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Abstract
One of the objectives of Pharmacometry (PMX) population modeling is the identification of significant and clinically

relevant relationships between parameters and covariates. Here, we demonstrate how this complex selection task could

benefit from supervised learning algorithms using importance scores. We compare various classical methods with three

machine learning (ML) methods applied to NONMEM empirical Bayes estimates: random forest, neural networks (NNs),

and support vector regression (SVR). The performance of the ML models is assessed using receiver operating characteristic

(ROC) curves. The F1 score, which measures test accuracy, is used to compare ML and PMX approaches. Methods are

applied to different scenarios of covariate influence based on simulated pharmacokinetics data. ML achieved similar or

better F1 scores than stepwise covariate modeling (SCM) and conditional sampling for stepwise approach based on

correlation tests (COSSAC). Correlations between covariates and the number of false covariates does not affect the

performance of any method, but effect size has an impact. Methods are not equivalent with respect to computational speed;

SCM is 30 and 100-times slower than NN and SVR, respectively. The results are validated in an additional scenario

involving 100 covariates. Taken together, the results indicate that ML methods can greatly increase the efficiency of

population covariate model building in the case of large datasets or complex models that require long run-times. This can

provide fast initial covariate screening, which can be followed by more conventional PMX approaches to assess the clinical

relevance of selected covariates and build the final model.

Introduction

Model Informed Drug Discovery and Development

(MID3) which often includes Pharmacometrics (PMX)

components/elements/aspects, aims to apply mechanistic

mathematical and statistical models to pre-clinical and

clinical data to efficiently make data-driven decisions

during discovery and development phases of new therapies

[1]. MID3 plays a key role in each step of drug

development [2] by, for example, providing a better

understanding of the individual patients’ concentration and

response profiles [3], characterizing the drug dose-expo-

sure-pharmacodynamic-response relationships [4], assess-

ing the influence of intrinsic and extrinsic factors on

observed intra-individual and inter-individual variability

on the considered outcomes [5], and providing predictions

of scenarios using different dosing regimens or drug for-

mulations [6]. Among the techniques used in MID3, non-

linear mixed effects (NLME) population modeling is an

established framework frequently used in pharmacokinetics

(PK) and pharmacodynamics for studying variability

between individuals in a population by accounting for fixed

and random effects [7, 8]. Two important sources of vari-

ability considered in the statistical model are the inter-

individual variability, which is represented by the vari-

ability of a parameter across individuals, and the intra-

individual variability considering, for example, the inter-

occasion variability of a parameter for a given individual.

As part of population model building, relationships

between parameters and covariates (each patient’s intrinsic

& Nadia Terranova

nadia.terranova@merckgroup.com

1 School of Basic Sciences, Ecole Polytechnique Fédérale de

Lausanne (EPFL), Lausanne, Switzerland

2 Merck Institute for Pharmacometrics (an affiliate of Merck

KGaA, Darmstadt, Germany), Merck Serono S.A, Lausanne,

Switzerland

3 Merck Healthcare KGaA, Darmstadt, Germany

4 Chair of Computational Mathematics and Simulation Science

(MCSS), Ecole Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland

123

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:597–609
https://doi.org/10.1007/s10928-021-09757-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-0033-3695
http://crossmark.crossref.org/dialog/?doi=10.1007/s10928-021-09757-w&amp;domain=pdf
https://doi.org/10.1007/s10928-021-09757-w


and extrinsic factors) are assessed to explain the inter-in-

dividual variability and inform potential dosing recom-

mendations. Assessing the clinical relevance of only the

statistically significant covariates is the classical approach

as opposed to recent and more computer-intensive full

fixed effect model (FFEM) [9, 10] or full random effect

model (FREM) [11] approaches, which propose keeping

and assessing all covariates in the model.

PMX tools such as non-linear mixed effects modeling

(NONMEM) [12], through Pearl-Speaks-NONMEM (PsN)

[13, 14] modules, and Monolix [15] provide a wide range

of selection-based methods for covariate assessment,

including stepwise covariate modeling (SCM) [16], lin-

earization-based methods [17], least absolute shrinkage and

selection operator (LASSO) [18], and conditional sampling

for stepwise approach based on correlation tests (COS-

SAC) [19]. However, these methods are not designed to

handle multi-dimensional problems involving a variety and

a large number of covariates, which is becoming a common

situation in the new digital age of medicine in which a vast

amount of various types of data are collected. This raises

the challenge of finding appropriate and efficient approa-

ches to allow fast screening of large sets of covariates for

next-generation PMX and MID3. When supported by a

question-driven rationale, the integration of existing

methods from other fields can offer unprecedented oppor-

tunities to advance methodological frameworks and

enhance scientific understanding [20, 21].

