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Abstract
Compartmental models which yield linear ordinary differential equations (ODEs) provide common tools for pharma-

cokinetics (PK) analysis, with exact solutions for drug levels or concentrations readily obtainable for low-dimensional

compartment models. Exact solutions enable valuable insights and further analysis of these systems. Transit compartment

models are a popular semi-mechanistic approach for generalising simple PK models to allow for delayed kinetics, but

computing exact solutions for multi-dosing inputs to transit compartment systems leading to different final compartments is

nontrivial. Here, we find exact solutions for drug levels as functions of time throughout a linear transit compartment

cascade followed by an absorption compartment and a central blood compartment, for the general case of n transit

compartments and M equi-bolus doses to the first compartment. We further show the utility of exact solutions to PK ODE

models in finding constraints on equi-dosing regimen parameters imposed by a prescribed therapeutic range. This leads to

the construction of equi-dosing regimen regions (EDRRs), providing new, novel visualisations which summarise the safe

and effective dosing parameter space. EDRRs are computed for classical and transit compartment models with two- and

three-dimensional parameter spaces, and are proposed as useful graphical tools for informing drug dosing regimen design.

Keywords Mathematical pharmacology � Pharmacokinetics � Compartment models � Differential equations �
Transit compartments � Regimen design

Introduction

Mathematical models for the absorption, distribution and

elimination of drugs are common in the pharmacokinetics

(PK) literature. Typically, a drug’s route through the body

to its pharmacological effect site is modelled as a number

of compartments, with transfer between compartments

being governed by pharmacokinetic rate laws. It is com-

mon to consider only one or two compartments, with linear

pharmacokinetics, resulting in low-dimensional linear

ordinary differential equation (ODE) systems. However,

such models are not sufficient to capture delay-type effects,

whereby some time passes before the drug appears at

measurable levels in the systemic circulation [44]. If a

significant ‘‘drug absorption delay’’ [44, 46] is observed,

then a lag-time is sometimes introduced into solutions to

the simple models to account for the delay, while avoiding

any mechanistic considerations of the underlying delay

roaaataaat esses. This simple approach may be used to

paramaterise a system delay, but it is known that absorp-

tion delay is a complex process that is not switch-like. As

such, lag-time models can give a poor characterisation of

absorption-phase PK.

Transit compartment models have been proposed to

capture delay effects in PK time courses, through a semi-

mechanistic approach of increasing the number of com-

partments through which the drug is transferred en route to

the central compartaament (blood) [26, 27, 32, 33, 44, 46,

47]. The development of ‘‘full’’ or accurate mechanistic

physiologically-based PK models requires much
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experimental data and knowledge which may be unavail-

able. For systems exhibiting delays, transit compartment

models therefore represent a physiologically plausible and

mathematically practical alternative to the change-point

approach of lag-time models.

While transit compartment models add additional com-

plexity beyond one- or two-compartment models, their

outputs in response to a single bolus dose to the first

compartment may be derived analytically in certain cases.

An analytical solution permits relatively straightforward

approaches to both sensitivity analysis (particularly when

varying the number of compartments) and model fitting. In

[44], the response to a bolus dose is considered for an n-

transit compartment model with an additional ‘‘absorption

compartment’’ between transit compartment n and the

central circulation. An analytical solution for the drug

concentration in the nth transit compartment is presented,

and used as an input to the absorption compartment ODE,

together with the Stirling approximation, to transform a

discrete optimisation problem to a continuous one for the

purpose of data fitting. The analysis and parameter esti-

mation is limited to the case of single bolus dose, and exact

solutions are not found for the absorption and central

compartments. Further mathematical properties for transit

compartment models in pharmacodynamics are presented

in [55].

Drug dosing regimens often use multi-dosing treat-

ments, whereby a regular dose is given at regular specified

dosing intervals. For intravenous (IV) or oral administra-

tion of a drug, the analysis of a one- or two-compartment

model with periodic bolus input yields analytical solutions

for the drug level in the central compartment (e.g.

[11, 24, 43, 45]). Time courses of drug level (or concen-

tration) simulations show transient and steady-state (peri-

odic) profiles which may then be compared with minimum

effective and maximum safe levels which define a thera-

peutic window. We will introduce the idea of an equi-

dosing regimen region of (dose,interval)-space, which

gives a guide for selecting therapeutic equi-dosing

regimens.

Given that it is accepted that drug absorption delay may

be a significant pharmacokinetic effect, analysis of transit

compartment models, incorporating multi-dose inputs,

appears to be a valuable pursuit. Some attention has been

paid to this problem in the PK literature. Shen et al. [46]

extend the work of [44] to derive a solution to the multi-

dose problem at the nth transit compartment using the

method of superposition. However, the challenge remains

to solve for the drug level in the central compartment

exactly, and to use this result as a platform for further

analysis, including design of safe dosing regimens.

In this paper, we present new mathematical and graph-

ical results which both generalise transit compartment PK

models and summarise dosing regimen constraints given by

therapeutic ranges imposed on these models. In ‘Methods:

multi-dosing models with and without transit compart-

ments—formulation’, we formulate linear ordinary differ-

ential equation (ODE) models for one-compartment, two-

compartment and transit compartment pharmacokinetics,

extending the work of [44] to consider drug level in the

central compartment. In ‘Analytical solutions for equi-

dosing regimens’, we review standard analytical results for

multi-bolus and multi-infusion dosing, and derive a new

exact solution for the transit compartment model with

general number of compartments and doses. This new

generalised solution and its improvement over existing

models comprise our first main contribution. In ‘Results:

equi-dosing time courses’, we present simulations and data

fitting using the new analytical solutions, illustrating their

predictive capability, and highlighting the error between

the new exact solution and Stirling approximation solution

of [44] for a single bolus dose. In ‘Results: equi-dosing

regimen regions’, we present our second main contribution,

namely the new concept of equi-dosing regimen regions

(EDRRs), which provide a novel visualisation to sum-

marise constraints on dosing regimen parameters. We

conclude in ‘Discussion’ with a discussion of our main

results, highlighting our contributions to the PK and

mathematical modelling literature.

Methods: multi-dosing models
with and without transit compartments—
formulation

General compartmental model schematic

We use a compartmental approach to model a drug’s route

from administration to the systemic circulation. Ultimately,

the systemic circulation is treated as the final compartment

in a cascade, hereafter referred to as the central compart-

ment. The central compartment drug concentration (the

drug amount per volume of distribution) is responsible for

responses at drug effect sites [45], and we consider the drug

level ac as the output in each of our models.

For intranvenous (IV) dosing, the drug immediately

appears in the central compartment upon administration.

We will refer to the corresponding model as a single-

compartment or one-compartment model (Fig. 1, model

(M1)). The amount of drug in the central compartment (the

‘‘drug level’’) in this model is governed by an ordinary

differential equation (ODE) which describes linear phar-

macokinetics, whereby the drug is eliminated from the

compartment as a first order process with elimination rate

constant ke. A two-compartment model (Fig. 1, model

(M2)) in which drug appears in the central compartment
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via an absorption compartment is often used to model oral

dosing [43, 45], where the absorption compartment is

representative of the gastrointestinal (GI) tract. In response

to a bolus dose input, the central compartment drug level ac
in (M2) is both delayed and smoothed in comparison with

the absorption compartment level ab. In order to model a

more pronounced delay by way of a semi-mechanistic

compartmental schematic, we consider a transit compart-

ment cascade feeding the absorption compartment, as in

[44] (Fig. 1, model (Mt)). We note that such a modelling

approach corresponds to the so-called linear chain trick

[23].

Dosing regimen inputs

Dosing patterns in therapeutics often consist of multi-

dosing treatments, whereby doses are administered peri-

odically [11, 43, 45, 46]. Models for multi-dosing are

typically analysed under the assumption of equi-dosing,

whereby both the dose D0 and dosing interval (time

between doses) T are constants. In this case, the couple

ðT;D0Þ constitutes the dosing regimen. Here we principally
investigate equi-dosing regimens in which the input is a

fixed bolus dose administered periodically to the central,

absorption or first transit compartment (see Fig. 2, regimen

(Beq)). We also consider a simple perturbation to this

regimen, where a loading dose DL (greater than D0) is

administered at t ¼ 0, followed by equi-dosing (Fig. 2,

regimen (BeqL)). This regimen is common in practice,

such that a loading dose helps to achieve therapeutic drug

levels rapidly, while the subsequent equi-dosing maintains

therapeutic levels [45].

We further consider the case of equi-infusion dosing,

whereby for model (M1), the input is periodic constant

infusions of drug to the central compartment, over fixed

‘‘on’’ time intervals, separated by fixed ‘‘off’’ intervals

(Fig. 2, regimen (Ieq)).

Model assumptions and considerations

Transit compartment models (TCMs) for PK typically take

the drug amounts in each compartment (ai for i ¼ 1; . . .; n,
ab and ac in Fig. 1) as state variables (see, e.g.,

[26, 44, 46]). The bioavailability factor F, which is the

fraction of drug dose ultimately absorbed into the systemic

circulation, is an important consideration. Existing TCM

models and simpler models introduce this ‘‘correction’’

factor at different points in the cascade

[23, 26, 34, 43, 44, 46]. Here we follow [23, 43] in intro-

ducing the factor immediately, such that the first com-

partment in the cascade is fed by the effective dose

(F � dose).

We consider equi-dosing regimens for both IV infusion

and n-transit compartment cascades, to allow analysis of

drug level time course features in general. Together with

prescribed therapeutic ranges, our analysis will indicate

regions of equi-dosing regimen parameter space which

give safe and effective treatments at steady-state. A ther-

apeutic range is typically defined by minimum effective

and maximum safe drug concentrations in the central

compartment. For a given drug amount ac, the corre-

sponding drug concentration Cc is given by ac=V , where V

is the calculated volume of the central compartment

[25, 43, 45]. Therefore, for a fixed, known volume V, we

can state a corresponding therapeutic range in terms of

drug amounts, requiring

Dme\ac\DMS; ð2:1Þ

where Dme and DMS are the minimum drug level for ther-

apeutic effect and maximum safe drug level respectively.

Fig. 1 Compartmental model schematics. (M1) Single-compartment

model—the input dose immediately appears in the central compart-

ment, in amount ac. (M2) Two-compartment model—the input dose

first appears in an absorption compartment, in amount ab. From here,

it is transferred to the central compartment, in which the amount is ac.
Transfer from absorption to central compartment is a first order

process, with rate constant ka (we consider ka [ ke [45])—and k 6¼

ke; ka [44]. (Mt) Transit-compartment model—the input dose first

appears in the first of n transit compartments, which contain the

amounts a1, a2; . . .; an. Drug is transferred through the cascade of n
transit compartments, as first order process with rate constant k for

each compartment. From transit compartment n, drug is transferred to

the absorption compartment. For all three models, the (first order)

elimination rate constant is ke
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For the transit compartment model, the transit cascade

prior to the absoprtion compartment consists of n com-

partments, each with an elimination rate k. The mean

transit time (MTT) for this cascade is given by (see [44])

MTT ¼ n

k
: ð2:2Þ

Ordinary differential equation formulation

For a multi-dosing regimen, the problem can be stated as

an initial value problem (IVP) for the state variables (e.g. ai
for i ¼ 1; . . .; n, ab and ac for model (Mt)) with impulsive

drug inputs to the first compartment described by a dosing-

rate forcing function comprising Dirac delta functions for

discrete impulses (as in [26, 34]).

Firstly, the IVPs we consider for single-compartment IV

multi-dosing and two-compartment oral multi-dosing are

summarised in Table 1. For equi-bolus dosing with M

doses D0 at time intervals T starting at t ¼ 0 (regimen

(Beq)), the input rate to the first compartment is

gBðtÞ ¼
XM

j¼1

FD0dðt � ðj� 1ÞTÞ: ð2:3Þ

If the first bolus dose is replaced with a larger loading dose

DL (regimen (BeqL)), then the forcing rate function is

gBLðtÞ ¼ FDLdðtÞ þ
XM

j¼2

FD0dðt � ðj� 1ÞTÞ: ð2:4Þ

For equi-infusion dosing (regimen Ieq) with infusion rate

kin, infusion ‘‘on’’ duration T, infusion ‘‘off’’ duration tf ,

and M infusions, the forcing rate function is

gIðtÞ ¼ Fkin
XM

j¼1

�
Hðt � ðj� 1ÞTÞ � Hðt � ðj� 1ÞT � tf Þ

�
;

ð2:5Þ

where H is the Heaviside function.

We will consider solutions to the IVPs given in Table 1

in constructing the associated equi-dosing regimen regions.

