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Abstract
A model for the homeostasis of glucose through the regulating hormones glucagon and insulin is described. It contains a

subsystem that models the internalization of the glucagon receptor. Internalization is a mechanism in cell signaling,

through which G-protein coupled receptors are taken from the surface of the cell to the endosome. The model is used to

interpret data from a glucagon challenge test in which subjects have been under treatment with a novel glucagon receptor

anti-sense drug which is aimed at reducing the number of receptors in the liver. It is shown how the receptor internalization

results in tolerance of the blood glucose concentration to glucagon-induced hyperglycemia. We quantify the reduction of

the number of receptors using the model and the data before and after treatment.
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Introduction

Insulin and glucagon are two major hormones in the reg-

ulatory system of blood glucose. Insulin is secreted by the

pancreas, especially when the concentration of blood glu-

cose is high. It promotes the uptake of glucose from the

blood into tissues. Glucagon is a hormone that has an

impact on glucose–insulin homeostasis through its recep-

tor. It is secreted by the pancreas when levels of blood

glucose are low and facilitates the release of glucose from

its glycogen storage in the liver into the bloodstream.

Four decades ago Bergman et al. [1] developed one of

the first mathematical models for glucose regulation. With

this model it became possible to estimate the insulin sen-

sitivity of diabetic patients. Also, the biphasic insulin

secretion profile was defined and the relationship between

insulin and glucose concentrations as a possible mecha-

nism of the disease was suggested. Since the study by

Bergman et al., mathematical models describing the

interaction of insulin and glucose have been extensively

studied (see [2] for a review).

A recent experimental study [3], based on a glucagon

challenge test, has yielded numerical data about the impact

of glucagon on levels of glucose. In this paper a model for

this challenge test is proposed. The model captures the

interaction of glucose, insulin, and glucagon, and is built

upon classical models of glucose–insulin interaction. Fig-

ure 1 gives a schematic illustration of this model, together

with the Bergman minimal model.

Below, a of list of some distinguishing features of the

extended model is presented.

– The Bergman minimal model has two turnover equa-

tions, one for insulin and one for glucose, whereas in

the model proposed here a third equation for the

glucagon concentration in the blood has been added.

The Bergman model treats hepatic glucose production

(HGP) as a constant independent of the concentration of

insulin and glucagon in the blood. In this study, the
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dependence of HGP on the glucagon concentration

needs to be taken into account in order to model the

glucagon challenge test.

– The second important feature of the model in the

present study is the incorporation of the dynamics of the

glucagon receptor. This model has much in common

with target-mediated drug disposition (TMDD) models

[4], but it has some differences too. The receptor

internalization and recycling events are generally not

present in TMDD models. Incorporating these events

into the model is necessary to explain and justify the

results of the challenge test.

– The third difference between the model in the present

study and most of the models derived from the minimal

model are the strict conditions posed by the setup of the

challenge test imposes on the model.

– A fourth feature of the challenge test is that the blood

insulin concentration is kept constant during the test.

Hence the effect of insulin on glucose production by the

liver is neglected in our model.

Many published physiological models of glucose home-

ostasis do not include the effect of glucagon on the

dynamics of glucose and merely focus on the impact of

insulin. Here some of the recent studies in which the effect

of glucagon, as well as insulin, are included in a model are

briefly mentioned. The glucagon-extended minimal model

in [5] is built upon the classical Bergman minimal model

[1]. Since the model is phenomenological, and the vari-

ables do not include a hepatic glucagon concentration, it is

not clear how one can add the dynamics of the glucagon

receptor to this model. Liu and Tang [6] have incorporated

both glycogen and glucagon into a detailed molecular

model; for our purposes, however, this model is too

detailed and has too many unknown parameters. Even more

detailed whole-body models for glucose–insulin–glucagon

interaction are given in [7]

Schneck et al. [8] presented a mechanistic model for

glucose–insulin–glucagon interaction and used it for

studying an oral glucokinase activator. Their model is

mostly concerned with modeling the glucagon secretion

process whereas the purpose of this study is to model the

effect of glucagon on HGP. Schneck et al. captured the

effect of glucagon on HGP by using a simple heuristic

power expression in which HGP is proportional to

(Glucagon)0:79: One might be able to use this simple

expression to fit the data of the glucagon challenge test, but

this will not yield information on how receptor kinetics

affects the HGP.