In this context, supervised machine learning (ML) pro-

vides a large class of algorithms that could be employed for

efficient high-dimensional screening of covariates. Among

well-known methods, random forest (RF) for classification

or regression (2001) [22] and support vector machine

(SVM, 1992) [23] have been developed and further

improved. More recently, the progress in performance of

central processing units (CPUs) and graphical processing

units (GPUs) has enabled the development of methods

requiring millions of operations, such as deep neural net-

works (NNs) with complex architectures. This class of new

methods is known as deep learning (DL). ML methods are

currently employed in various fields and for different

purposes. Among applications in medicine, multi-class

classification has been raised as a useful tool for disease

diagnosis [24], and an increasing number of medical

devices using artificial intelligence to diagnose patients

more precisely and to treat them more effectively have

been qualified by health authorities [25]. ML applications

can also be found in all stages of drug development and

discovery, including high throughput virtual screening

[26], identification of the targeted biomarkers for a given

disease [27], de novo design of new molecules [28], and

assignment in the Biopharmaceutics Drug Disposition

Classification System [29]. The adoption of ML into MID3

applications is still in the early stages and a subject of

debate within the PMX community [30]. Published exam-

ples of ML applications in MID3 are supportive of suc-

cessful improvements of PK and drug effect predictions

[31], longitudinal analyses of tumor size [20, 21], and time

to event and survival analysis [32]. Furthermore, popula-

tion model building could greatly benefit from the inte-

gration of methods that could be used to efficiently rank

and select relevant covariates based on their importance

[33, 34]. In this study, we use and evaluate a few ML

approaches for covariate screening and compare the results

to traditional PMX selection-based methods in terms of

accuracy and computational costs.

Methods

The performance of ML and PMX methods under various

conditions is assessed across scenarios differing in the

complexity level of the definition of the true model. Each

true model has a predefined number of covariates with a

certain correlation level among them and effect size to

generate simulated data.

The analysis workflow from data simulation to covariate

selection is shown in Fig. 1. Model definition and simu-

lation settings are defined in a first step to generate a global

framework, allowing the automatic execution of subse-

quent steps. For each scenario, PK profiles are then gen-

erated for a virtual population based on a true model, which

is also estimated along with the corresponding base model

(i.e., the same model without covariates included).

Covariate selection methods available in NONMEM and

Monolix are assessed as classical PMX approaches. ML

methods include RF, SVR, and NN.

Use cases

The base model is a one-compartment PK model for single

oral administration with first order absorption and linear

elimination. A bioavailability of 1 is assumed. The PK

parameters are assumed to be log-normally distributed and

the exponential error is used for the observed concentra-

tion. The PK profile for an individual i can be described as

follows:

Ciðt;Vi;Cli; kaiÞ ¼
D � kai

Vi � kai � Cli
� ðet�Cli=Vi � ekai�tÞ ð1Þ

where

Vi ¼ Vpop � eg1;i
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CLi ¼ CLpop � eg2;i

kai ¼ kapop � eg3;i

The true model was then derived for each scenario by

including scenario-specific effects of covariates on clear-

ance (CL). Power and linear relationships are assumed for

continuous and categorical covariates, respectively. For

one categorical (CAT) and one continuous (COT) covari-

ate, the CL of an individual i can be expressed as:

CLi ¼ CLpop � eg2;i � ð1þ CATi � b1Þ �
COTi

med COTið Þ

� �b2

ð2Þ

The parameters of the structural model are published in

a previous simulation study [35]: V = 10, CL = 1, ka = 1,

x2
ka ¼ 0:3;x2

V ¼ 0:2; and x2
CL ¼ 0:2. The variance of the

exponential error is set to 0.15.

To better assess a method’s ability to identify the actual

covariate part of the true model, a certain number of

‘‘false’’ covariates that do not influence the drug clearance

are generated in each scenario. Covariates with and without

an effect are referred to as ‘‘true’’ and ‘‘false’’, respectively.

As shown in Table 1a, six combinations are tested. For

each of these scenarios, then various levels of effect size

(\ 20 % or[ 40 %) and correlation (small, medium and

high) between true-true and true-false covariates, as shown

in Table 1b, are assessed. A total of 36 scenarios are

studied with covariance matrices and effect sizes randomly

generated according to scenario requirements.

Such scenarios have an average shrinkage of 5 %

(1–30 %), but later two additional scenarios with higher

shrinkage are explored. Scenario 7a and 7b are same as

scenario 6e except that shrinkage values are 36 %

(32–39 %) and 51 % (39–65 %) respectively. The higher

shrinkage is induced by reducing the number of observa-

tions per subject, as described hereafter.