Beyond these relatively simple models, our analysis

extends to the n-transit compartment model with input into

the first transit compartment (model (Mt)). The governing

Fig. 2 Dosing regimen input schematics. (B1) Single bolus dose D0

(measured in mg) administered at time t ¼ 0. (Beq) Equi-bolus

dosing, with a bolus dose D0 mg administered at time t ¼ 0, and again

at times t ¼ T ; 2T ; 3T , etc. The dosing interval T is typically

measured in hours. (BeqL) Equi-bolus dosing (D0;T) with an initial

loading dose DL administered at time t ¼ 0. (I1) Constant infusion,

with drug infused into central compartment, starting at time t ¼ 0, at a

rate kin (mg h�1). (Ieq) Equi-infusion dosing, with drug infused into

central compartment at a rate kin, periodically with period T. Each
dosing interval infusion ‘‘on’’ for duration tf , then infusion ‘‘off’’ for

duration ðT � tf Þ
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equations consist of ðnþ 2Þ ODEs, which may be written

in matrix form as

d

dt
x ¼ Bxþ g; xð0Þ ¼ 0; ð2:6aÞ

where

x ¼

a1ðtÞ
a2ðtÞ
..
.

..

.

anðtÞ
abðtÞ
acðtÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

; B ¼

�k

k � k

k � k

. .
. . .

.

k � k

k � ka

ka � ke

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

g ¼

g1ðtÞ
0

..

.

..

.

0

0

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

ð2:6bÞ

and

g1ðtÞ ¼
FD0dðtÞ for regimen (B1)

gBðtÞ for regimen (Beq)

gBLðtÞ for regimen (BeqL)

8
><

>:
; ð2:6cÞ

where d is the Dirac delta function.

For all cases, the solution to the IVP consists of all state

variables as functions of time. The primary state variable of

interest is the central circulation drug level acðtÞ.

Analytical solutions for equi-dosing
regimens

Here we present exact solutions for central compartment

drug levels under a variety of equi-dosing regimens. Sin-

gle-compartment and two-compartment model solutions

are included for comparison with transit compartment

model (TCM) solutions, and to aid the construction of equi-

dosing regimen regions in ‘Results: equi-dosing regimen

regions’. The exact TCM solutions represent an improve-

ment on existing approximate solutions [44].

Exact solutions for one-compartment and two-
compartment models with equi-dosing

In Table 2, we list exact solutions for drug level in the

central compartment acðtÞ for one-compartment and two-

compartment model IVPs formulated in Table 1, under

equi-dosing inputs given by Fig. 2 and Eqs. (2.3)–(2.5).

These include well-known solutions (e.g., [6, 19, 45]); for

comparison with the TCM solution, their derivations may

be found in detail in Appendix 1. Throughout, H is the

Heaviside function, and

tj ¼ t � ðj� 1ÞT ¼ time since jth dose: ð3:14Þ

Solutions may be written compactly without summation

notation by considering, for example, the central com-

partment drug level after theMth dose, aMc ðtMÞ. The steady-
state (T-periodic) drug level function is denoted a1c ðt1Þ,
where t1 is the time since the start of the dosing interval.

Table 1 Initial value problems (IVPs) of interest for single- and two-

compartment models

Model Input IVP

M1 Beq

dac
dt

¼ �keac þ gBðtÞ;
acð0Þ ¼ 0:

M1 BeqL

dac
dt

¼ �keac þ gBLðtÞ;
acð0Þ ¼ 0:

M1 Ieq

dac
dt

¼ �keac þ gIðtÞ;
acð0Þ ¼ 0:

M2 Beq

dab
dt

¼ �kaab þ gBðtÞ;
dac
dt

¼ kaab � keac;

abð0Þ ¼ acð0Þ ¼ 0:

M2 BeqL

dab
dt

¼ �kaab þ gBLðtÞ;
dac
dt

¼ kaab � keac;

abð0Þ ¼ acð0Þ ¼ 0:

Here, d is the Dirac delta function, M is the number of doses given,

and T is the dosing interval for bolus doses. Model and Input labels

refer to Figs. 1 and 2
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Exact solution for transit compartment model
with equi-bolus dosing

More generally, the transit compartment model (Mt) com-

prises a multi-compartment oral absorption process, and the

ODEs may be written in matrix form as in (2.6). We consider

equi-bolus dosing, i.e. forcing input (Beq), so that g1ðtÞ ¼
gBðtÞ. The exact solution may be written using the matrix

exponential [9, 27], or by using Laplace Transforms (Ap-

pendix 1.4). For the transit compartments, we find that

aiðtÞ ¼ FD0k
i�1

ði� 1Þ!
XM

j¼1

HðtjÞti�1
j e�ktj ; i ¼ 1; . . .; n;

ð3:15Þ

where tj ¼ t � ðj� 1ÞT . We note that this result is equiv-

alent to the multi-dose analytical result of Shen et al [46]

which was derived via superposition arguments, to be used

as an input to their central compartment module, and also

to the Savic single-dose solution [44] if M ¼ 1. We now

extend our calculations to establish solutions for the

absorption and central compartment drug levels, which in

effect gives a general, analytical multi-dose solution to the

Savic problem [44]. The solution for the absorption com-

partment (see Appendix 1.4) is

abðtÞ ¼
FD0

ðn� 1Þ!
k

k � ka

� �nXM

j¼1

HðtjÞe�katj c
�
n; ðk � kaÞtj

�
;

ð3:16Þ

where c is the lower incomplete gamma function, defined

by (for positive integer n, see [3])

Table 2 Exact solutions to pertinent single-compartment and two-compartment models under equi-dosing regimen inputs

Singl-compartment IV equi-bolus dosing (M1,Beq):

acðtÞ ¼ FD0

PM
j¼1 H

�
tjÞe�ketj ; (3.1)

aMc ðtMÞ ¼ FD0

1� e�MkeT

1� e�keT

� �
e�ketM ; for 0� tM\T ; (3.2)

a1c ðt1Þ ¼ FD0

1� e�keT

� �
e�ket1 ; for 0� t1\T : (3.3)

Single-compartment IV equi-bolus dosing with loading dose (M1,BeqL), with a1c ðt1Þ given by ():

acðtÞ ¼ F D0

PM
j¼1 H

�
tjÞe�ketj

� 	
þ ðDL � D0Þe�ket

n o
; (3.4)

aMc ðtMÞ ¼ F D0

1� e�MkeT

1� e�keT

� �
e�ketM þ ðDL � D0Þe�keðtMþðM�1ÞTÞ


 �
: (3.5)

Single-compartment IV equi-infusion dosing (M1,Ieq):

acðtÞ ¼
Fkin
ke

XM

j¼1

HðtjÞð1� e�ketjÞ � Hðtj � tf Þð1� e�keðtj�tf ÞÞ; (3.6)

aMc ðtMÞ ¼
Fkin
ke

ð1� e�ketM Þ � HðtM � tf Þð1� e�keðtM�tf ÞÞ þ ðeketf � 1Þ e�MkeT � e�keT

e�keT � 1

� �
e�ketM


 �
: (3.7)

a1c ðt1Þ ¼ Fkin
ke

1� eketf � ekeT

1� ekeT
e�ket1 � Hðt1 � tf Þð1� e�keðt1�tf ÞÞ


 �
; for 0� t1\T : (3.8)

Two-compartment oral equi-bolus dosing (M2,Beq):

acðtÞ ¼
ka

ke � ka
FD0

XM

j¼1

H
�
tjÞ e�katj � e�ketj
� 

; (3.9)

aMc ðtMÞ ¼
ka

ke � ka
FD0

1� e�MkaT

1� e�kaT

� �
e�katM � 1� e�MkeT

1� e�keT

� �
e�ketM

� �
; (3.10)

a1c ðt1Þ ¼ ka
ke � ka

FD0

e�kat1

1� e�kaT
� e�ket1

1� e�keT

� �
: (3.1)

Two-compartment oral equi-bolus dosing with loading dose (M2,BeqL), with a1c ðt1Þ given by ():

acðtÞ ¼
ka

ke � ka
F D0

XM

j¼1

H
�
tjÞ e�katj � e�ketj
� 

þ ðDL � D0Þ e�kat � e�ket
� 

( )
; (3.12)

aMc ðtMÞ ¼
kaF

ke � ka

n
D0

1� e�MkaT

1� e�kaT

� �
e�katM � 1� e�MkeT

1� e�keT

� �
e�ketM

� �

þ ðDL � D0Þ e�kaðtMþðM�1ÞTÞ � e�keðtMþðM�1ÞTÞ� o
:

(3.13)

Models and dosing inputs are as in Table 1, H is the Heaviside function, and tj is given by (3.14)
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cðn; tÞ ¼
Z t

0

xn�1e�x dx ¼ ðn� 1Þ! 1� e�t
Xn�1

p¼0

tp

p!

 !
:

ð3:17Þ

Finally, the drug level in the central compartment (the

primary output of interest), acðtÞ, is given by

(Appendix 1.4):

acðtÞ ¼ FD0k
nka

ðn� 1Þ!ðke � kaÞ
XM

j¼1

H tj
� � e�katj

ðk � kaÞn
c
�
n; ðk � kaÞtj

�


� e�ketj

ðk � keÞn
c
�
n; ðk � keÞtj

��
:

ð3:18Þ

We next seek the steady-state solutions, as we have for the

one- and two-compartment problems.

Steady-state behaviour

The derivation of the steady-state solution is more involved

than for the earlier models (see Appendix 1.4.1). For the

transit compartments, we find that

a1i ðt1Þ ¼
Xi�1

p¼0

a1i�pð0Þ
p!

ðkt1Þp
 !

e�kt1 ; for i ¼ 1; . . .; n:

ð3:19Þ

The coefficients aið0Þ (the steady-state dosing interval

initial values) may be found using

a11 ð0Þ ¼ FD0

1� e�/
: ð3:20Þ

together with the recurrence relation (for i ¼ 2; . . .; n)

aið0Þ ¼b� a1i�1ð0Þ
1!

/þ a1i�2ð0Þ
2!

/2 þ a1i�3ð0Þ
3!

/3

�

þ � � � þ a11 ð0Þ
ði� 1Þ! /

i�1

�
¼ b

Xi�1

p¼1

a1i�pð0Þ
p!

/p;

ð3:21Þ

where

/ ¼ kT ; and b ¼ e�/

1� e�/
: ð3:22Þ

Computationally, we may use this recurrence relation.

Further, a closed form expression for a1i ð0Þ is found (see

Appendix 1.4.1):

a1i ð0Þ ¼ FD0

1� e�/

/i�1

ði� 1Þ!
Xi�1

p¼0

p!Sði� 1; pÞbp;

for i ¼ 1; . . .; n;

ð3:23Þ

where S is the Stirling number of the second kind [40],

given by

Sðn; qÞ ¼ 1

q!

Xq

p¼0

ð�1Þp
q

p

� �
ðq� pÞn;

where
q

p

� �
¼ q!

p!ðq� pÞ! is the binomial coefficient;

ð3:24Þ

and taking Sð0; 0Þ ¼ 1. For the absorption compartment,

we find

a1b ðt1Þ ¼ a1b ð0Þ þ
Xn

p¼1

a1p ð0Þ
ðn� pÞ!

k

k � ka

� �n�pþ1
"

cðn� pþ 1; ðk � kaÞt1Þ
#
e�kat1 ;

ð3:25Þ

where

a1b ð0Þ ¼ ba
Xn

p¼1

a1p ð0Þ
ðn� pÞ!

k

k � ka

� �n�pþ1

cðn� pþ 1; ðk � kaÞTÞ;
ð3:26Þ

and

ba ¼
e�kaT

1� e�kaT
: ð3:27Þ

Finally, and ultimately, the steady-state profile in the

central compartment is given by

a1c ðt1Þ¼ a1c ð0Þe�ket1 þ ka
ka� ke

�
(
a1b ð0Þðe�ket1 � e�kat1Þ þ

Xn

p¼1

a1p ð0Þ
ðn� pÞ!

k

k� ke

� �n�pþ1

e�ket1

"

cðn� pþ 1; ðk� keÞt1Þ�

k

k� ka

� �n�pþ1

e�kat1 cðn� pþ 1; ðk� kaÞt1Þ
#)

;

ð3:28Þ

where
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a1c ð0Þ ¼ bc �
(
a1b ð0Þðe�keT � e�kaTÞ þ

Xn

p¼1

a1p ð0Þ
ðn� pÞ!

k

k � ke

� �n�pþ1

e�keT cðn� pþ 1; ðk � keÞTÞ �
"

k

k � ka

� �n�pþ1

e�kaT cðn� pþ 1; ðk � kaÞTÞ
#)

;

ð3:29Þ

and

bc ¼
ka

ðka � keÞð1� e�keTÞ : ð3:30Þ

We now have in place new analytical solutions for a gen-

eral M-equi-dose input to an n-transit compartment model

with absorption and central compartments. These solutions

may be used to predict drug level dynamics exactly, rather

than approximately (see (4.5)). Further, the steady-state

solutions may be used to guide safe and effective dosing

regimen design, given a specified therapeutic range.