Peng et al. [9] proposed a detailed model for the glu-

cagon challenge test intended to study the effect of a glu-

cagon receptor antagonist drug on glucose homeostasis in

healthy and T2DM subjects. Their focus was to incorporate

the PK characteristics of the drug into the model. Another

aspect of their model is that the stimulatory effect of glu-

cagon on glucose production is expressed in terms of a

simple power expression, which states that HGP is pro-

portional to (Glucagon)4:05: Once again, with this choice of

modeling one cannot find out how receptor kinetics affects

the HGP.

The glucose–insulin–glucagon pharmacodynamic model

by Wendt et al. [10] is concerned with how glucose pro-

duction varies as a function of glucagon concentration. The

crucial modeling choice is the term that describes the

dependence of glucose production due to glycogenolysis on

the concentration of glucagon in the blood. Wendt et al. use

a Michaelis–Menten type model to describe that process. In

the present study, similar (Hill-type) kinetics has been used

for the same purpose, however not as a function of the

plasma concentration of glucagon but of the amount of

glucagon-bound receptor on the hepatocyte membrane.

We use data of the glucagon challenge test that was

performed on eight subjects at the Center for Human Drug

Research in Leiden [11]. For each subject, two data sets are

available: one before treatment with the drug and one after

6 weeks of treatment. The parameters of the model are

estimated by applying the smooth profiling method, see

Supplemental Material, proposed by Ramsay et al. [12] to

A B

Fig. 1 a The interaction of glucose, insulin, and glucagon in the body

as assumed in this study. b The Bergman minimal model [1]. The

black arrows represent the processes of production, uptake, and

clearance. The blue arrows show the stimulatory or inhibitory effect

of glucose, insulin, and glucagon on each of these processes (Color

figure online)
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the data. The parameter estimation was performed for each

subject separately. The estimated parameters are further

analyzed to determine the efficacy of the drug.

Methods

The glucagon challenge test

The glucagon challenge test has been proposed as a stan-

dard pharmacodynamic tool in pharmacological research

related to glucose homeostasis and metabolism [11]. The

test takes 6 h: the first 3 h are aimed at stabilising and

measuring the baseline concentrations. In the second 3 h of

the test, the endogenous pancreatic secretion of insulin and

glucagon are inhibited by somatostatin1 infusion. Simul-

taneously, the exogenous infusion of insulin and glucagon

are adjusted so that the concentration of insulin in the blood

remains constant and the concentration of glucagon in the

blood rapidly increases 2–3-fold relative to physiological

levels (see Fig. 2).

The data set used in this paper is taken from the glu-

cagon challenge test performed on eight healthy subjects

[3]. For each subject, the data set include the following

– The measurement of the concentration of blood

glucose, insulin, and glucagon at times 135, 150, 165,

179, 195, 210, 225, 240, 255, 270, 285, 300, 315, 330,

345, and 360 min.

– The HGP rate Fhgp and the blood glucose clearance rate

Rd, both calculated for the concentration of isotope-

enriched glucose [11].

Mathematical model

In this study it is required that the model describes both

periods of the challenge test and satisfies the following

conditions:

(1) The model should include the effect of glucagon on

the glucose dynamics.

(2) The model should contain the dynamics of the

glucagon receptor so that it becomes possible to

study the effect of the internalization and also the

effect of the change in the total concentration of the

glucagon receptors due to the action of the drug.

(3) During the first 3 h of the test, the model should

possess stable steady states for all the variables.