Data generation for tested scenarios

Categorical covariates, covariance matrices, and effect

sizes for the true covariates (COT and CAT) are generated

in the first step (Fig. 1) using R version 3.5.1. [36]. One

hundred virtual populations are generated from the true

model in each scenario. A design with 5 sampling times per

patient is considered: (0 h, 1 h, 8 h, 12 h, 24 h) for half of

the patients and (0 h ,2 h, 4 h, 20 h, 48 h) for the other half

of the patients. For scenarios with higher shrinkage, the

following time grids are used: [0 h, 1 h, 8 h] and [0 h, 2 h, 4

h, 20 h] for scenario 7a; [0 h, 1 h, 8 h] and [0 h, 2 h, 4 h] for

scenario 7b. The base model and true model are also

Fig. 1 Global project framework. Three main blocks: (i) model

definition and simulation settings [R] based on NONMEM templates,

covariance matrices, and effect size generation; (ii) data generation

and model estimation [PsN: SSE] to simulate data and estimate the

base and true models for each scenario (and each dataset); (ii)

covariate selection using various methods
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estimated in this step using the PsN stochastic simulation

and estimation (SSE) module [37].

Covariate selection in PMX

PsN provides different approaches to perform covariate

selection for mixed-effect models, such as SCM and

LASSO. SCM is a two-step process in which covariate

relationships are tested for forward inclusion and backward

elimination based on predefined p-values. PsN allows

testing of the linear relationship of categorical covariates,

and linear, piecewise, exponential, and power relationships

for continuous covariates. In this work, p-values of 0.05

and 0.01 are used for the forward and backward paths,

respectively. LASSO allows covariate selection by adding

an additional constraint to the parameter space, and then a

penalty term to the objective function. The optimization

leads to the removal of covariates with a smaller effect in

the considered parameter space from the model.

In addition, Monolix supplies the COSSAC algorithm, a

variant of SCM that is computationally more efficient.

Indeed, only covariates with significant parameter-covari-

ate Pearson correlations are tested in COSSAC. Covariates

are then added to the model based on the likelihood ratio

test. The algorithm iterates until no forward addition or

backward deletion is retained, or after testing 10 new

relationships that end without acceptance on the same

model. To make the selection faster, Lixoft Monolix

developers advise running a first iteration of the stochastic

approximation for model building algorithm (SAMBA), as

this can provide a starting model much closer to the best

model than a base model. This preliminary SAMBA step

was always performed in this analysis. To allow method

comparisons, the same p-values as in SCM were used for

COSSAC. Furthermore, power and exponential relation-

ships for continuous covariates, and linear relationships for

categorical covariates can be tested in Monolix.

Machine learning algorithms

For the covariate selection problem, ML methods: RF,

SVR, and NNs, are employed to predict clearance esti-

mates from the base model by starting from all covariates;

these are then ranked based on their predictive ability

according to the estimated feature importance. Empirical

Bayes estimates (EBEs) of clearance obtained in NON-

MEM were used for this purpose.

RF is an ensemble learning method for classification,

regression, and other tasks that combines many decision

trees in the training phases and provides the class that is the

mode of the classes (classification) or the mean prediction

(regression) of the individual trees as output. RF over-

comes the limitations (e.g., overfitting) of decision trees by

using bagging and feature randomness when building each

individual tree. The accuracy of the tree is estimated based

on the subset of training data not used in the learning

phase, also known as the out-of-bag set. Different hyper

parameters have to be set before the training: the number of

trees, which is a cost-accuracy trade off, the number of

observations in a leaf, and the size of the randomly selected

sampling of covariates at each split of a tree, which have to

be validated (Fig. 2).

Table 1 A total of 36 scenarios differing in number of covariates,

levels of correlation, and effect size were investigated. For example,

the true model of scenario 2e included two categorical and two highly

correlated continuous covariates (correlations greater than 0.6), with

small effect sizes (\ 20 %) of the true continuous (COT) and true

categorical (CAT) covariates

(a) Six scenarios with different numbers of true categorical (CAT), true continuous (COT), false categorical (CAF), and false continuous (COF)

covariates were tested

Scenario #CAT #COT #CAF #COF

Scenario 1 0 1 1 1

Scenario 2 1 1 1 1

Scenario 3 1 1 3 5

Scenario 4 1 2 3 5

Scenario 5 1 3 5 10

Scenario 6 2 2 5 10

(b) Six combinations (a to f) of effect size and correlation for the continuous covariates were studied for all scenarios

Correlation/Effect Small (\ 20 %) High ([ 40 %)

Small (\ 0.3)

Medium ([ 0.3,\ 0.6)

High ([ 0.6)

a

c

e

b

d

f
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SVM and SVR are supervised learning models used for

classification and regression analysis, respectively. Such

tasks are similarly handled by implicitly mapping inputs

into augmented feature spaces induced through a kernel

function. Commonly used kernels are linear, radial basis

functions (RBF), or polynomials. The kernel and e-inten-
sive loss function used to optimize the generalization

bounds given for regression are the hyper parameters to be

validated before the training phase.