Computational evaluation of the lower incomplete gamma
function

In order to use the analytical results of the previous sub-

section, a computational method for evaluating the lower

incomplete gamma function is required. The definition

itself (3.17) immediately suggests several approaches for a

given n, including numerical evaluation of the integral for

given t, computation of the truncated exponential sum, and

using symbolic computation to derive an exact expression

for the integral, then evaluating at given t. In fact, more

efficient methods for evaluating this function have received

attention in the mathematical literature, with many

involving series and continued fraction expansions

[1, 2, 17, 41, 50]. In MATLAB, the built-in function

gammainc may be used [35], and is our preferred eval-

uation method due to its accuracy and run time (see

Appendix 1.4.2). In software where such a function is not

avaialble, the following relationship between the lower

incomplete gamma function c and the cumulative distri-

bution function FC for the gamma distribution may be used

( [35]):

cðn; tÞ ¼ CðnÞFCðt; n; 1Þ: ð3:31Þ

Here, n is taken as the shape parameter of the distribution,

and the scale parameter is unity. Furthermore, the log-

gamma function is a built-in function in many software

packages, and the exponentiated log-gamma function is

often used in situations where numerical difficulties may

arise in evaluating the gamma function directly [35].

Hence, a practical approach for evaluating cðn; tÞ is to use

built-in functions to evaluate

cðn; tÞ ¼ elnCðnÞFCðt; n; 1Þ ¼ expðlnCðnÞÞFCðt; n; 1Þ:
ð3:32Þ

The log-gamma function is available in PK analysis

packages and languages including NONMEM [4],

MLXTRAN/MONOLIX [31], PharmML [48], and also in

MATLAB [35] and Excel [37]. Each of these packages also

has the exponential function and cumulative gamma dis-

tribution F available.

Results: equi-dosing time courses

Here, we present simulated time courses of drug levels,

using the analytical solutions given in ‘Analytical solutions

for equi-dosing regimens’. In all cases, we have computed

using MATLAB [35].

IV equi-bolus dosing—one-compartment model

In Fig. 3a, we plot a typical drug level time course for the

IV equi-bolus dosing problem (M1,Beq), which has solu-

tion given by (3.2), and steady-state profile given by (3.3).

The characteristic features of the time courses include jump

discontinuities at t ¼ jT , exponential decay over each

dosing interval, and approach to a periodic steady-state

[45]. Clearly, acceptable dosing regimens would only exist

for certain ðT ;D0Þ choices. Also shown is the continuous

infusion profile given by

acðtÞ ¼
Fkin
ke

ð1� e�ketÞ; ð4:1Þ

taking kin ¼ D0

T (see (A.16)). The dosing interval average

drug level approaches the corresponding infusion steady-

state level, which is apparent from the graph, and from

calculating a1c ½0;T � ¼
F�D0

T

ke
from (3.3) and comparing with

the steady-state of (4.1). Finally, we note that the admin-

istration of a loading dose at time t ¼ 0 may give a treat-

ment that is immediately and always therapeutic, and drug

levels close to the steady-state.

IV equi-infusion dosing

In Fig. 3b, we plot a typical drug level time course for the

IV equi-infusion dosing problem (M1,Ieq), which has

solution given by (3.6), and steady-state profile given

by (3.8). The characteristic features of the time courses

include derivative discontinuities (but continuous drug

levels) at t ¼ jT and t ¼ jT þ tf , exponentially decaying

rise followed by exponential decay over each dosing
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interval, and approach to a periodic steady-state [45].

Again, acceptable dosing regimens would only exist for

certain ðT;D0Þ choices.

Single continuous infusion as limit of IV equi-
bolus dosing

In Fig. 3c, we plot a drug level time course for IV con-

tinuous infusion (4.1) for infusion rate kin, together with an

equi-bolus dosing (M1,Beq) solution (3.2) for which the

dosing rate is D0

T ¼ kin with very short dosing interval T. It

is apparent, and intuitively known, that continuous infusion

represents a limit of a corresponding equi-bolus regimen

for high dosing frequency. In Appendix 2.1 we offer a

proof of this result using l’Hopital’s rule.

Oral bolus equi-dosing—two-compartment
model

In Fig. 3d, we plot a typical drug level time course for the

oral equi-bolus dosing problem (M2,Beq), which has

solution given by (3.10), and steady-state profile given

by (3.11). The characteristic features of the time courses

include derivative discontinuities at t ¼ jT , a two-phase

profile (absorption then elimination) over each dosing

interval, and approach to a periodic steady-state [45]. We

note that the administration of a loading dose at time t ¼ 0

may give a treatment that reaches therapeutic level earlier,

but for which there is still some nonzero waiting time

before the therapeutic level is reached. It is clearly possible

to give a loading dose which ensures that therapeutic drug

level is both reached within the first dosing interval and is

maintained thereafter.

The acðtÞ time course approaches a T-periodic steady-

state profile, which will be non-monotonic for all regimens

(even those for which the time course is monotonic for the

Fig. 3 Drug level time courses. Throughout, we take F ¼ 1. Where

shown, Dme and DMS represent hypothetical minimum effective and

maximum safe levels respectively, giving the therapeutic range

½Dme;DMS�. Where shown, the steady-state profile overlays the final

dosing interval for comparison. a IV equi-bolus dosing (M1, Beq),

with and without loading dose. D0=500 mg, T = 12 h,

ke ¼ 0:0692 h�1 (taken from [10]). Loading dose (M1,BeqL) has

DL ¼ 800 mg. Continuous infusion at a rate kin ¼ D0

T ¼ 41:67 h�1 is

also shown. b IV equi-infusion dosing (M1,Ieq) with kin ¼ 41:67 h�1,

tf ¼ 3 h, T ¼ 6 h, ke=0.0692 h�1. c IV equi-bolus dosing (M1, Beq)

with D0=20.83 mg, T=0.5h, ke ¼ 0:0692h �1, together with contin-

uous infusion with kin ¼ D0

T ¼ 41:67 h�1. (d) Oral equi-bolus dosing

(M2,Beq) with D0 = 500 mg, T=12h, ke ¼ 0:0692 h�1, ka ¼ 0:7 h�1.

Loading dose (M2,BeqL) has DL ¼ 800 mg
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early dosing intervals), exhibiting both absorption and

elimination phases. Expressions for the peak drug level and

the peak timing are given in Appendix 2.2. Maximum and

minimum drug levels for a number of models will be used

in ‘Results: equi-dosing regimen regions’ to construct equi-

dosing regimen regions, which give a summary guide for

regimen design.

Transit compartments—smoothed delays, lag
time and data fitting (single-dose)

In Fig. 4, we demonstrate the delaying effect of a train

of transit compartments for a single dose regimen. It is

clear (Fig. 4a) that a delta-function-like bolus dose input to

the first transit compartment effects a ‘‘spread-out bolus’’

dose in later transit compartments. Eventually a spread-out

bolus profile is seen for the final transit compartment,

which becomes the input to the absorption compartment,

centered around t ¼ MTT ¼ n
k. As in [44], we consider the

transit compartment cascade delaying the appearance of

bolus dose in the absorption compartment of a standard

two-compartment oral dosing model. We see that (Fig. 4b,

c), for a fixed time lag tlag ¼ MTT taking k ¼ MTT
n , the pure

delay (time-lag) profiles (see [45])

alagb ðtÞ ¼
0 0� t� tlag

FD0e
�kaðt�tlagÞ t[ tlag



; ð4:2Þ

and

alagc ðtÞ¼
0 0� t�tlag
ka

ke�ka
FD0 e�kaðt�tlagÞ �e�keðt�tlagÞ

� 	
t[ tlag

8
<

: ;

ð4:3Þ

are approached by the equivalent transit compartment

approximations for increasing n. Such ‘‘smoothed delay’’

profiles may well capture experimental data better than no-

delay or pure-delay models [44]. Indeed, we find a better fit

to published data for a single dose of the drug gliben-

clamide [44] using a transit compartment model than using

a pure time-lag model (Fig. 5). For the least-squares data

fitting shown in Fig. 5, we use the optimisation function

fminsearch in MATLAB [35], with the objective

function being the sum of squares between data and sim-

ulation at the data points. For each fixed n in turn, and for

the time-lag model (for which tlag is one of the fitted

parameters), the optimisation routine is run for 1000

iterations.

Parameter identifiability

We note that applying optimisation routines to estimate PK

parameters for n ¼ 1 (a single transit compartment) should

be with caution, since in this case, ke is identifiable but k

and ka are unidentifiable. This is readily seen by consid-

ering a single bolus dose to the transit compartment for

cases (i) k ¼ k1 and ka ¼ k2, and (ii) k ¼ k2 and ka ¼ k1,

for rate constants k1 and k2. In both cases, the inflow rate to

Fig. 4 Drug level time courses

for transit compartment model

with a single dose (Mt,B1).

Throughout, we take F ¼ 1, D0

= 500 mg, ke=0.0692 h�1

ka=0.7 h�1 (for hypothetical

drug described in [10]). Here,

tlag ¼ MTT ¼ 3h, and k ¼ MTT
n .

a Drug level aiðtÞ for
compartments i ¼ 3; 20; 60; 100
of a cascade with n ¼ 100

transit compartments. b
Absorption compartment level

abðtÞ for cascades with n ¼
3; 20; 60; 100 transit

compartments, with equivalent

time-lag profile for pure delay to

absorption compartment. c
Central compartment level acðtÞ
for cascades with n ¼
3; 20; 60; 100 transit

compartments, with equivalent

time-lag profile for pure delay to

absorption compartment
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the central compartment kaabðtÞ is found from (3.15) to

(3.16) to be

kaabðtÞ ¼ FD0

k1k2
k2 � k1

e�k1t � e�k2t
� 

: ð4:4Þ

The central compartment drug level will be identical for

both cases, hence ka and k are not uniquely identifiable

from the single output acðtÞ. This is a manifestation of the

so-called flip-flop phenomenon for two-compartment

kinetics [45]. The parameter ke is identifiable. An example

computation is shown in Appendix 2.3. For n[ 1 this

phenomenon is avoided, and all parameters are uniquely

identifiable (see Appendix 2.3).

Transit compartments—exact
versus approximate solutions

The original transit compartment schematic presented in

[44] has been key to our analysis. A significant advance in

our work is the development of an analytical solution

which solves the problem exactly. The original single bolus

dose analysis [44] uses exact solutions for each transit

compartment, but employs the Stirling approximation for

the factorial, to solve the following system for the final two

compartments.

dab
dt

¼ FD0k
n

ffiffiffiffiffiffi
2p

p
ðn� 1Þn�

1
2e�ðn�1Þ

tn�1e�kt; ð4:5aÞ

dac
dt

¼ kaab � keac; ð4:5bÞ

abð0Þ ¼ acð0Þ ¼ 0: ð4:5cÞ

A comparison between a typical numerical solution of the

approximate model (4.5) and corresponding exact solu-

tions given by (3.16)–(3.18) for a single bolus dose is given

in Fig. 6. It is clear that the new exact solutions provide a

significant improvement in accuracy over the approximate

solutions, particularly for n� 4, for which the relative error

in the peak ac value is between 3% and 8.4%.

Transit compartments—equi-dosing

While the published data and modelling in [44] focus on a

single dose, we naturally wish to use such models for

simulating time courses under multi-dosing regimens. The

local maxima and minima in a multi-dosing timecourse

prediction as the system approaches a periodic steady-state

must be considered in regimen design [12]. In Fig. 7, we

show predicted equi-dosing drug levels together with data

used for fitting to a single dose, as in [12]. The approach to

a periodic steady-state is clear in each case. For each

timecourse, we note that the transit compartment profile is

Fig. 5 Drug level time courses for transit compartment model with a

single dose (Mt,B1), with fitting to experimental data for drug

glibenclamide, taken from [44], using WebPlotDigitizer [42], in

response to a 3.5 mg dose. Original data converted from concentra-

tion to drug level using volume of distribution of 3.79l [44]. Central

compartment drug level (mg) versus time (h) is shown. a Time

courses fitting model (Mt,B1) to data for varying number of transit

compartments n. b Sum of squared errors between data and best-fit

simulation for 2� n� 15. c Best-fit transit compartment and lag-time

models, together with time course data. For (Mt,B1) model, n ¼ 10

gives best fit, with fitted parameters k ¼ 12:76 h�1, ka ¼ 9:11 h�1,

ke ¼ 0:96 h�1, F ¼ 0:69, and sum of squared errors 0.059. For time-

lag model, fitted parameters are ka ¼ 5:67 h�1, ke ¼ 0:92 h�1,

tlag ¼ 0:78h and F ¼ 0:63, and sum of squared errors 0.38
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bounded by the pure time delay profile as we approach

steady-state. So using a pure time lag model to fit single

dose data and predict multi-dosing dynamics may overes-

timate the level of fluctuation, which is an important

characteristic considered in regimen design.

In Appendix 2.4, we present further time course simu-

lations illustrating the effect of the transit rate constant on

the smoothed delay through the system.

Results: equi-dosing regimen regions

It is common to consider potential therapeutic protocols

which will give steady-state drug levels within a prescribed

therapeutic range by simulation with multiple dosing reg-

imens and observing whether the steady-state falls within

that therapeutic range [12, 25, 43, 45]. One can approach

dosing regimen design iteratively, simulating in this man-

ner and adjusting base parameters until a theoretically safe

and therapeutic regimen is found [25]. Here we present a

novel and alternative analysis which will capture the con-

straints imposed on the dosing regimen parameters by the

therapeutic range, which is given by

Dme ¼minimum effective level and

DMS ¼maximum safe level:
ð5:1Þ

We propose that equi-dosing regimen regions (EDRRs),

which are regions of the parameter space giving accept-

able regimens, may be used to summarise steady-state

constraints and guide regimen design from the outset of

any investigation.