(4) During the second 3 h the model should be able to fit

the data of all subjects with reasonable accuracy.

The model involves three compartments, one for glucose,

one for insulin, and one for glucagon in the blood, with

concentrations G (g/L), I (mU/L), and E (pmol/L). The

equation for G is coupled to a model for the dynamics of

the glucagon receptors in a representative liver cell which

involves three concentrations R; RE; and Ri; for the three

forms of the glucagon receptor: free receptor, glucagon-

bound receptor, and the internalized receptor. The whole

model is depicted in Fig. 3. All the parameters of the model

and their description are presented in Tables 1 and 2.

Insulin compartment

The rate of change of the insulin concentration in the blood

is assumed to be due to infusion, pancreatic secretion, and

clearance from the blood. Therefore the equation for the

rate of change in the concentration of insulin in the blood is

assumed to be

dI

dt
¼ QIðtÞ

VI
|ffl{zffl}

infusion

þ FI
|{z}

endogenous

secretion

� kdegII
|ffl{zffl}

clearance

; Ið0Þ ¼ I: ð1Þ

The first two terms describe the flow of insulin into the

compartment through infusion and pancreatic secretion.

The last term models the flow of insulin out of the com-

partment through clearance from the blood. The initial

condition at t ¼ 0 is the baseline insulin level I: Secretion

of insulin in the pancreas is triggered by a high level of

glucose in the blood. The secretion rate function FIðtÞ in

Eq. (1) should depend on blood glucose concentration.

However, in the setup of the glucagon challenge test, it is

assumed that in the first 3 h the secretion rate is constant

and in the second 3 h it is equal to zero. Therefore, here

this rate does not depend on the glucose concentration, and

FIðtÞ ¼ FI 0\t\3;
0 3� t\6;

�

0 1 2 3 4 5 6

Infusion of somatosta�n

Infusion of glucagon

Infusion of insulin

Infusion of glucose
Single injec�on of 

labeled glucose

hour

Stabiliza�on

Fig. 2 The timeline of the events during the glucagon challenge test is

shown. Just before starting the experiment, labeled glucose is

injected. The first 3 h is intended for stabilization and measurement

of the baselines. In the second 3 h, the infusion of somatostatin stops

the endogenous insulin and glucagon secretion by the pancreas.

Insulin infusion is adjusted to maintain the baseline concentration,

and glucagon infusion is aimed to increase the baseline concentration

2–3-fold

1 Somatostatin is a hormone which inhibits the pancreatic secretion

of glucagon and insulin.
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where FI is the basal secretion rate.

The clearance of insulin is assumed to be a first-order

process with rate constant kdegI: Finally, QI is the rate of

infusion of insulin into the blood,

QIðtÞ ¼
0 0\t\3;
QI 3� t\6;

�

and VI is the volume of distribution of insulin.

Glucagon compartment

Like insulin, the rate of change of the glucagon concen-

tration in the blood is assumed to be due to infusion,

pancreatic secretion, and clearance from the blood. Thus

the turnover equation is given by

dE

dt
¼ QEðtÞ

VE

þ FE � kdegEE; Eð0Þ ¼ E: ð2Þ

The glucagon secretion rate function FEðtÞ is assumed to be

FEðtÞ ¼ FE 0\t\3;
0 3� t\6;

�

which is independent of G. It is assumed that glucagon is

degraded through a first-order process with the rate con-

stant kdegE and injected into the bloodstream at a rate

I

Fig. 3 The compartmental

model for glucose homeostasis

by insulin and glucagon is

shown below. The black arrows

indicate transport of substances

and the blue arrows show how

different processes are

activated. Insulin and glucagon

are both secreted by the

pancreas into plasma. A small

amount of these two hormones

are then extracted from the

plasma by the liver. Insulin

enhances glucose storage in the

liver (arrow 1) and uptake in

tissues (arrow 3). Glucagon

activates the release of glucose

from the liver (arrow 2).