NNs are systems composed of connected units or nodes

that mimic neurons in the human brain. Each connection

can transmit a signal to other nodes, which process and

combine it with their internal state (activation) and an

optional threshold through an activation function, and

produce output using an output function. Nodes can be

Fig. 2 Illustrative examples of two well-known ML methods, random

forest (RF) and neural networks (NNs). (a) RF. Stage 1: n bootstrap

samples with replacement are created. Stage: n decision trees are

trained. Stage 3: predictions are made from all trees in Stage 2. Stage

4: the final prediction is obtained by averaging all n predictions.

(b) Simple NN architecture with two hidden layers (left). At each

node (right) the information is processed using weights (w) on the

inputs and the applying a nonlinear transformation (activation

function r)
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grouped into different blocks, the so-called layers, which

are sequentially linked in the simplest NN structures to

have input, hidden, and output layers. Inputs in the input

layers are external data, whereas output layers give the

estimated outputs. The optimization process involves a

forward path, a backward path, and a gradient descent-

based optimizer (e.g., ADAM [41], AdaGrad, stochastic

gradient descent [42]) to update network parameters. For

the prediction part, only the forward path is used with the

weights optimized during the training phase. Potential NN

overfitting is overcome by using regularization techniques,

such as dropout [43], which is a model-averaging method

randomly removing some weights based on a prior prob-

ability. NN hyper parameters to be set (and ideally vali-

dated) before the training include the number and size of

hidden layers, type of activation function for each node,

and the number of iterations for the gradient descent

algorithm. Flexibility is the NNs’ main strength, but it

could also be a substantial drawback. It allows broad

application by predicting any kind of outcome and by

accepting various input data, such as images or text-based

features, without any pre-processing. However, NNs can

lead to a very large number of different architectures and

uninterpretable models when, in many cases, the interpre-

tation of the results can be as important as the accuracy of

the predictions (Fig. 2).

Hyper-parameters in ML

Many ML methods require setting a few hyper-parameters

before the training phase, as these cannot be learnt from the

data and remain the same throughout the analysis. Some

have been mentioned in the previous section for each

considered method. In this study, the same hyper parame-

ters were used in all 100 models trained in each scenario.

This assumption, which allows real computational gain, is

supported by the 100 training sets being independently and

identically distributed. The learning phase is achieved

using the mean square error (MSE) as the cost function.

For RF, the number of trees was set to 500 for all sce-

narios and datasets. For each scenario, a grid search is

performed to select the number of observations in a leaf

(from 1 to 50) and the ratio of covariates randomly selected

at each split of a tree (from 0.3 to 0.7). For SVR, two

different kernels are tested: linear and RBF. The regular-

ization parameter and e are validated using a grid search

ranging from 10- 5 to 1 and from 10- 4 to 1, respectively.

For NNs, no grid search is performed and only archi-

tectures with two hidden layers are tested. The best

architecture includes 500 neurons, ADAM optimizer, and

dropout probability of 0.3 to avoid overfitting. The chosen

activation function is ReLU (truncated identity). After

selecting the hyper parameters for each scenario, models

are independently trained on all datasets for all methods.

Importance score and covariate selection

The method for calculating the importance score, available

by default in RF, is also used for SVR and NN. Specifi-

cally, for each covariate, the ‘‘resampling error’’ after

covariate shuffling is calculated and compared to the val-

idation error (or the out-of-bag error for RF). The more

important the covariate, the greater is their difference.

Error differences are rescaled to have the sum over the

covariates equal to 1. This rescaling leads to the impor-

tance score. Covariate shuffling is performed 100 times to

decrease the variance of the results. The resampling is done

using a different validation set than the one used for

training.