Two-parameter dosing regimens

Equi-dosing regimen region for IV equi-bolus dosing

For model (M1) with forcing (Beq), we seek constraints on

the two equi-dosing regimen parameters D0 and T such that

the steady-state time course given by (3.3) has

Dme\a1c ðt1Þ\DMS: ð5:2Þ

Now a1c ð0Þ ¼ FD0

1�e�keT and a1c ðT�Þ ¼ FD0e
�keT

1�e�keT , with a1c ðt1Þ
decreasing, so we require that

Dme\
FD0e

�keT

1� e�keT
and

FD0

1� e�keT
\DMS;

so that the region of ðT ;D0Þ-space for acceptable dosing

regimens is that corresponding to the inequality constraints

Fig. 6 Difference between exact and approximate solutions for transit

compartment model with single bolus dose. Throughout, we take

ka ¼ 9:11 h�1, ke ¼ 0:96 h�1, F ¼ 0:69, D0 ¼ 3:5mg, and

MTT ¼ 0:78h, and for each n, we take k ¼ n
MTT. a Absorption

compartment drug level - exact (3.16) versus approximate (4.5)

solutions for varying n. b Central compartment drug level—

exact (3.18) versus approximate (4.5) solutions for varying n. c
Relative error made using Stirling approximation of n!. (d) Root mean

squared error (RMSE) and relative error between exact and approx-

imate solution peak values for acðtÞ shown in panel (b)
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Dme

F
ekeT � 1
� �

\D0 \
DMS

F
1� e�keT
� �

: ð5:3Þ

The upper bounds on T and D0 for the safe and effective

dosing region are given by

T ¼ 1

ke
log

DMS

Dme

� �
; D0 ¼

1

F
ðDMS � DmeÞ: ð5:4Þ

We see in Fig. 8a that the acceptable EDRR for equi-bolus

dosing is given by a petal-shaped region. The two curves

divide the ðT;D0Þ parameter space into four regions; the

three regions other than the EDRR correspond to steady-

state drug levels which are unsafe, sub-therapeutic, or both

unsafe and sub-therapeutic over subintervals of their peri-

odic timecourses. Illustrative drug level time courses are

shown in Fig. 9.

Clearly the EDRR could be used at the outset of any

investigation to guide regimen design, prior to any time

course simulation or experiment.

Equi-dosing regimen region for oral equi-bolus dosing

For model (M2) with forcing (Beq), we consider the

steady-state solution (3.11). It is straightforward to show

(Appendix 2.2) that the minimum and maximum levels

a1c;min, a
1
c;max, and peak time t�1 are given by

a1c;min¼a1c ð0Þ ¼ ka
ke�ka

FD0

1

1�e�kaT
� 1

1�e�keT


 �
;

ð5:5aÞ

t�1 ¼ 1

ka � ke
log

ka
ke

1� e�keT

1� e�kaT

� �
; ð5:5bÞ

Fig. 7 Equi-dosing drug level acðtÞ time courses for transit compart-

ment model (Mt,Beq). a Simulated time course (Mt,B1) for n ¼ 10

transit compartments with MTT ¼ 3h. Here, F ¼ 1, ke=0.0692 h�1

ka=0.7 h�1 (for hypothetical drug described in [10]). Equi-dosing

regimen has D0 = 500 mg, T=8h. Also shown is equivalent pure time

lag result. b Simulated time course for parameters fitted to Savic

single dose data [44] for glibenclamide and (Mt,B1) model, as in

Fig. 5. Equi-dosing regimen has D0 = 3.5 mg, T=3h. Also shown are

equivalent pure time lag result, and data points used for fitting. c
Simulated time course for parameters fitted to a Savic single dose

time course (for a different individual) digitised from [44] for

glibenclamide and (Mt,B1) model. Equi-dosing regimen has D0 =

3.5 mg, T=3h. Also shown are equivalent pure time lag result, and

data points used for fitting. For (Mt,B1) model, n ¼ 10 gives best fit,

with fitted parameters k ¼ 17:59 h�1, ka ¼ 0:87 h�1, ke ¼ 0:48 h�1,

F ¼ 0:37

(a) (b)

Fig. 8 The two-dimensional equi-dosing regimen regions (EDRRs, the shaded, petal-shaped regions) for a IV equi-bolus dosing, and b oral equi-

bolus dosing. Functions flo and fhi are given in (5.6)
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Fig. 9 Equi-dosing regimen region (EDRR) for IV dosing with

F ¼ 1, ke ¼ 0:0692h�1, and hypothetical minimum effective and

maximum safe drug levels Dme ¼ 300 mg and DMS ¼ 1000 mg.

Sample time courses acðtÞ for four ðT ;D0Þ regimens are shown,

illustrating four different possibilities for the steady-state drug level:

(i) unsafe (toxic, overshooting therapeutic range), (ii) acceptable (safe

and effective, entirely within therapeutic range), (iii) both overshoot-

ing and undershooting therapeutic range, (iv) ineffective (under-

shooting therapeutic range)

Fig. 10 Equi-dosing regimen region (EDRR) for oral dosing with

F ¼ 1, ke=0.0692 h�1, ka=0.7 h�1, and hypothetical minimum effec-

tive and maximum safe drug levels Dme ¼ 300 mg and

DMS ¼ 1000 mg. Sample time courses acðtÞ for four ðT ;D0Þ regimens

are shown, illustrating four different possibilities for the steady-state

drug level: (i) unsafe (toxic, overshooting therapeutic range), (ii)

acceptable (safe and effective, entirely within therapeutic range), (iii)

both overshooting and undershooting therapeutic range, (iv) ineffec-

tive (undershooting therapeutic range)
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a1c;max ¼ a1c t�1
� �

¼ FD0

ke
ka

� �ke 1� e�kaT
� �ke

1� e�keTð Þka

( ) 1
ka�ke

:

ð5:5cÞ

Again requiring that Dme\a1c ðt1Þ\DMS, we find that the

region of ðT ;D0Þ-space for acceptable dosing regimens is

that corresponding to the inequality constraints

Dme

F

ka � ke
ka

ð1� e�keTÞð1� e�kaTÞ
e�keT � e�kaT


 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
floðTÞ

\ D0 \
DMS

F

ke
ka

� �ke 1� e�kaT
� �ke

1� e�keTð Þka

( ) 1
ke�ka

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fhiðTÞ

:

ð5:6Þ

We see in Fig. 8b that the acceptable EDRR for oral equi-

bolus dosing is given by another petal-shaped region. The

crossover values D� and T� are not easily found analyti-

cally as in (5.4) this time; if values are required for these,

they may be found numerically. Again the parameter space

is divided into four regions which correspond to different

Table 3 Summary algorithms for constructing two-parameter ðT ;D0Þ equi-dosing regimen regions

Analytical approach (one- and two-compartment models) Numerical approach for TCM (construct floðTÞ and
fhiðTÞ numerically)

Find expression for max and min values of a1c , namely a1c;max and a1c;min, in terms of

dosing regimen parameters D0 and T, as in (5.2) and (5.5)

Set therapeutic range constraints Dme\a1c;min and a1c;max\DMS

Rearrange constraints into form floðTÞ\D0\fhiðTÞ, as in (5.3) and (5.6)

Plot curves D0 ¼ floðTÞ and D0 ¼ fhiðTÞ. Region bounded by these two curves is the

EDRR

Discretise the ðT ;D0Þ parameter space, i.e. lay down a

grid of points ðTi;D0;jÞ
For each Ti:

For each D0;j:

Use expression for a1c ðt1Þ (3.28) to compute

a1c;max and a1c;min numerically

End

floðTiÞ ¼ D0;j such that ja1c;min � Dmej is minimised

fhiðTiÞ ¼ D0;j such that ja1c;max � DMSj is minimised

End

Plot curves D0 ¼ floðTÞ and D0 ¼ fhiðTÞ. Region
bounded by these two curves is the EDRR

(a) (b)

Fig. 11 Equi-dosing regimen region (EDRR) for transit compartment

model with F ¼ 1, ke=0.0692 h�1, ka=0.7 h�1, and hypothetical

minimum effective and maximum safe drug levels Dme ¼ 300 mg and

DMS ¼ 1000 mg. In both plots, the solid light blue EDRR is that for

standard oral dosing with no transit compartments, and the four

EDRR boundary curves are for transit compartment models with

varying number of transit compartments n. a Varying n with fixed

mean transit time MTT ¼ 4:4 h, so that k ¼ n
MTT. b Varying n with

fixed transit rate constant k ¼ 0:45 h�1, so that MTT ¼ n
k
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safety and effectiveness combinations. A computed EDRR

with illustrative drug level time courses is shown in

Fig. 10.

Equi-dosing regimen region for oral equi-bolus dosing
with n transit compartments

For the transit compartment model (Mt) with forcing (Beq),

we consider the steady-state solution (3.28). Locating

extrema in the time course is no longer viable analytically;

simple inequalities such as in (5.3) and (5.6) cannot be

found. Instead, to construct the EDRR, we discretise the

ðT;D0Þ-space, and compare numerically-found maxima

and minima of acðtÞ with DMS and Dme respectively. The

numerical method for constructing transit compartment

EDRRs is summarised algorithmically and compared with

the analytical approach for the simpler models in Table 3.

In Fig. 11, we show EDRRs for transit compartment

models with varying number of transit compartments n,

while fixing either the transit rate constant or the mean

transit time (which effects the ‘‘smoothed delay’’). In each

case, the EDRR is petal-shaped. Since the smoothed delay

gives a narrower band for the steady-state timecourse than

pure time-lag, the transit compartment EDRRs always

contain the standard oral-dosing EDRR as a subset.

Increasing either the timing of the delay (by decreasing

n with k fixed) or its ‘‘spread’’ (by increasing n with MTT

fixed) results in extension of the EDRR. For safe, conser-

vative dosing regimen design, any regimen within the

standard oral-dosing EDRR can, of course, be chosen.

Three-parameter dosing regimens

While equi-bolus dosing (input (Beq), with parameters T

and D0) is often of interest, we note that the cases of equi-

bolus dosing with loading dose (input (BeqL)) and equi-

infusion dosing (input (Ieq)) are also important clinically

[43]. Appropriate three-dimensional EDRRs for these

three-parameter regimens for IV administration may also

be constructed using the analytical results.

Equi-dosing regimen region for IV equi-bolus dosing
with loading dose

For model (M1) with forcing (BeqL), we seek constraints

on the three equi-dosing regimen parameters D0, T and DL

such that the time course given by (3.4) gives drug level

that is safe and therapeutic immediately and always. The

peak and trough levels are monotonic in time, so the nec-

essary and sufficient constraints are that the steady-state

time course given by (3.3) has

Dme\a1c ðt1Þ\DMS; ð5:7Þ

and also that the drug level for the first dosing interval is

entirely within the therapeutic range, i.e.

Dmee
keT\FDL\DMS: ð5:8Þ

For any given loading dose, the steady-state constraints

require T and DL to be within the petal-shaped two-pa-

rameter EDRR as before. The added constraints (5.8) limit

the dosing interval duration such that

T\
1

ke
log

FDL

Dme
:

Fig. 12 The two-dimensional

equi-dosing regimen region (the

shaded region) for equi-bolus

ðT;D0Þ dosing with fixed

loading dose DL. Due to the

added loading dose

constraints (5.8), the slice is

now a ‘‘chopped petal’’
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Thus, for fixed DL, the two-parameter (T ;D0) dosing reg-

imen region is a ‘‘chopped petal’’ shape, as shown in

Fig. 12. The three-dimensional EDRR is given by the

union of all such chopped petals, with DL ¼ Dme

F ekeT as a

boundary surface.

A computed three-parameter EDRR with illustrative

drug level time courses is shown in Fig. 13. The upper

boundary surface projected onto the ðT ;D0Þ plane gives the
two-parameter EDRR for IV dosing (see further visuali-

sation in Appendix 3). Only regimens (b) and (c) are within

the three-parameter EDRR. Regimen (d) gives time course

which is not therapeutic immediately, but it is at steady-

state; it is clear that addition of a larger loading dose as in

(c) gives an acceptable regimen. Practical dosing consid-

erations such as frequency of administration, and thera-

peutic considerations such as drug level fluctuation, dosing

interval averages and safety margins, can lead to specific

dosing protocols [43]. Regimens following such protocols

can easily be found by exploring the EDRR intuitively, for

example, taking into account proximity to EDRR

boundaries.

