this is likely to hold true

across many different domains, and therefore relevant

across areas of application. In this context, particular

attention in communicating GSA results should be paid.

Most whole-body PBPK models include several sets of

correlated parameters, many of which constrain the models

to realistic parameter combinations. It is therefore impor-

tant that these correlations are accounted for when per-

forming GSA. Several GSA methodologies have been

proposed to account for dependent inputs

[11, 24, 31, 52, 57] and the method developed by

Kucherenko was proposed for PBPK models [27]. How-

ever, considerable debate is still ongoing amongst GSA

practitioners on how to appropriately interpret the out-

comes of these methods. We believe that the use of

methodologies whose interpretation is still a matter of

debate, require appropriate care in cases where GSA is

called upon to support critical decisions, such as those

relating to patient safety. The use of such methods may in

fact lead to results that are uninterpretable, or, even worse,

open to misinterpretation by non-expert GSA users. Certain

applications of PBPK M&S require reliable, robust, well-

characterised and tested models [45]. We believe that these

requirements should apply for GSA methods and algo-

rithms as well.

Here we propose a relatively simple method using a

latent variable approach that deals with correlated input

variables in variance-based GSA. The method expresses

the correlation between two factors as causal relationships

between a latent factor, g, and two unique variances. As a

result this allows the use of classical Sobol’s GSA with

uncorrelated factors. In our opinion, the approach provides

an intuitive process for implementation and interpretation

as illustrated in the analysis for MDZ. By ranking the

factors according to the total effects of Sobol’s GSA, it was

possible to clearly interpret the sensitivity indices. This

allows insights into the model behaviour and to understand

what the main drivers of variability are in a given output.

By having a unique, easy and universally recognised

interpretation of the sensitivity indices, it is possible to use

GSA for supporting decision-making with increased

confidence.

One of several alternatives to the latent variable

approach would be the use of traditional variance-based

GSA with groups. The main advantage is that this method

allows treating more than two, or three, dependent factors

and other dependencies than the linear correlations. How-

ever, as highlighted in the results section, with this

approach is not possible to separately distinguish the

impact of the dependent variables within a given group.

Another alternative could be to assign causal dependencies

between the correlated factors as we have done in a pre-

vious study in the context of PBPK models [37]. However,

by doing so to describe the dependency, this will affect the

relative significance of one input over the other. The

potentially arbitrary choice of assigning dependency will

increase the importance of the independent variable in the

GSA and may produce misleading results. With the latent

variable approach we renounce any attempt to completely

distinguish the impact of the two correlated inputs on a

given model output. Instead, we highlight the impact of the

latent variable g (as the ‘common cause’) along with the

independent part.

Here we also attempt to examine the shortcomings of

the latent variable approach. In fact, the method presents

some limitations with regards to the number and the dis-

tribution of the factors that are mutually correlated, as

described in section 2. Moreover, the results of the latent

variable approach need to be interpreted in light of the

assumptions summarised in Table 1. In case one or more of

these assumption are not satisfied (e.g., for bespoke PBPK

platforms), the use of traditional GSA with groups is likely

a better choice. Despite this, we believe that the latent

variable approach can be of use. In conclusion, further

research should be performed to find a reliable and inter-

pretable method for handling multiple correlated inputs in

GSA. This can be achieved, for example, by overcoming

the current limitations of the latent variable approach to

expand its use to more than two or three correlated input

factors per latent variable. Alternatively, a clear and uni-

versally recognised interpretation should be agreed for

more general GSA methods for dependent inputs, such as

the approaches proposed by Kucherenko et al. [24] and

Mara et al. [31].

Appendix: Average variance extracted

The general AVE expression, corresponding to one latent

variable and k unique variances, is reported in Eq. 12 [15].

Considering that r2
i ¼ 1 � k2

i , AVE can be calculated as

the average of the squares of the factor loadings associated

with the latent variable [14].
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2
i þ

Pk
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¼ 1

k

Xk

i¼1

k2
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Considering that in our case k ¼ 2 (two dependent factors)

and k1 � k2 ¼ q, we can derive the expression in Eq. 13.

AVE ¼ 1

2
ðk2

1 þ k2
2Þ ¼

1

2

�
k2

1 þ
q2

12

k2
1

�
ð13Þ

If we calculate the first derivative of AVE over k1 and set it

equal to zero, we can obtain the following expression in

Eq. 14.

dAVE

dk1

¼ k1 �
q2

12

k3
1

¼ 0

k1 ¼
ffiffiffiffiffiffiffiffiffi
jq12j

p

k2 ¼ signðq12Þ �
ffiffiffiffiffiffiffiffiffi
jq12j

p

ð14Þ

Where, signðq12Þ is equal to ?1 if q12 [ 0, while it is equal

to -1 if q12\0. If we calculate the second derivative we can

see that it is always positive, thus jk1j ¼ jk2j corresponds to

a minimum.

Supplementary Information The online version supplementary

material available at https://doi.org/10.1007/s10928-021-09764-x.
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