The literature advises human intervention to perform

covariate selection from the importance score. Ideally, a

large difference between the importance scores of two

successive covariates allows clear separation of covariates

by their importance. However, given the number of data-

sets in our study (n = 3600), automatic selection is

implemented as being more efficient. Specifically, three

selection approaches using the importance score are

investigated: top-M selection, order of importance, and

minimum degree of importance. Top-M selection consists

of ranking the covariates by importance (according to their

score) and then keeping only a predefined number (M) of

the most important covariates. In the ‘‘order of impor-

tance’’ approach, covariates are ranked by order of

importance and then selected until the sum of scores of

selected covariates reaches a predefined threshold. Finally,

in the ‘‘minimum of importance’’ approach, only covariates

with an importance score greater than a predefined

threshold are selected. All three methods require setting of

a predefined parameter (M or a threshold). For each sce-

nario and each method, a wide range of thresholds were

tested and the threshold maximizing the accuracy of

selection kept. In the case of top selection, M is set to the

number of true covariates with the assumption that an

accurate method ranks them on top.

Metrics for evaluation

The discriminatory performance of ML approaches/models

is assessed by using the receiver operating characteristic

curve (ROC), a probability curve representing the true

positive rate (rate of true outcomes correctly predicted as

true) against the false positive rate (rate of false outcomes

wrongly predicted as true). After computing the ROC, the

area under the ROC (AUROC) can be calculated. The

AUROC provides a measure of the degree of separability
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of the classes predicted from the ML approaches. Its values

can be categorized into ‘‘excellent’’ (0.9–1), ‘‘good’’ (0.8–

0.9), ‘‘fair’’ (0.7–0.8), ‘‘poor’’ (0.6–0.7), or ‘‘failed’’ (0.5–

0.6) outcomes [44]. An AUROC of 0.5 corresponds to a

random guess; therefore, AUROC\ 0.5 indicates that a

method performs worse than a random guess. In order to

compute the AUROC, the ROC must be drawn. This is

achieved by performing several selections and deriving the

respective true positive and false positive rates. In this

work, ROCs are derived for all ML methods by increasing

the threshold from 0 to 1 for the order of the importance

selection approach described previously. The AUROC can

be used only for comparing the results obtained from ML

methods. Indeed, as SCM, COSSAC, and LASSO provide

only one covariate selection for parameter settings, ROCs

generation would not be very practical for these PMX

methods. For this reason, the F1 score (the harmonic mean

of recall and precision) was computed (3) and used to

compare selection results between ML and PMX methods.

F1 ¼ 2 � Recall � Precision
Recallþ Precision

ð3Þ

where

Recall ¼ TruePositive

TruePositiveþ FalseNegative

and

Precision ¼ TruePositive

TruePositiveþ FalsePositive

The highest possible value of the F-score is 1, indicating

perfect precision and recall, and the lowest possible value

is 0, if either the precision or the recall is zero [45]. The F1

score is more robust with imbalanced classes than the

accuracy metric, defined as (

TruePositiveþ TrueNegativeÞ=NumberofPredictions

. In the case of SCM and COSSAC, two definitions of true

positive are applied and used to compute the F1 score: true

covariate selected, and true covariate selected with the true

relationship. As only linear relationships can be tested for

categorical covariates, no other definitions are applied.

Results obtained with the two definitions for the two

approaches are hereafter referred to as SCM and SCM_TR

and as COSSAC and COSSAC_TR, respectively.

Real case

The developed framework is also tested on a clinical

dataset to illustrate its use in a real case study. First, the

base model is estimated using a PMX software (NONMEM

in this case), and then a fast screening of covariates is

performed using the considered methods. The use case

includes data from a recently published study on cetux-

imab, and described by a two-compartment model with

Michaelis-Menten and linear elimination [46] as the base

model. Thirty covariates are available in the dataset,

including patient-related factors (e.g., age, sex, creatinine

clearance), therapy related-factors (e.g., co-medication),

and other disease-related measurements (e.g., amphireg-

ulin, interleukin-8). All covariates are included in the

selection step; no clinical or statistical assessments are

available from previous analysis.

Software

NONMEM (7.3.0) installed on LINUX (Novell SLES11

(64-bit) SP3) operating system, with CPU allocation con-

trolled by a Univa Grid Engine (8.2). The NONMEM runs

along with SCM evaluations are executed by PsN (4.4.8).

COSSAC selection requires Monolix 2019R2 which is

installed on a different server with the same LINUX

operating system. The ML part is implemented using

Python (3.7, [38]) along with scikit-learn (0.22.1, [39]) and

Pytorch (1.3.1, [40]) installed on Anaconda 1.9.12.