IV infusion equi-dosing

For model (M1) with forcing (Ieq), we have the three

parameter dosing regimen ðT; kin; tf Þ, and seek constraints

for safe and therapeutic drug levels at steady-state. From

(3.8), since the maximum and minimum drug levels at

steady-state occur at t1 ¼ tf and t1 ¼ 0 respectively, we

readily find that

maxða1c Þ ¼ a1c ðtf Þ ¼
Fkin
k

1� e�ketf

1� e�keT

� �
; ð5:9Þ

and

Fig. 13 Three-dimensional equi-dosing regimen region (EDRR) for

IV dosing with loading dose, with F ¼ 1, ke=0.0692 h�1, and

hypothetical minimum effective and maximum safe drug levels

Dme ¼ 300 mg and DMS ¼ 1000 mg. Three ‘‘chopped petal’’ cross

sections are highlighted for illustration: DL ¼ 475 (blue), DL ¼ 650

(red), DL ¼ 825 (green). Sample time courses acðtÞ for four

ðT;D0;DLÞ regimens are shown. Only regimens (b) and (c) are

within the three-parameter EDRR. Regimen (d) gives time course

which is not therapeutic immediately, but it is at steady-state

Fig. 14 The two-dimensional equi-dosing regimen region (the shaded

region) for equi-infusion with fixed tf . The value k
�
in is given in (5.12)

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:99–131 115

123



minða1c Þ ¼ a1c ðtf Þ ¼
Fkin
k

1� eketf

1� ekeT

� �
: ð5:10Þ

The acceptable three-dimensional equi-dosing regimen

region (for tf\T) is therefore given by

Dme
1� ekeT

1� eketf
\

Fkin
ke

\DMS
1� e�keT

1� e�ketf
: ð5:11Þ

It is instructive first to consider a two-parameter ðT; kinÞ
EDRR, given fixed infusion off-time tf . We find another

chopped petal two-dimensional region, now as illustrated

in Fig. 14. It is straightforward to show that the cross-over

value of infusion rate is

k�in ¼
ke
F

DMS � Dmee
�ketf

1� e�ketf

� �
: ð5:12Þ

The petal does not extend to the origin in the ðT ; kinÞ-plane;
it is chopped at at T ¼ tf due to the simple constraint that

tf\T .

The three-dimensional EDRR is given by the union of

all such chopped petals as tf varies, bounded by the planes

T ¼ tf and T ¼ tf þ 1
ke
log DMS

Dme
. In Fig. 15, we show a

computed three-parameter EDRR for a range of tf values,

with illustrative drug level time courses. It is clear that

dosing regimens can easily be chosen from within the

EDRR. Only regimens (a) and (b) are within the three-

parameter EDRR. Furthermore, systematic, direction-based

regimen perturbations within the EDRR can be made to

affect time course properties such as fluctuation level. The

EDRR is proposed as a useful summary towards dosing

regimen design.

Discussion

We have derived new analytical solutions for a generalised

multi-dose transit compartment model (TCM), extending

the analysis of the popular model in [44]. These solutions

provide a means for analysing and parameterising delayed

drug-level time courses without the need for nonsmooth

time-lag models. The smoothed delay profile may be seen

to give a better fit to experimental data than pure time delay

models. The generalised model allows for simulation of

realistic repeated dosing regimens that have traditionally

been analysed in detail for simpler one- and two-com-

partment models [10, 43, 45]. In this sense, we importantly

bridge the gap between traditional multi-dose analysis and

the time-delay and TCM literature [23, 26–28, 38, 44, 55],

providing a powerful method for capturing delays.

The exact solutions for the multi-dosing TCM will serve

primarily as a tool for PK analysis. Further complexity may

also be added as a future modelling extension by consid-

ering the ‘‘body’’ as a two-compartment schematic

including central and peripheral compartments. Since first-

order transfer is typically considered between these com-

partments [20, 43], the resulting ODE system including the

Fig. 15 Three-dimensional ðT ; tf ;D0Þ equi-dosing regimen region for

multi-infusion, with F ¼ 1, ke=0.2
�1, and hypothetical minimum

effective and maximum safe drug levels Dme ¼ 200 mg and

DMS ¼ 3000 mg. Three ‘‘chopped petal’’ cross sections are

highlighted for illustration: tf ¼ 4 (blue), tf ¼ 2:5 (red), tf ¼ 1

(green). Sample time courses acðtÞ for four regimens are shown.

Only regimens a and b are within the three-parameter EDRR (Color

figure online)
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full transit compartment cascade will be linear. As such, we

expect analytical solutions to be available again, via the

Laplace Transform method. Our new TCM analysis may

also have application beyond PK. For example, signal

transduction dynamics can often be modelled with linear

transit compartment cascades [15, 30, 47, 54]. Recently,

solutions comprising incomplete gamma functions have

been found for linear signal transduction cascades under

different input conditions [5]. We expect that further

analysis of periodic impulsive inputs to such systems will

be valuable.

Drug dosing regimen design is an important considera-

tion in therapeutics, from the stage of drug development

[39] through to personalised regimens [14, 36]. Given PK

parameters, prediction of drug levels based on regimen

parameters is common. With analytical expressions for

drug levels as functions of time, we have shown that

constraints on dosing parameters are readily available at

the outset of any simulation-based study. Furthermore, the

corresponding equi-dosing regimen regions (EDRRs) pro-

vide a novel, clear and succinct summarising visualisation

of the acceptable dosing regimen parameter space, which

may be explored intuitively to design effective and non-

toxic treatments.

Predictive modelling using ODE models for PK is

common, with end-user pharmacologists widely using

exact solutions for low-dimensional compartmental models

via a range of computational tools. Rapid computation of

predicted time courses for multiple dosing regimens has

further been facilitated by the development of used-

friendly simulation packages (e.g. [16, 18, 22]). EDRR

visualisation can easily be achieved through a variety of

computational tools, and we suggest that EDRRs could

easily be incorporated into a number of packages to aid

regimen design studies.

Finally, we remark that the mathematical detail of our

work is also interesting in its own right, under the banner of

mathematical pharmacology, which is now a recognised

and growing field [51]. In [29], simple compartmental PK

models are proposed as a starting point for biomathematics

study and research. We propose a number of model per-

turbations and related mathematical directions beyond the

scope of the current work. Constructing exact solutions for

the TCM model relies on evaluation of the lower incom-

plete gamma function cðn; tÞ, which we have explored in

some detail. An assessment of the practicality of using the

analytical TCM results here versus numerical ODE solu-

tions would be useful. Incorporation of more efficient and

accurate approximation for cðn; tÞ, especially for parameter

estimation purposes, may be a valuable pursuit, as dis-

cussed in [1, 2, 7, 50]. We have proposed a thorough

practical and sturctural identifiability analysis of our TCM

(‘Transit compartments—smoothed delays, lag time and

data fitting (single-dose)’ and Appendix 2.3). A theoretical

comparison of the new TCM results and delay-differential

equation (DDE) modelling approaches (see [26, 38]) under

impulse train inputs is also warranted. Linear pharma-

cokinetics is studied in our work, and much of the solution

method relies on time-invariance of the PK parameters.

However, chronopharmacokinetics is an important phe-

nomenon that should be considered in PK ODE modelling

[8, 21, 52]. Extension of our models and methodology to

incorporate time-dependent parameters will be explored in

future, but may be limited to numerical computation.

Further, wider applicability of the TCM and EDRR

methods will be achieved by consideration of nonlinear

Michaelis-Menten elimination, which is discussed mathe-

matically in [49, 53]. Also, importantly, the PK models

here may be linked to pharmacodynamics (PD) models to

explore predicted drug responses; PD models are described

in detail in [20, 25, 43, 45].
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Appendix 1: multi-dosing solutions

Equi-dosing solutions are derived here. While the results

are well known for the one-compartment and two-com-

partment models, it is instructive to see their solutions

derived by Laplace Transform methods prior to deriving

the full transit compartment model solution. Further, the

steady-state solutions are vital for construction of EDRRs.
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Single compartment—equi-bolus dosing

The solution to the (M1,Beq) problem (see Table 1) can

easily be found using Laplace Transforms. We take the

Laplace Transform of the IVP, giving

and hence

AcðsÞ ¼
GBðsÞ
sþ ke

: ðA:1Þ

For dosing regimen (Beq), the Laplace Transform of the

dosing rate (2.3) is

GBðsÞ ¼ FD0

XM

j¼1

e�ðj�1ÞTs; ðA:2Þ

and hence

AcðsÞ ¼ FD0

XM

j¼1

e�ðj�1ÞTs

sþ ke
:

Taking the inverse Laplace Transform, we find the solution

for the drug amount in the central compartment as

acðtÞ ¼ FD0

XM

j¼1

H
�
t � ðj� 1ÞT

�
e�ke

�
t�ðj�1ÞT

�
; ðA:3Þ

where H is the Heaviside function. Since

tj ¼ t � ðj� 1ÞT ¼ time since jth dose; ðA:4Þ

we can write

acðtÞ ¼ FD0

XM

j¼1

H
�
tjÞe�keðtjÞ: ðA:5Þ

This solution may be written compactly without summa-

tion notation by considering, for example, the central

compartment drug level after the Mth dose, aMc ðtMÞ. The
finite geometric series resulting from (3.1) may be evalu-

ated to give

aMc ðtMÞ ¼ FD0

1� e�MkeT

1� e�keT

� �
e�ketM ; for 0� tM\T:

ðA:6Þ

We readily find the steady-state (T-periodic) behaviour by

letting M ! 1 in (A.6), giving

a1c ðt1Þ ¼ FD0

1� e�keT

� �
e�ket1 ; for 0� t1\T: ðA:7Þ

For model (M1) with forcing (BeqL), superposition of (3.1)

with the solution corresponding to a single extra bolus

input of ðDL � D0Þ at time t ¼ 0 gives the solution for the

central compartment drug level as

acðtÞ ¼ F D0

XM

j¼1

H
�
tjÞe�ketj

 !
þ ðDL � D0Þe�ket

( )
:

ðA:8Þ

The central compartment drug level after the Mth dose,

aMc ðtMÞ, is then given by

aMc ðtMÞ ¼ F D0

1� e�MkeT

1� e�keT

� �
e�ketM




þðDL � D0Þe�keðtMþðM�1ÞTÞ
o
:

ðA:9Þ

The loading dose effect is transient, so the steady-state

behaviour is unaffected by DL.

Single compartment—equi-infusion dosing

The solution to the (M1,Ieq) problem (see Table 1) can be

found using Laplace Transforms. Again, taking the Laplace

Transform of the IVP gives

and hence

AcðsÞ ¼
GIðsÞ
sþ ke

: ðA:10Þ

For dosing regimen (Ieq), the Laplace Transform of the

dosing rate (2.5) is

GIðsÞ ¼ Fkin
XM

j¼1

e�ðj�1ÞTs � e�ððj�1ÞTþtf Þs

s
; ðA:11Þ

and hence

AcðsÞ ¼ Fkin
XM

j¼1

e�ðj�1ÞTs � e�ððj�1ÞTþtf Þs

sðsþ keÞ
:

Using the inverse Laplace Transform result [56]

L�1 e�as

sðsþ keÞ


 �
¼ Hðt � aÞð1� e�keðt�aÞÞ;

we find the solution for the drug amount in the central

compartment as

acðtÞ ¼
Fkin
ke

XM

j¼1

HðtjÞð1� e�ketjÞ � Hðtj � tf Þð1� e�keðtj�tf ÞÞ;

ðA:12Þ

where tj ¼ t � ðj� 1ÞT . Again, a geometric series results,

and for 0� tM\T , we may express the drug level as
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aMc ðtMÞ ¼
Fkin
ke

ð1� e�ketM Þ � HðtM � tf Þð1� e�keðtM�tf ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
contributionfrom

Mthdose

8
<

:

þ ðeketf � 1Þ e�MkeT � e�keT

e�keT � 1

� �
e�ketM

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
accumulation

9
>>=

>>;
:

ðA:13Þ

Letting M ! 1, we see that the steady-state (T-periodic)

level is given by

a1c ðt1Þ ¼Fkin
ke

1� eketf � ekeT

1� ekeT
e�ket1




�Hðt1 � tf Þð1� e�keðt1�tf ÞÞ
o
; for 0� t1\T :

ðA:14Þ

Alternatively, we may express this as

a1c ðt1Þ ¼ Fkin
ke

ekeT � eketf

1� ekeT
e�ket1 þ e�keðt1�tf ÞHðt1�tf Þ


 �
:

ðA:15Þ

We note here that the standard result (see, e.g., [45]) for a

single continuous infusion is found by taking M ¼ 1 in

(3.6) to give

acðtÞ ¼
Fkin
ke

ð1� e�ketÞ: ðA:16Þ

Two compartments—equi-bolus dosing

With a view to generalising the model to multiple transit

compartment absorption, it is convenient to write the sys-

tem (M2) (from Table 1) in matrix form as

d

dt
x ¼ Bxþ g; xð0Þ ¼ 0; ðA:17aÞ

where

x ¼
abðtÞ
acðtÞ

� �
; B ¼

�ka 0

ka � ke

� �
; g ¼

gBðtÞ
0

� �
:

ðA:17bÞ

We solve the matrix ODE problem again using the method

of Laplace Transforms. Firstly, we have

sXðsÞ ¼ BXðsÞ þ
GBðsÞ
0

� �
;

which gives

XðsÞ ¼ ðsI � BÞ�1 GBðsÞ
0

� �
; ðA:18Þ

We readily find

ðsI � BÞ�1 ¼ 1

ðsþ kaÞðsþ keÞ
sþ ke 0

ka sþ ka

� �
;

so that the Laplace Transform of the solution is

XðsÞ¼

GBðsÞ
sþka
GBðsÞ

ðsþkaÞðsþkeÞ

0
BB@

1
CCA¼

GBðsÞ
sþka

GBðsÞ
ke�ka

1

sþka
� 1

sþke

� �

0
BB@

1
CCA:

ðA:19Þ

Taking the inverse Laplace Transform, we find the solution

xðtÞ¼
abðtÞ
acðtÞ

� �
¼

FD0

PM
j¼1HðtjÞe�katj

ka
ke�ka

FD0

XM

j¼1

HðtjÞ e�katj �e�ketj
� 

0
BB@

1
CCA :

ðA:20Þ

Transit compartments—equi-bolus dosing

The solution to the (Mt,Beq) problem (see Table 1) can be

found using Laplace Transforms. Taking the Laplace

Transform of the IVP (2.6) (with g1ðtÞ ¼ gBðtÞ) gives
ðsI � BÞXðsÞ ¼ GðsÞ; ðA:21Þ

where the only nonzero element of GðsÞ is G1ðsÞ ¼ GBðsÞ.
Now, ðsI � BÞ is lower bidiagnoal, given by:

ðsI � BÞ ¼

sþ k

�k sþ k

� k sþ k

. .
. . .