Through a feedback mechanism,

glucose affects secretion rate of

insulin (arrow 4) and glucagon

(arrow 5). The glucagon

molecules that are extracted by

the liver, participate in a set of

biochemical reactions that

involve the glucagon receptors

on the membrane of the liver

cells. The description of the

parameters is given in Tables 1

and 2 (Color figure online)

Table 1 The parameters that are fitted to the data

Parameter description Symbol Unit

Baseline HGP rate bG (g/h/L)

Maximal glucagon-dependent HGP rate V1 (1/h)

Apparent dissociation const. K 0
1 (1)

Maximal I-independent G consumption Vii (1/h)

Maximal I-dependent G consumption Vid (1/h)

MM const. for I-independent G consumption Kid (g/L)

Degradation rate of insulin kdegI (1/h)

Degradation rate of glucagon kdegE (1/h)

Internalization rate of glucagon-bound receptor kin (1/h)

Apparent volume of the hepatic interstitial space Vh (L)
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QEðtÞ ¼
0 0\t\3;
QE 3� t\6:

�

Here VE is the volume of distribution of glucagon. Note

that the data of the glucagon challenge test say little about

the dependence of the secretion rate of insulin and gluca-

gon on the glucose concentration because these pancreatic

secretions are effectively inhibited by somatostatin. It is

only possible to estimate the basal value of these secretion

rates, i.e., FI and FE:

Glucose compartment

The changes in the concentration of blood glucose are due

to its production in the body and its clearance from the

blood. During the glucagon challenge test, the only source

of glucose production in the body is the HGP. The hepatic

glucose production rate Fhgp will be discussed in connec-

tion with the glucagon receptor dynamics.

During the challenge test, there is a small amount of

intravenous glucose infusion at a rate

QGðtÞ ¼
0 0\t\3;
QG 3� t\6:

�

Glucose is removed from the blood by two types of pro-

cesses, one insulin-dependent and one insulin-independent.

The uptake of glucose into tissues is an insulin-dependent

process, whereas brain consumption and renal excretion are

examples of insulin-independent processes. The data from

the glucagon challenge test show that the total clearance

rate (the sum of the two) is affected very little as the glu-

cose level rises.2 In view of this observation, Michaelis–

Menten type expressions are used for both terms to allow

for sub-linear rates. The equation for the time course of

glucose concentration in the blood is therefore

dG

dt
¼ QGðtÞ

VG

þ Fhgp �
ViiG

Kii þ G
� VidI � G
Kid þ G

; ð3Þ

with VG being the volume of distribution of glucose, Vii

and Vid the maximum insulin-independent (ii) and insulin-

dependent (id) uptake rates, and Kii and Kid the corre-

sponding Michaelis–Menten constants.

Some comments on the modeling choices

The design of the glucagon challenge test aims at full

control over the concentration of hormones in the blood.

To that end, the endogenous secretion of hormones is

almost completely inhibited by injecting somatostatin

during the second 3 h of the test, and the hormone levels

are maintained by infusion instead.

Because of this setup, during the second part of the

experiment a one-way relationship between hormones and

glucose is assumed: hormone concentrations affect glucose

dynamics but not vice versa. A mathematical consequence

Table 2 Parameters that are not

fitted to the data
Parameter description Symbol Unit Value

0–3 h 3–6 h

Infusion rate of glucose QG g/h 0 0.24

Infusion rate of insulin QI mU/h 0 480

Infusion rate of glucagon QE pmol/h 0 4134.7

Distribution volume of glucose VG L y 4.44

Distribution volume of insulin VI L y 1.52

Distribution volume of glucagon VE L y 9.6

Association rate of E and R kon 1/pmol/h 3:6 � 10�3

Dissociation rate of E and R koff 1/h 14.4

Recycling rate of glucagon receptor krec 1/h 0.18

MM const. for I-independent Kii g/L 0

G consumption

Association rate of free receptor k0in 1/h 0

Total amount of glucagon receptor Rtot pmol H

Apparent dissociation const. K1 pmol H

Baseline insulin secretion rate FI mU/h/L z
Baseline glucagon secretion rate FE pmol/h/L z