Results

Covariate selection

Assessment of AUROC across ML methods

Similar results in terms of AUROC were obtained across

all ML methods, with NNs showing slightly better per-

formance. Examples are shown in Fig. 3 of the ROCs and

AUROCs obtained in scenarios 1 and 6 across models. The

effect size of covariates is the most important factor

influencing results. In the case of high effect size (scenarios

b, d, f), the importance scores for any true covariate are

always greater than the importance score for any false

covariate for all 100 datasets, leading to perfectly separable

classes (AUROC = 1). Significantly less precise selections

are obtained for some scenarios with low effect size (sce-

narios a, c, e). For example, in scenario 1a, the AUROCs

for NN and SVR are very close to a random guess. There

are no indication of an impact of correlation between the

covariates. Observed fluctuations in AUROCs between

scenario 1a, 1c, and 1e are due to changes in effect size

during their random generation.

The number of overall false covariates, which can be

seen as noise, does not impact the ability of ML to cor-

rectly identify true and false covariates in considered sce-

narios. Overall, AUROCs obtained by the ML methods are

very good and [ 0.90 on average (Online Resources
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Fig. S1) with perfect separation (AUROC = 1) in several

cases (18 scenarios by RF, 11 scenarios by NN, 12 and 11

scenarios by SVR linear and SVR RBF, respectively).

Assessment of F1 score across ML and PMX methods

The goodness of covariate selection results can be evalu-

ated for both ML and PMX by computing the F1 score. In

Table 2, average F1 scores with their standard deviation are

reported for all methods, along with the number of sce-

narios achieving best results (F1 score = 1). Detailed

results are also reported in Online Resources Table S1 and

S2. Overall, similar performance is achieved across ML

methods, which slightly outperforms SCM or has similar

accuracy. SCM and COSSAC provided similar results.

However, no PMX approach provides perfect selection for

all 100 datasets in any scenario. As expected, because of

their stricter definition of true positive, SCM_TR and

COSSAC_TR are less accurate than SCM and COSSAC

and are often outperformed by all other methods. For some

scenarios (e.g., scenario 1a and 1e), the F1 scores were

very small (* 0.2).

As covariate selection in SCM is based on p-values

chosen in the forward and backward path, scenarios with

worse selection (1a, 1e, 5a) are reassessed with different

p-value combinations (see Online Resources Table S3).

Changing the p-value in the backward path has no effect on

the selection, whereas increasing the p-value in the forward

path increases the accuracy of the selection in scenarios

1a and 1e. F1 scores do not improve for scenario 5a.

Overall, F1 scores obtained from SCM remain lower

than those obtained with the ML methods.

The best method is NN on average, but RF is the method

with the greatest number of perfect selections regardless of

the selection approach. As shown in Table 2, LASSO leads

to the least accurate results, likely due to the LASSO

implementation in PsN allowing only linear relationships

to be tested, hence limiting identification of the true rela-

tionship for continuous covariates.

Computational costs

The runtimes of the methods are reported for scenarios

with high (including more than 15 covariates) and low

(including less than 5 covariates) complexity and for all

bFig. 3 ROC and AUROC of the four ML methods: RF (green), NN

(red), SVR with linear kernel (cyan), and SVR with RBF kernel (blue)

for two scenarios. (a) Scenario 1:1 true continuous covariate and two

false covariates (1 continuous and 1 categorical). (b) Scenario 6: 2

continuous true, 2 categorical true, 10 continuous false and 5

categorical false covariates. The different levels of effect size (eff)

and correlation (corr) are given as small (-), medium (-/?), and high

(?). Similar performances were observed across methods

Table 2 Summary of the main

results for the ML methods and

PMX methods. For each

method, the number of scenarios

in which the method achieved

perfect selection of the covariate

(first row), and the average F1

score with standard deviation in

brackets (second row) are

reported. For ML methods,

results with the three considered

approaches (top-M, order of

importance, minimum of

importance) are shown. TR:

True

ML approaches

Method\Selection Top-M Order of Importance Minimum of Importance

RF § 18 scenarios

§ 0.87 (0.16)

§ 18 scenarios

§ 0.88 (0.15)

§ 16 scenarios

§ 0.88 (0.15)

NN § 16 scenarios

§ 0.89 (0.16)

§ 8 scenarios

§ 0.88 (0.15)

§ 14 scenarios

§ 0.89 (0.15)

SVR Linear § 15 scenarios

§ 0.86 (0.16)

§ 11 scenarios

§ 0.85 (0.15)

§ 13 scenarios

§ 0.87 (0.15)

SVR RBF § 16 scenarios

§ 0.86 (0.17)

§ 9 scenarios

§ 0.85 (0.16)

§ 13 scenarios

§ 0.87 (0.16)

PMX approaches

SCM § 0 scenario

§ 0.84 (018)

SCM_TR § 0 scenario

§ 0.75 (0.19)

COSSAC § 0 scenario

§ 0.79 (0.016)

COSSAC_TR § 0 scenario

§ 0.72 (0.18)

LASSO § 0 scenario

§ 0.65 (0.18)
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scenarios in Table 3. NN, SCM and COSSAC methods

allow parallelization of runs with multiple CPUs (12 for

NN and SCM, 8 for COSSAC), leading to reduced run-

times, whereas only a single CPU can be used with RF and

SVR. This difference is not inherent to the methods, but to

the way they are implemented in the tools and packages

that were used.