.

� k sþ k

� k sþ ka

� ka sþ ke

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

ðA:22Þ

Hence (A.21) may be solved easily by a process of forward

substitution, or by noting that ðsI � BÞ�1
is lower trian-

gular, given by:
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The Laplace Transform of the drug level aiðtÞ in the ith

transit compartment is then given by

AiðsÞ ¼ ðsI � BÞ�1
1;i G1ðsÞ

¼ ki�1

ðsþ kÞi
� GBðsÞ for i ¼ 1; . . .; n :

ðA:24Þ

The Laplace Transform of the drug level abðtÞ in the

absorption compartment is

AbðsÞ ¼ ðsI � BÞ�1
1;nþ1 G1ðsÞ

¼ kn

ðsþ kÞnðsþ kaÞ
� GBðsÞ;

ðA:25Þ

while the transform of the drug level acðtÞ in the central

compartment is

AcðsÞ ¼ ðsI � BÞ�1
1;nþ2 GBðsÞ

¼ knka
ðsþ kÞnðsþ kaÞðsþ keÞ

� GBðsÞ;
ðA:26Þ

where, as before,

GBðsÞ ¼ FD0

XM

j¼1

e�ðj�1ÞTs: ðA:27Þ

For the transit compartments, we find from (A.24) and

(A.27) that

aiðtÞ ¼ L�1 AiðsÞf g ¼ FD0k
i�1L�1

XM

j¼1

e�ðj�1ÞTs

ðsþ kÞi

( )
:

Now, given that

L�1 e�ðj�1ÞTs

ðsþ kÞi

( )

¼ 1

ði� 1Þ!
�
t � ðj� 1ÞT

�i�1
e�k
�
t�ðj�1ÞT

�
H
�
t � ðj� 1ÞT

�
;

¼ 1

ði� 1Þ! t
i�1
j e�ktjHðtjÞ; where tj ¼ t � ðj� 1ÞT ;

ðA:28Þ

we find that

aiðtÞ ¼ FD0k
i�1

ði�1Þ!
PM

j¼1 HðtjÞti�1
j e�ktj ; i ¼ 1; . . .; n:

ðA:29Þ

For the absorption compartment, we find from (A.25) and

(A.27) that

abðtÞ ¼ FD0k
nL�1

XM

j¼1

e�ðj�1ÞTs

ðsþ kÞn �
1

sþ ka

( )
: ðA:30Þ

Now,

L�1 1

sþ ka


 �
¼ e�katHðtÞ; ðA:31aÞ

and, from (A.28),

L�1 e�ðj�1ÞTs

ðsþ kÞn

 �

¼ 1

ðn� 1Þ! t
n�1
j e�ktjHðtjÞ: ðA:31bÞ

Setting sj ¼ s� ðj� 1ÞT , we readily compute the follow-

ing inverse transform as a convolution:

ðsI � BÞ�1 ¼

1

sþ k
k

ðsþ kÞ2
1

sþ k

k2

ðsþ kÞ3
k

ðsþ kÞ2
1

sþ k

..

. ..
. ..

. . .
.

kn�1

ðsþ kÞn
kn�2

ðsþ kÞn�1

kn�3

ðsþ kÞn�2
� � � 1

sþ k

kn

ðsþ kÞnðsþ kaÞ
kn�1

ðsþ kÞn�1ðsþ kaÞ
kn�2

ðsþ kÞn�2ðsþ kaÞ
� � � k

ðsþ kÞðsþ kaÞ
1

sþ ka

knka
ðsþ kÞnðsþ kaÞðsþ keÞ

kn�1ka

ðsþ kÞn�1ðsþ kaÞðsþ keÞ
kn�2ka

ðsþ kÞn�2ðsþ kaÞðsþ keÞ
� � � kka

ðsþ kÞðsþ kaÞðsþ keÞ
ka

ðsþ kaÞðsþ keÞ
1

sþ ke

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ðA:23Þ
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L�1 e�ðj�1ÞTs

ðsþ kÞn �
1

sþ ka


 �
¼
Z t

0

1

ðn� 1Þ! s
n�1
j e�ksjHðsjÞ

� �

� e�kaðt�sÞHðt � sÞ
h i

ds;

¼ e�kat

ðn� 1Þ!

Z t

0

HðsjÞsn�1
j e�ksj ekas ds;

¼ e�kat

ðn� 1Þ!

Z t�ðj�1ÞT

�ðj�1ÞT
HðsjÞsn�1

j e�ksj ekaðsjþðj�1ÞTÞ dsj;

¼ e�kaðt�ðj�1ÞTÞ

ðn� 1Þ!

Z t�ðj�1ÞT

�ðj�1ÞT
HðsjÞsn�1

j e�ðk�kaÞsj dsj;

¼ HðtjÞe�katj

ðn� 1Þ!

Z tj

0

sn�1
j e�ðk�kaÞsj dsj:

ðA:31cÞ

For k 6¼ ka, we recognise the integral in the line above as

one related to the lower incomplete gamma function. In

particular, the lower incomplete gamma function c, defined
by (for positive integer n, see [3])

cðn; tÞ ¼
Z t

0

xn�1e�x dx ¼ ðn� 1Þ! 1� e�t
Xn�1

p¼0

tp

p!

 !
;

ðA:32Þ

has the following property (seen by making a change of

variables X ¼ ax):
Z t

0

xn�1e�ax dx ¼ 1

an
cðn; atÞ: ðA:33Þ

So (A.31c) gives

L�1 e�ðj�1ÞTs

ðsþ kÞn �
1

sþ ka


 �
¼ HðtjÞe�katj

ðn� 1Þ!ðk � kaÞn
cðn; ðk � kaÞtjÞ;

ðA:34Þ

and then (A.30) gives

abðtÞ ¼ FD0

ðn�1Þ!
k

k�ka

� 	nPM
j¼1 HðtjÞe�katj c

�
n; ðk � kaÞtj

�
:

ðA:35Þ

For the central compartment, we find from (A.26) and

(A.27) that

acðtÞ ¼ FD0k
nkaL�1

XM

j¼1

e�ðj�1ÞTs

ðsþ kÞn �
1

ðsþ kaÞðsþ keÞ

( )
:

ðA:36Þ

Now, for ke 6¼ ka, we have

L�1 1

ðsþ kaÞðsþ keÞ


 �
¼ HðtÞ

ke � ka
e�kat � e�ket
� �

;

ðA:37aÞ

L�1 e�ðj�1ÞTs

ðsþ kÞn �
1

ðsþ kaÞðsþ keÞ


 �

¼
Z t

0

1

ðn� 1Þ! s
n�1
j e�ksjHðsjÞ

� �

� Hðt � sÞ
ke � ka

e�kaðt�sÞ � e�keðt�sÞ
� 	� �

ds;

¼ 1

ðn� 1Þ!ðke � kaÞZ t

0

HðsjÞsn�1
j e�ksj e�kaðt�sÞ � e�keðt�sÞ

� 	
ds;

¼ 1

ðn� 1Þ!

Z t�ðj�1ÞT

�ðj�1ÞT
HðsjÞsn�1

j e�ksj e�katekasjþðj�1ÞT
�

�e�ketekesjþðj�1ÞT
	
dsj;

¼ HðtjÞ
ðn� 1Þ!

Z tj

0

sn�1
j e�ksj

e�katekasjþðj�1ÞT � e�ketekesjþðj�1ÞT
� 	

dsj;

¼ HðtjÞ
ðn� 1Þ! e�kaðt�ðj�1ÞTÞ

Z tj

0

sn�1
j e�ðk�kaÞsj dsj




� e�keðt�ðj�1ÞTÞ
Z tj

0

sn�1
j e�ðk�keÞsj dsj

�
;

¼ HðtjÞ
ðn� 1Þ! e�katj

Z tj

0

sn�1
j e�ðk�kaÞsj dsj




� e�ketj

Z tj

0

sn�1
j e�ðk�keÞsj dsj

�
:

ðA:37bÞ

Again, we write this result in terms of the lower incom-

plete gamma function, giving

L�1 e�ðj�1ÞTs

ðsþ kÞn �
1

ðsþ kaÞðsþ keÞ


 �

¼ HðtjÞ
ðn� 1Þ! e�katjcðn; ðk � kaÞtÞ � e�ketjcðn; ðk � keÞtÞ

� �
:

ðA:38Þ

Then (A.36) gives

acðtÞ ¼ FD0k
nka

ðn�1Þ!ðke�kaÞ
PM

j¼1H tj
� �

e�ka tj

ðk�kaÞnc
�
n;ðk�kaÞtj

�
� e�ketj

ðk�keÞnc
�
n;ðk�keÞtj

�n o
:

ðA:39Þ

Steady-state behaviour

To complete the analysis (and with a view to constructing

EDRR’s), we require solutions for the steady-state time

course profiles. For each of the transit compartments

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:99–131 121

123



(i ¼ 1; . . .; n), one approach is to solve the ODE for

0� t1\T , to give a solution parameterised by the initial

value a1i ð0Þ (where t1 ¼ 0 corresponds to the timing of

the bolus input to a1), then use periodicity to determine the

appropriate value of a1i ð0Þ. In the following, we use lower

case for the state variables and upper case for Laplace

Transforms. For clarity and illustration, we derive the

solutions for the first five transit compartments before

writing the solution for transit compartment n in general.

For compartment i ¼ 1, we have

da11 ðt1Þ
dt1

¼ �ka11 ðt1Þ;

) sA1
1 ðsÞ � a11 ð0Þ ¼ �kA1

1 ðsÞ;

) A1
1 ðsÞ ¼ a11 ð0Þ

sþ k
;

ðA:40aÞ

) a11 ðt1Þ ¼ a11 ð0Þe�kt1 : ðA:40bÞ

To determine a11 ð0Þ, we use the fact that there is periodic

bolus dose to this compartment:

a11 ð0Þ ¼ a11 ðTÞ þ FD0;

) a11 ð0Þ ¼ a11 ð0Þe�kT þ FD0;

) a11 ð0Þ ¼ FD0

1� e�kT
:

ðA:40cÞ

Letting

/ ¼ kT ; ðA:41Þ

we write

a11 ð0Þ ¼ FD0

1� e�/
: ðA:42Þ

For compartment i ¼ 2, we have

da12 ðt1Þ
dt1

¼ ka11 ðt1Þ � ka12 ðt1Þ;

) sA1
2 ðsÞ � a12 ð0Þ ¼ kA1

1 ðsÞ � kA1
2 ðsÞ;

) A1
2 ðsÞ ¼ a12 ð0Þ þ kA1

1 ðsÞ
sþ k

;

¼ a12 ð0Þ
sþ k

þ ka11 ð0Þ
ðsþ kÞ2

;

ðA:43aÞ

) a12 ðt1Þ ¼ a12 ð0Þ þ ka11 ð0Þ
1!

t1

� �
e�kt1 : ðA:43bÞ

To determine a12 ð0Þ, we use periodicity (noting that for

i[ 1 the drug level is continuous):

a12 ð0Þ ¼ a12 ðTÞ;

) a12 ð0Þ ¼ a12 ð0Þe�kT þ ka11 ð0Þ
1!

Te�kT ;

¼ a12 ð0Þe�/ þ a11 ð0Þ
1!

/e�/;

ðA:43cÞ

) a12 ð0Þ ¼ e�/

1� e�/
� a11 ð0Þ

1!
/: ðA:43dÞ

Letting

b ¼ e�/

1� e�/
; ðA:44Þ

we write

a12 ð0Þ ¼ a11 ð0Þ/ b
1!