(y) Volumes of distribution are not defined for the first period since there is no infusion. (H) These

parameters are unidentifiable. Only their ratio denoted by K 0
1 is identifiable. (z) These two rates are not

present in the second 3 h of the test and not needed in our analysis, hence they are not fixed or fitted

2 Van Dongen also makes this observation [11, p. 271].
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of this assumption is that the equations for glucagon and

insulin concentrations become exactly solvable; the solu-

tions are exponential functions.

Somatostatin takes a short time, 3–4 min, to take full

effect. A more realistic assumption would, therefore, be to

consider the dependence of these secretion rate functions

(FI and FE) on glucose during this short section of the

second period. This would require additional modeling of

the injection of somatostatin and of the interaction between

somatostatin and the secretion processes. However, the

data (taken every 15 min) have insufficient information

about this short period (3–4 min). This means that the

corresponding parameters would not be identifiable from

the data. For this reason, it was assumed that endogenous

hormone secretion instantaneously drops to zero.

Dynamics of the glucagon receptor

Glucagon receptors on the surface of the hepatocyte

membrane trigger a cAMP-mediated pathway that trans-

forms and releases the stored liver glycogen as glucose into

the blood. It has been shown that glucagon receptors

internalize after stimulation with glucagon [13]. If the

stimulation is acute (around 30 min), then the internalized

receptors are rapidly recycled back to the surface of the

liver cells. However, after chronic stimulation (around

5 h), the internalized receptors are degraded.

G-protein-coupled receptors (GPCRs) undergo desensi-

tization and consequent internalization to ensure proper

spatiotemporal regulation of signal transduction in case

acute or chronic stimulation occurs [14]. Depending on the

pathway two types of desensitization are recognized; ho-

mologous, when the specific ligand of the receptor is

responsible for the decrease in responsiveness, and

heterologous, when the desensitization pathway is inde-

pendent of the specific ligand. The glucagon receptor

internalizes in both ways [15].

Given the limited information available about the

behavior of the glucagon receptor, all the processes are

simplified into some basic reactions presented in Fig. 4.

The reactions include the binding of glucagon to its

receptor, the internalization of both glucagon receptor R

and glucagon-bound receptor RE, and recycling of the

internalized glucagon receptor Ri:

The dynamics of the glucagon receptor has only recently

been considered in mathematical models of glucose

homeostasis. Liu and Tang [6] incorporated a phe-

nomenological model of receptor dynamics into a physio-

logical model for glucose homeostasis. Their model for the

glucagon receptor compartment is a heuristic simplification

of a more extended model for insulin receptor presented in

[16]. Sumner et al. [17] presented a model for liver glucose

homeostasis. They assumed a simple GPCR model for the

receptor compartment. Their model does not cover the

receptor internalization and recycling events. In a study by

Schaller et al. [18] a whole-body model for the glucose–

insulin–glucagon interaction is presented. The glucagon

receptor is modeled as a simple GPCR with internalization

and recycling. Apart from the fact that the model by

Schaller et al. does not possess a state variable for the

glucagon-bound receptor on the membrane of the liver

cells, the model developed in the present study is very

similar to the one presented in [18, p. 40].

In comparison to the various models described above,

the model for the dynamics of the glucagon receptor that is

presented here is much simpler, and has the benefit of

allowing us to fit parameters from the challenge test data.