Despite the additional computation resources, the SCM

runtime exceeds 3 days for some scenarios, whereas ML

methods are run in less than 3 h even in the most complex

scenarios. On average, ML is at least 8, and up to

225-times faster than SCM. LASSO (not shown) has run-

times comparable to SCM. COSSAC is on average 4-times

faster than SCM, but still slower than ML. Moreover, the

computational cost ratio between SCM and COSSAC

increases with the number of covariates, suggesting that,

compared to SMC, only COSSAC is able to handle many

covariates. Focusing on ML methods only, the SVR run-

time increases linearly with the number of covariates due to

the resampling of each covariate for the scoring calcula-

tion. The NN runtime is balanced between the tasks related

to model training and those related to the scoring calcu-

lation. RF has the best runtime across all methods caused

partly by the default implementation and the optimization

of the scoring calculation.

Overall, the ML and PMX methods have very different

computational costs, with a clear benefit provided by the

ML approaches. Such differences become even more rel-

evant with an increasing number of covariates. Although

ML methods require an additional run on PMX software to

build the final model, results will not change, as this last

model estimation is much faster than model selection, as

only a subset of the covariates would be used. Further, the

uncertainty of runtimes differs from one method to another

in this study. The computational cost of SCM and LASSO

is easily computed by assigning a predefined number of

CPUs to the task on an external cluster through PsN. For

ML methods, deriving the actual computation cost is not

straightforward. as methods are locally trained and then

runtimes impacted by other programs or competitive tasks.

Moreover, the runtimes given for ML include the time

spent on the grid-search, which consist of testing 25 to 125

combinations (models) of hyper parameters depending on

the methods. Increasing or decreasing the number of such

combinations directly impacts the computational cost of

the method.

Real case

The four ML methods are used to estimate the top 10

predictors of cetuximab clearance and the central volume

of distribution from the 30 initial covariates. Six of the top

10 covariates for clearance are the same across the meth-

ods. Three additional covariates are selected by three

methods. For volume, four covariates are selected by all

methods and two additional covariates by three methods.

Given the parameter estimates of the base model, impor-

tance scores for the two parameters are computed in

approximately 10 min. No comparison is made with SCM,

as runtimes exceed 19 days. This computational difference

is greater than the one previously discussed because the

base model in this real case is much more complex. While

the model complexity greatly impacts SCM, which requires

the estimation of many models within each path, this has

no effect on ML methods, in which only the base model

has to be estimated. Thus, this real use case further high-

lights the benefit of adopting ML methods for the fast

screening of covariates not only when a large set is

involved, but also when base models are complex and long

estimation runtimes are required.

Evaluation of EBEs shrinkage

ML methods use EBEs to perform covariate selection,

relating the accuracy of the selection to EBEs. Results from

the investigation of scenarios 7a and 7b show that the

performance of all methods is impacted by the higher

shrinkage as indicated by the low F1 scores (Online

Resources Table S4). NN performs better than the other

methods. Depending on the strategy of selection, RF has

similar or better performances than SCM. No differences

between SCM and SVM (with both kernels) are suggested.

As for other scenarios, F1 scores for COSSAC and SCM

are comparable. F1 scores for scenario 7b are slightly

Table 3 Computational cost (in hours) of considered methods. Costs

are reported as average values with standard deviation in brackets

across all scenarios, for complex scenarios (including more than 15

covariates: 5a-f, 6a-f), and for simple scenarios (including less than 5

covariates: 1a-f, 2a-f)

SCM COSSAC SVR Lin SVR RBF RF NN

Simple Scenario 9.5 (4.08) 3.6 (1.7) 0.08 (0.06) 0.13 (0.09) 0.10 (0.02) 2.3 (0.29)

Complex Scenario 87.6 (33.0) 13.0 (3.3) 0.55 (0.16) 0.68 (0.13) 0.16 (0.08) 7.75 (026)

Overall 27.1(40.3) 7.4 (5.2) 0.3 (0.2) 0.41 (0.2) 0.12 (0.06) 3.4 (2.4)
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higher than those for scenario 7a; this is likely due to

number fluctuations. AUROCs for the ML methods are

shown in Online Resources Fig. S2.