: ðA:45Þ

For compartment i ¼ 3, we have

da13 ðt1Þ
dt1

¼ ka12 ðt1Þ � ka13 ðt1Þ;

) sA1
3 ðsÞ � a13 ð0Þ ¼ kA1

2 ðsÞ � kA1
3 ðsÞ;

) A1
3 ðsÞ ¼ a13 ð0Þ þ kA1

2 ðsÞ
sþ k

;

¼ a13 ð0Þ
sþ k

þ ka12 ð0Þ
ðsþ kÞ2

þ k2a11 ð0Þ
ðsþ kÞ3

;

ðA:46aÞ

) a13 ðt1Þ ¼ a13 ð0Þ þ ka12 ð0Þ
1!

t1 þ k2a11 ð0Þ
2!

t21

� �
e�kt1 :

ðA:46bÞ

To determine a13 ð0Þ, we use periodicity:

a13 ð0Þ ¼ a13 ðTÞ;

) a13 ð0Þ ¼ a13 ð0Þe�kT þ ka12 ð0Þ
1!

Te�kT þ k2a11 ð0Þ
2!

T2e�kT ;

¼ a13 ð0Þe�/ þ a12 ð0Þ
1!

/e�/ þ a11 ð0Þ
2!

/2e�/;

ðA:46cÞ

) a13 ð0Þ ¼ b� a12 ð0Þ
1!

/þ a11 ð0Þ
2!

/2

� �
ðA:46dÞ

¼ a11 ð0Þ/2 1

1!1!
b2 þ 1

2!
b

� �
; (using (A.45)):

ðA:46eÞ

For compartment i ¼ 4, we have
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da14 ðt1Þ
dt1

¼ ka13 ðt1Þ � ka14 ðt1Þ;

) sA1
4 ðsÞ � a14 ð0Þ ¼ kA1

3 ðsÞ � kA1
4 ðsÞ;

) A1
4 ðsÞ ¼ a14 ð0Þ þ kA1

3 ðsÞ
sþ k

;

¼ a14 ð0Þ
sþ k

þ ka13 ð0Þ
ðsþ kÞ2

þ k2a12 ð0Þ
ðsþ kÞ3

þ k3a11 ð0Þ
ðsþ kÞ4

;

ðA:47aÞ

) a14 ðt1Þ ¼ a14 ð0Þ þ ka13 ð0Þ
1!

t1

�

þ k2a12 ð0Þ
2!

t21 þ k3a11 ð0Þ
3!

t31

�
e�kt1 :

ðA:47bÞ

To determine a14 ð0Þ, we use periodicity:

a14 ð0Þ ¼ a14 ðTÞ;

) a14 ð0Þ ¼ a14 ð0Þe�kT þ ka13 ð0Þ
1!

Te�kT

þ k2a12 ð0Þ
2!

T2e�kT þ k3a11 ð0Þ
3!

T3e�kT ;

¼ a14 ð0Þe�/ þ a13 ð0Þ
1!

/e�/

þ a12 ð0Þ
2!

/2e�/ þ a11 ð0Þ
3!

/3e�/;

ðA:47cÞ

) a14 ð0Þ ¼ b� a13 ð0Þ
1!

/

�

þ a12 ð0Þ
2!

/2 þ a11 ð0Þ
3!

/2

� ðA:47dÞ

¼ a11 ð0Þ/3 1

1!1!1!
b3 þ 1

1!2!
þ 1

2!1!

� �
b2 þ 1

3!
b

� �
;

(using (A.45) and (A.46e)):

ðA:47eÞ

For compartment i ¼ 5, we have

da15 ðt1Þ
dt1

¼ ka14 ðt1Þ � ka15 ðt1Þ;

) sA1
5 ðsÞ � a15 ð0Þ ¼ kA1

4 ðsÞ � kA1
5 ðsÞ;

) A1
5 ðsÞ ¼ a15 ð0Þ þ kA1

4 ðsÞ
sþ k

;

¼ a15 ð0Þ
sþ k

þ ka14 ð0Þ
ðsþ kÞ2

þ k2a13 ð0Þ
ðsþ kÞ3

þ k3a12 ð0Þ
ðsþ kÞ4

þ k4a11 ð0Þ
ðsþ kÞ5

;

ðA:48aÞ

) a15 ðt1Þ ¼ a15 ð0Þ þ ka14 ð0Þ
1!

t1 þ k2a13 ð0Þ
2!

t21

�

þ k3a12 ð0Þ
3!

t31 þ k4a11 ð0Þ
3!

t41

�
e�kt1 :

ðA:48bÞ

To determine a15 ð0Þ, we use periodicity:

a15 ð0Þ ¼ a15 ðTÞ;

) a15 ð0Þ ¼ a15 ð0Þe�kT þ ka14 ð0Þ
1!

Te�kT þ k2a13 ð0Þ
2!

T2e�kT

þ k3a12 ð0Þ
3!

T3e�kT þ k3a11 ð0Þ
4!

T4e�kT ;

¼ a15 ð0Þe�/ þ a14 ð0Þ
1!

/e�/

þ a13 ð0Þ
2!

/2e�/ þ a12 ð0Þ
3!

/3e�/ þ a11 ð0Þ
4!

/4e�/;

ðA:48cÞ

) a15 ð0Þ ¼ b� a14 ð0Þ
1!

/þ a13 ð0Þ
2!

/2 þ a12 ð0Þ
3!

/3 þ a11 ð0Þ
4!

/4

� �

ðA:48dÞ

¼ a11 ð0Þ/4 1

1!1!1!1!
b4 þ 1

1!1!2!
þ 1

1!2!1!
þ 1

2!1!1!

� �
b3

�

þ 1

1!3!
þ 1

2!2!
þ 1

3!1!

� �
b2

þ 1

4!
b

�
;

(using ðA:45Þ; ðA:46eÞ; ðA:47eÞÞ:
ðA:48eÞ

The process continues, and clearly, the solution for the

nth transit compartment at steady-state is given by

a1i ðt1Þ ¼ a1i ð0Þ þ a1i�1ð0Þ
1!

ðkt1Þ þ a1i�2ð0Þ
2!

ðkt1Þ2
�

þ � � � þ a11 ð0Þ
ði� 1Þ! ðkt1Þi�1

�
e�kt1 ;

or

a1i ðt1Þ ¼
Pi�1

p¼0

a1i�pð0Þ
p! ðkt1Þp

� 	
e�kt1

; for i ¼ 1; . . .; n:

ðA:49aÞ

The coefficients aið0Þ (the steady-state dosing interval

initial values) may be found using

a11 ð0Þ ¼ FD0

1�e�/ : ðA:49bÞ

together with the recurrence relation (for i ¼ 2; . . .; n)
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aið0Þ¼b� a1i�1
ð0Þ

1! /þ a1i�2
ð0Þ

2! /2þ a1i�3
ð0Þ

3! /3þ���þ a1
1
ð0Þ

ði�1Þ!/
i�1

� 	
¼ b

Pi�1
p¼1

a1i�pð0Þ
p! /p

:

ðA:49cÞ

The recurrence relation is clear when considering the

generalisation of (A.46d), (A.47d), (A.48d), etc. A closed-

form expression for aið0Þ is also possible by considering

the generalisation of (A.46e), (A.47e), (A.48e), etc. The

coefficient of bK in the expression for a1i ð0Þ is given by a

reciprocal factorial product related to partitioning and

permutations of a set of K positive integers which sum to

ði�1Þ. These coefficients may be written in terms of the

Stirling number of the second kind [40], S, given by

Sðn; qÞ ¼ 1
q!

Pq
p¼0ð�1Þp

q

p

� �
ðq� pÞn

;

where
q

p

� �
¼ q!

p!ðq� pÞ! is the binomial coefficient;

ðA:49dÞ

and Sð0; 0Þ ¼ 1. Rewriting (A.42), (A.45), (A.46e),

(A.47e), (A.48e) so that the bracketed polynomials in b
have integer coefficients, and also continuing the process

up to the 10th transit compartment, we find that:

a11 ð0Þ ¼ FD0

1� e�/
;

a12 ð0Þ ¼ FD0

1� e�/
/b;

a13 ð0Þ ¼ FD0

1� e�/

/2

2!
2b2 þ b
� �

;

a14 ð0Þ ¼ FD0

1� e�/

/3

3!
6b3 þ 6b2 þ b
� �

;

a15 ð0Þ ¼ FD0

1� e�/

/4

4!
24b4 þ 36b3 þ 14b2 þ b
� �

;

a16 ð0Þ ¼ FD0

1� e�/

/5

5!
120b5 þ 240b4 þ 150b3 þ 30b2 þ b
� �

;

a17 ð0Þ ¼ FD0

1� e�/

/6

6!
720b6 þ 1800b5
�

þ1560b4 þ 540b3 þ 62b2 þ b
�
;

a18 ð0Þ ¼ FD0

1� e�/

/7

7!
5040b7
�

þ15120b6 þ 16800b5 þ 8400b4 þ 1806b3 þ 126b2 þ b
�
;

a19 ð0Þ ¼ FD0

1� e�/

/8

8!
40320b8 þ 141120b7
�

þ191520b6 þ 126000b5 þ 40824b4 þ 5796b3 þ 254b2 þ b
�
;

a110ð0Þ ¼
FD0

1� e�/

/9

9!
362880b9
�

þ1451520b8 þ 2328480b7 þ 1905120b6 þ 834120b5

þ186480b4 þ 18150b3 þ 510b2 þ b
�
:

In terms of the Stirling number of the second kind, the

closed-form expression for a1i ð0Þ is

a1i ð0Þ ¼ FD0

1�e�/
/i�1

ði�1Þ!
Pi�1

p¼0 p!Sði� 1; pÞbp
; for i ¼ 1; . . .; n:

ðA:49eÞ

For the absorption compartment, we have

da1b ðt1Þ
dt1

¼ ka1n ðt1Þ � kaa
1
b ðt1Þ;

) sA1
b ðsÞ � a1b ð0Þ ¼ kA1

n ðsÞ � kaA
1
b ðsÞ;

) A1
b ðsÞ ¼ a1b ð0Þ þ kA1

n ðsÞ
sþ ka

;

¼ a1b ð0Þ
sþ ka

þ k

sþ ka

Xn

p¼1

kn�pa1p ð0Þ
ðsþ kÞn�pþ1

;

ðA:50aÞ

) a1b ðt1Þ ¼ a1b ð0Þe�kat1

þ L�1 k

sþ ka

Xn

p¼1

kn�pa1p ð0Þ
ðsþ kÞn�pþ1

( )
:

ðA:50bÞ

Now, since

L�1 1

ðsþ kaÞðsþ kÞn�pþ1

( )

¼ 1

ðn� pÞ!ðk � kaÞn�pþ1
e�kat1 cðn� pþ 1; ðk � kaÞt1Þ;

ðA:50cÞ

we find that

a1b ðt1Þ ¼ a1b ð0Þ þ
Pn

p¼1

a1p ð0Þ
ðn�pÞ!

k
k�ka

� 	n�pþ1

cðn� pþ 1; ðk � kaÞt1Þ
� �

e�kat1

:

ðA:50dÞ

To determine a1b ð0Þ, we use periodicity:

a1b ð0Þ ¼ a1b ðTÞ;

) a1b ð0Þ ¼ a1b ð0Þ þ
Xn

p¼1

a1p ð0Þ
ðn� pÞ!

k

k � ka

� �n�pþ1
"

cðn� pþ 1; ðk � kaÞTÞ
#
e�kaT ;

ðA:50eÞ

so that

a1b ð0Þ ¼ ba
Pn

p¼1

a1p ð0Þ
ðn�pÞ!

k
k�ka

� 	n�pþ1

cðn� pþ 1; ðk � kaÞTÞ
;

ðA:50fÞ

where

ba ¼ e�kaT

1�e�kaT : ðA:50gÞ
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Finally, for the central compartment, we have

da1c ðt1Þ
dt1

¼ kaa
1
b ðt1Þ � kea

1
c ðt1Þ;

) sA1
c ðsÞ � a1c ð0Þ ¼ kaA

1
b ðsÞ � keA

1
c ðsÞ;

) A1
c ðsÞ ¼ a1c ð0Þ þ kaA

1
b ðsÞ

sþ ke
;

¼ a1c ð0Þ
sþ ke

þ ka
sþ ke

a1b ð0Þ
sþ ka

�

þ k

sþ ka

Xn

p¼1

kn�pa1p ð0Þ
ðsþ kÞn�pþ1

!
;

ðA:51aÞ

) a1c ðt1Þ ¼ a1c ð0Þ
sþ ke

þ ka
ðsþ keÞðsþ kaÞ

a1b ð0Þ
�

þk
Xn

p¼1

kn�pa1p ð0Þ
ðsþ kÞn�pþ1

!
:

ðA:51bÞ

Now, since

L�1 1

ðsþ kaÞðsþ keÞ


 �
¼ Hðt1Þ

ke � ka
e�kat1 � e�ket1
� �

;

ðA:51cÞ

and

L�1 1

ðsþ kaÞðsþ keÞðsþ kÞn�pþ1

( )