Discussion

The integration of ML methods into MID3 problems rep-

resents a great opportunity for more efficient and advanced

analytical solutions. In this study, the use of different ML

algorithms for fast screening of covariates in population

models is assessed and compared to state-of-the-art PMX

techniques. True models which differ in the number of

covariates (1 to 7 categorical, 1 to 12 continuous), corre-

lations between covariates (three levels), and effect size

(two levels) were defined and used to assess the methods

across a total of 36 scenarios. Two additional scenarios

with higher values of EBEs shrinkage are also investigated.

The exploration of time-varying covariates was out-of-

scope of this analysis.

SCM and LASSO implemented in PsN, and COSSAC in

Monolix are compared with four ML methods: RF, SVR

with RBF or linear kernels, and NNs. To provide an

automatic assessment of results, three selection approa-

ches, based on covariate scores were studied and assessed

in terms of AUROC and F1 scores. The AUROCs indicate

a perfect covariate ranking in half of the scenarios for RF,

and NNs achieve the highest AUROC on average. SVR

with both kernels led to similar results. The comparison of

ML and PMX methods is based on F1 scores, which

indicates slightly better performance for ML methods. In

addition, the evaluation of computational costs suggested a

significant benefit of ML over standard PMX approaches,

with an average runtime of 1 h versus 27 h for SCM and

7.5 h for COSSAC. This benefit remains significant after

adding the runtime of a full final model in Monolix or

NONMEM. Lower F1 scores are obtained for all methods

when assessing their performance in scenarios with the

higher shrinkage values.

To further investigate available options to optimize

PMX approaches, the GAM method [10] and the lin-

earization-based SCM were tested and compared with the

other methods for scenario 6e, representative of most

common scenarios. The use of linearization greatly

improves the computational cost of SCM (from 73 to 16.3

h), while preserving its accuracy. Such runtime is still

larger than those of ML methods (0.25 h for RF, 0.55 h for

SVR both kernels, 3.1 h for NN), but comparable to

COSSAC (15.7 h). GAM computational cost is of 2.5 h,

thus, comparable to NN. However, the F1 score was the

lowest across all considered methods (Online Resources

Table S5). Of note, the computational gain of SCM and

COSSAC could be further increased by reducing the

number of tested relationships.

This work highlights the significant contributions that

ML methods could offer during an initial fast screening of

covariates to inform subsequent population modeling steps.

This is especially valid now, as an increasing amount of

data is being collected at the population and individual

patient levels. These conclusions are validated in an

extreme case including 95 false covariates and 5 true

covariates. To keep the PsN-NONMEM runtime reason-

able, only five datasets were simulated for this scenario.

The results are in line with those obtained in the overall

analysis. The SCM F1 score is 0.85 and the computation on

12 CPUs takes more than 450 h. ML methods have dif-

ferent F1 scores: 1 for RF, 0.8 for SVR regardless of the

kernel used, and 0.68 for NN. Runtime differences were

considerable: less than 1.5 h for RF, 3 h for NN on 12

CPUs, 12 h for SVR with a linear kernel, and 10 h for SVR

with RBF kernel. With only 11 h of computation and an F1

score of 0.81, COSSAC performs well and is equivalent to

ML methods in this extreme scenario.

ML approaches are tested in only one relatively simple

structural and statistical model; however, as demonstrated

in our real use case, the established framework can be

generalized to any model. The computational gain pro-

vided by ML methods becomes even larger with complex

structural models because ML does not require solving the

differential equations, and its performance is not going to

be impacted by the model complexity. Using ML on real

datasets to increase the efficiency of population PKPD

covariate model building in the case of a large data sets or

complex models with intensive runtimes could be envis-

aged by adopting ML for fast initial covariate screening,

and then consider the top (e.g., 10 or 20) covariates with

higher importance score in a final model-building step,

performed according to standard and preferred PMX

approaches (e.g., SCM, FFEM, FREM). The PMX step is

crucial to end with a satisfying model able to assess the

relevance of the covariates and to be usable for prediction

in different patient populations and dosing scenarios for an

impactful MID3.

The power of ML in obtaining fast and accurate results

for large datasets has already been demonstrated over the

last decade. The challenge is now to include ML in state-

of-the-art processes to improve their performance. Our

study highlights the great potential and synergistic effect of

integrating these techniques into classical PMX modeling

by leveraging their use for the next generation of MID3 in

the digital data era.

Supplementary Information The online version of this article

(https://doi.org/10.1007/s10928-021-09757-w) contains supplemen-

tary material, which is available to authorized users.
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