¼ 1

ðn� pÞ!ðka � keÞ
e�ket1

ðk � keÞn�pþ1
cðn� pþ 1; ðk � keÞt1Þ

 

� e�kat1

ðk � kaÞn�pþ1
cðn� pþ 1; ðk � kaÞt1Þ

!
;

ðA:51dÞ

we find that

a1c ðt1Þ¼a1c ð0Þe�ket1 þ ka
ka�ke

�
(
a1b ð0Þðe�ket1 �e�kat1Þ þ

Xn

p¼1

a1p ð0Þ
ðn�pÞ!

k

k�ke

� �n�pþ1

e�ket1 cðn�pþ1;ðk�keÞt1Þ�
"

k

k�ka

� �n�pþ1

e�kat1 cðn�pþ1;ðk�kaÞt1Þ
#)

:

ðA:51eÞ

To determine a1c ð0Þ, we use periodicity:

a1c ð0Þ ¼ a1c ðTÞ;

) a1c ð0Þ ¼ a1c ð0Þe�keT þ ka
ka � ke

�
(
a1b ð0Þðe�keT � e�kaTÞ þ

Xn

p¼1

a1p ð0Þ
ðn� pÞ!

k

k � ke

� �n�pþ1
"

e�keT cðn� pþ 1; ðk � keÞTÞ �

k

k � ka

� �n�pþ1

e�kaT cðn� pþ 1; ðk � kaÞTÞ

)
;

ðA:51fÞ

so that

a1c ð0Þ ¼ bc �
(
a1b ð0Þðe�keT � e�kaTÞ þ

Xn

p¼1

a1p ð0Þ
ðn� pÞ!

k

k � ke

� �n�pþ1

e�keT cðn� pþ 1; ðk � keÞTÞ �
"

k

k � ka

� �n�pþ1

e�kaT cðn� pþ 1; ðk � kaÞTÞ
#)

;

ðA:51gÞ

where

bc ¼ ka
ðka�keÞð1�e�keT Þ :

ðA:51hÞ

Computational evaluation of the lower incomplete gamma
function

Our preferred method for evaluating the lower incomplete

gamma function is using the built-in function gammainc

in MATLAB, which computes the normalised function

Pðn; tÞ ¼ cðn; tÞ
CðnÞ . In Fig. 16, we show a typical result

comparing run times and computed values of cðn; tÞ for a
given t and range of n, for five different methods. For

computations in MATLAB [35], it is clear that the quickest

method is using the built-in command gammainc. All

methods give values in agreement, except for the symbolic

computation of the sum in (3.17) for large n. This is due to

rounding and truncation errors introduced when evaluating

computed symbolic expressions. Hard-coding the expres-

sions in this sum results in the second shortest run time, but

this method is not practical for n[ 10. Use of the log-
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gamma function is an order of magnitude slower, but is still

much faster than employing a numerical integration

method. We conclude that built-in functions, either eval-

uating cðn; tÞ directly or via the log-gamma and distribution

functions, represent a practical approach to evaluating

cðn; tÞ. More efficient methods involving series and con-

tinued fraction expansions may be investigated

[1, 2, 17, 41, 50], but are beyond our scope here.

Appendix 2: time course results

Single continuous infusion as limit of IV equi-
bolus dosing

Recalling the IV equi-dosing result (3.2), we consider

dosing regimens which keep the ratio D0

T fixed, and let

T ! 0. That is, consider a fixed dosing rate R ¼ D0

T . Now

consider the drug level at the end of the Mth dosing

interval:

aMc ðTÞ ¼ FD0

1� e�MkeT

1� e�keT
e�keT ¼ FRT

1� e�MkeT

1� e�keT
e�keT :

Suppose that by the end of the Mth dosing interval the total

Fig. 16 Run time (desktop PC, Intel(R) Core(TM) i5-9400, 2.9GHz)

and value for different implementations of the lower incomplete

gamma function cðn; tÞ in MATLAB. The methods include (i) use of

built-in function gammainc, (ii) numerical evaluation of the integral

in (3.17) using integral command, (iii) hard-coding the sum in the

final term of (3.17) for n ¼ 1; . . .; 10, (iv) use of MATLAB’s

Symbolic Toolbox to expand the sum, (v) use of built-in functions

gammaln and gamcdf for log-gamma and cumulative distribution

functions for the calculation in (3.32). A typical result is shown,

taking t ¼ 2. Similar results are seen for a range of t values. The
average evaluation time in seconds is found using MATLAB’s

timeit command. a Evaluation times for different methods, for

n ¼ 1; . . .; 10. b Evaluation times for different methods, for

n ¼ 1; . . .; 40. c Computed values for different methods, for

n ¼ 1; . . .; 10. d Computed values for different methods, for

n ¼ 1; . . .; 40
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time since the first dose is tend (fixed constant). Then

tend ¼ MT , and so

acðtendÞ ¼ aMc ðTÞ ¼ FR
1� e�ketend

1� e�keT
Te�keT :

Then taking infinitesimally small dosing interval (and so an

infinitesimal dose), our result becomes

acðtendÞ ! lim
T!0

FRð1� e�ketendÞ Te�keT

1� e�keT
:

Now, using l’Hopital’s Rule, we see that

acðtendÞ ! FRð1� e�ketend Þ lim
T!0

e�keTð1� keTÞ
kee�keT

:

Thus, as T ! 0, we have

acðtendÞ ! FRð1� ketendÞ �
1

ke
¼ FR

ke
ð1� e�ketend Þ:

Now, if R ¼ D0

T ¼ kin, then

acðtendÞ !
Fkin
ke

ð1� e�ketend Þ; ðB:1Þ

which is equivalent to the continuous infusion solution

(4.1). �

Two-compartment oral equi-bolus dosing

Here, we note some properties of the two-compartment

equi-bolus dosing solutions (3.10) and (3.11). Firstly, the

minimum drug level on the nth dosing interval is given by

ancð0Þ, while for a local maximum (a peak level) in the time

course for ancðtnÞ at tn ¼ t�n, we need anc
0ðt�nÞ ¼ 0. We find,

by using (3.10), that:

t�n ¼ 1

ka � ke
log

ka
ke

1� e�nkaT

1� e�kaT

1� e�keT

1� e�nkeT

� �
: ðB:2Þ

If 0\t�n\T , then there is a peak blood drug level in the nth

dosing interval, given by

Fig. 17 Non-identifiability of k and ka for transit compartment model

with n ¼ 1. Solutions for a single bolus dose with FD0 ¼ 1 are

shown, for two parameter sets. Parameter set 1 has

ðk; ka; keÞ ¼ ð0:2; 1; 0:1Þ, and parameter set 2 has

ðk; ka; keÞ ¼ ð1; 0:2; 0:1Þ. The two parameter sets lead to identical

time course for the observed output acðtÞ, via different time courses

for a1ðtÞ and abðtÞ

Fig. 18 Parameter fitting for transit compartment model with n ¼ 10.

Pseudo-data (time courses of acðtÞ) are generated by simulating with

base parameter values k ¼ 12:76 h�1, ka ¼ 9:11 h�1, ke ¼ 0:96 h�1,

F ¼ 0:69, and a single bolus dose of 3.5 mg. a No noise is added to

the simulated time course, so the data are ‘‘perfect’’. The four

parameter values are estimated perfectly. b Randomly generated noise

(with an upper bound of 10% of the simulated peak value) is added to

create noisy data. The parameter estimates returned are

k ¼ 13:45 h�1, ka ¼ 7:46 h�1, ke ¼ 0:92 h�1, F ¼ 0:67
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Fig. 19 Equi-dosing time courses for transit compartment model

(Mt,Beq), showing transit, absorption and central compartment drug

levels. Simulated time courses (Mt,Beq) for n ¼ 10 transit compart-

ments with MTT ¼ 0:7837h. Here, F ¼ 0:69, ke=0.96 h�1

ka=9.11 h�1, k=12.76 h�1. Equi-dosing regimen has D0=3.5 mg,

T=3h. For validation, we show results from analytical solution and a

numerically computed solution. The dosing interval average at

steady-state is indicated. Also, the steady-state profile is shown for

each compartment

Fig. 20 Equi-dosing time courses for transit compartment model

(Mt,Beq), showing transit, absorption and central compartment drug

levels. Simulated time courses (Mt,Beq) for n ¼ 10 transit compart-

ments with MTT ¼ 0:7837h. Here, F ¼ 0:69, ke=0.96 h�1

ka=9.11 h�1, k=3.19 h�1. Equi-dosing regimen has D0=3.5 mg, T=3

h. For validation, we show results from analytical solution and a

numerically computed solution. The dosing interval average at

steady-state is indicated. Also, the steady-state profile is shown for

each compartment
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anc ;max ¼ anc t�n
� �

¼ FD0

ke
ka

� �ke 1� e�kaT

1� e�nkaT

� �ke 1� e�nkeT

1� e�keT

� �ka
( ) 1

ka�ke

:

ðB:3Þ

So we may write the maximum and minimum values of anc
on [0, T] as:

anc ;min¼ancð0Þ ¼ FD0

ka
ka�ke

1�e�nkeT

1�e�keT
� 1�e�nkaT

1�e�kaT


 �
;

ðB:4Þ

anc ;max ¼ anc minðt�n; TÞ
� �

; (using (B.2)) : ðB:5Þ

At steady-state, a local maximum in the time course is

ensured, occurring at

t�1 ¼ 1

ka � ke
log

ka
ke

1� e�keT

1� e�kaT

� �
: ðB:6Þ

The steady-state minimum and maximum drug levels are

then given by

a1c ;min¼a1c ð0Þ ¼ FD0

ka
ka�ke

1

1�e�keT
� 1

1�e�kaT


 �
;

ðB:7Þ

a1c ;max ¼ a1c t�1
� �

¼ FD0

ke
ka

� �ke 1� e�kaT
� �ke

1� e�keTð Þka

( ) 1
ka�ke

:

ðB:8Þ

Transit compartment parameter identifiability

In Fig. 17, we show time courses for a transit compartment

model with n ¼ 1 with a single bolus dose. Non-identifia-

bility of k and ka is clear, due to the flip-flop phenomenon

discussed in ‘Transit compartments—smoothed delays, lag

time and data fitting (single-dose)’. For our transit com-

partment model, this problem is unique to n ¼ 1, and no

such issues are seen with n[ 1. In Fig. 18, we plot a

typical parameter estimation result for n ¼ 10 compart-

ments, using the method described in ‘Transit compart-

ments—smoothed delays, lag time and data fitting (single-

dose)’. With ‘‘perfect’’ pseudo-data, we see the base

parameter set being recovered exactly, and with noisy

pseudo-data, the parameter estimates are in good agree-

ment with the base set. A formal structural and practical

identifiability analysis is proposed as future work, and will

use transfer functions and other methods described in [13].

Transit compartment equi-bolus dosing

In Figs. 19–20, we show time course results for a transit

compartment model under multi-dosing input (Mt,Beq),

using parameters taken from the fitted data in Fig. 5. Each

figure shows the analytical results for drug levels in a

number of transit compartments, with n ¼ 10 transit com-

partments in total. The absorption and central compart-

ments are also shown. For validation, results from a

numerical ODE solver are also shown. For tracking the

approach to steady-state, we mark the steady-state profile

and dosing interval average for each compartment plotted.

For each of the transit compartments, the steady-state

dosing interval average may be computed, for example,

from (2.6) by integrating each of the compartment ODEs in

turn. We find the transit compartment averages to be

a1i ½0;T � ¼
FD0

kT
; for i ¼ 1; . . .; n : ðB:9Þ

Similarly, for the absorption and central compartments, we

find

a1b ½0;T � ¼
FD0

kaT
; a1c ½0;T � ¼

FD0

keT
: ðB:10Þ

In both figures, we observe the delay effect, as the peak

drug levels appear later further through the transit cascade.

In Fig. 19, the transit rate constant k is taken from the

earlier data fitting, and the system almost reaches steady-

state by the second dosing interval. In Fig. 20, we take

k four-fold lower, which increases the smoothed delay, and

hence delays the approach to steady-state. In this case, the

delay effect is more evident throughout the transit cascade.

Fig. 21 Three-dimensional ðT ;D0;DLÞ equi-dosing regimen region

(EDRR) for IV dosing with loading dose, with F ¼ 1, ke=0.0692 h�1,

and hypothetical minimum effective and maximum safe drug levels

Dme ¼ 300 mg and DMS ¼ 1000 mg, as in Fig. 13. Projection onto

ðT;D0Þ-plane (the shadow) is the standard two-parameter full-petal

EDRR for steady-state conditions for oral dosing. The shadow of any

chopped petal slice (DL ¼ constant) through the three-dimensional

EDRR is contained within this

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:99–131 129

123



Appendix 3: equi-dosing regimen region
for IV equi-bolus dosing with loading dose

In Fig. 21, we show a computed example EDRR for the

three-parameter ðT;D0;DLÞ regimen including loading

dose. Cross sections of fixed DL through the EDRR are

chopped petals, while the EDRR shadow in the ðT ;D0Þ-
plane is the full petal EDRR for the steady-state.
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