Modeling the receptor dynamics

The reactions involved in modeling the receptor dynamics

are summarized in Fig. 4. Glucagon in the liver binds to the

glucagon receptor on the surface of the hepatocyte mem-

brane. We assume that this binding happens at a rate that is

proportional to both the amount of the glucagon molecules

in the hepatic interstitial space, denoted by Eh; and the

amount of surface receptors R. Then the glucagon-bound

receptor, RE, dissociates and internalizes via two first-

order processes with rate constants koff and kin respectively.

The internalized receptors Ri recycle back to the surface of

the hepatocyte membrane with the rate constant krec: The

free receptors also internalize at a rate k0inR:

Besides the reaction rates, the following modeling

assumptions are made:

(1) The concentration of glucagon in the hepatic inter-

stitial space, i.e., around glucagon receptors, is

instantaneously equilibrated with the concentration

of glucagon in the blood. We thus assume that

EhðtÞ ¼ Vh � EðtÞ;

where Vh can be regarded as the volume of the

hepatic interstitial space. It is assumed to be a dif-

ferent constant for every subject, and it will be

estimated later. Note that Vh has the units of volume

R

Eh(t)

koff

kon
RE

k i
n

Ri

k
rec

k ′in

Fig. 4 Reaction diagram for

receptor binding,

internalization, and recycling of

glucagon receptor. Variations of

this diagram have extensively

been used to model the

dynamics of other receptors [19]
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(L), since E has the unit pmol/L and Eh; the total

amount of glucagon molecules in the hepatic inter-

stitial space, has units of pmol.

(2) It is assumed that the binding of glucagon molecules

to the glucagon receptor does not affect the concen-

tration of glucagon in the blood, assuming that only a

small fraction of the glucagon molecules binds to the

receptors. Therefore in the model of the receptor

[Eq. (4)], the concentration of glucagon EhðtÞ acts

only as a time-dependent input function, and the

dynamics of the glucagon compartment does not

depend on the receptor dynamics.

(3) Another assumption is that the synthesis rate of new

receptors is equal to the degradation rate. Therefore

the conservation of the total number of receptors is

enforced, i.e., Rþ RE þ Ri ¼ Rtot:

The equations for the dynamics of the concentrations of the

three forms of the glucagon receptor are

dR

dt
¼ �konVh � EðtÞ � Rþ koffRE � k0inRþ krecRi;

dRE

dt
¼ þkonVh � EðtÞ � R� koffRE � kinRE;

dRi

dt
¼ þkinRE þ k0inR� krecRi:

ð4Þ

Conservation of the total amount of receptors allows to

describe the receptor dynamics with only two differential

equations, one for R and one for RE. For reasons of

parameter identifiability, the concentrations of R; RE; and

Ri are scaled with Rtot and introduce the dimensionless

variables

r ¼ R

Rtot
; re ¼

RE

Rtot
; ri ¼

Ri

Rtot
:

After scaling and using the conservation law to elimate ri;

the equations for r and re become

dr

dt
¼ �konVh � EðtÞ � r þ koffre � k0inr þ krecð1 � r � reÞ;

dre

dt
¼ þkonVh � EðtÞ � r � koffre � kinre:

ð5Þ

For a given constant concentration of glucagon, E; the

receptor compartment always possesses a unique attracting

steady state ðr; reÞ;

r ¼ koff þ kinð Þkrec

ðk0in þ krecÞðkoff þ kinÞ þ ðkin þ krecÞkonVhE
;

re ¼
kreckonVhE

ðk0in þ krecÞðkoff þ kinÞ þ ðkin þ krecÞkonVhE
:

ð6Þ

The hepatic glucose production rate

Liver glucose production is known to be activated by

glucagon and inhibited by insulin. In the setup of the

glucagon challenge test, the concentration of insulin in the

blood is kept close to constant throughout the test. There-

fore it is not possible to study the dependence of Fhgp on

the blood insulin concentration. However, Fhgp should be a

function of the glucagon-bound receptor, RE, since this

species is the one that activates the cAMP-mediated path-

way of glycogenolysis. In fact, for GPCRs, there exists a

variety of empirical and mechanistic models that relate the

‘rate of response’ to the concentration of agonist-bound

receptor [20]. Three different possibilities were investi-

gated for this rate:

– A linear dependence, bG þ V1RE;

– A Michaelis–Menten-type expression bG þ V1RE

K1 þ RE
;

– A Hill-type expression of the form bG þ V1ðREÞn

Kn
1 þ ðREÞn ;

where bG is a constant that will be fitted. Among these

three rates, the Hill-type expression gave the best fitting to

the data. The Hill coefficient n is fixed to be equal to 2. The

reason it was not estimated was that by not fixing it the

model would become very nonlinear with respect to the

parameter. That would be problematic because the

parameter estimation method that is chosen in this study

works best for systems that are linear in their parameters.

Rewriting the expression for Fhgp in terms of the rescaled

concentration re gives

Fhgp ¼ bG þ V1r
2
e

K 02
1 þ r2

e

; K 0
1 ¼ K1=R

tot:

The full model

Recall that there are two forms of the above equations

during the challenge test: the first 3 h of steady state

without any infusion

0 ¼ bG þ V1re
2

K 02
1 þ re

2
� ViiG

Kii þ G

� VidIG

Kid þ G
;

ð7aÞ

0 ¼ FI � kdegII; ð7bÞ

0 ¼ FE � kdegEE; ð7cÞ

r ¼ 1

ðk0in þ krecÞ
kin þ krec

koff þ kin

konVhE

; ð7dÞ
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re ¼
konVhE

ðkoff þ kinÞ
r; ð7eÞ

and the second 3 h with infusion and clamped hormone

secretion.

dG

dt
¼ QG

VG

þ bG þ V1r
2
e

K 02
1 þ r2

e

� ViiG

Kii þ G

� VidIG

Kid þ G
; Gð3Þ ¼ G;

ð8aÞ

dI

dt
¼ QI

VI

� kdegII; Ið3Þ ¼ I; ð8bÞ

dE

dt
¼ QE

VE

� kdegEE; Eð3Þ ¼ E; ð8cÞ

dr

dt
¼ �konVh � E � r

þ koffre � k0inr þ krecð1 � r � reÞ; rð3Þ ¼ r;
ð8dÞ

dre

dt
¼ þkonVh � E � r � koffre � kinre; reð3Þ ¼ re: ð8eÞ

The steady-state equations yields relations between the

parameters and the basal concentrations G; I; E; r; and re:

The basal concentrations are fit to the data of 0 to 3 h.

Therefore five relations between the parameters are

obtained. When fitting the data for the second 3 h to the

ODEs, we require that these five relations continue to be

satisfied. The setup of the challenge test is such that these

basal concentrations serve as initial conditions for the

differential equations (8).

Another requirement for fitting the data is also imposed.

The basal HGP rate, denoted by Fhgp; is obtained by

averaging the measured amount of Fhgp for the first 3 h of

the test. Then, it is naturally required, due to Eq. (7a) and

the definition of Fhgp; that at the steady state phase, the

production terms and the clearance terms in the glucose

equation satisfy

Fhgp ¼ bG þ V1re
2

K 0
1

2 þ re
2
¼ ViiG

Kii þ G
þ VidIG

Kid þ G
: ð9Þ

Model fitting and parameter estimation

During the glucagon challenge test, it is impossible to

directly measure concentrations of substances in the liver.

Nevertheless, it is desirable to obtain an estimate for such

concentrations by combining the mathematical modeling

with the data from the blood concentrations of glucose,

insulin, and glucagon. The data fitting is challenging due to

the presence of unmeasured variables in the set of differ-

ential equations.

Due to parameter identifiability issues that are discussed

in Supplemental Material, it is not possible in our setting to

estimate the total number of glucagon receptors from the

current model and data. However, what can be estimated is

K 0
1 ¼ K1=R

tot: In [6] and later studies the total amount of

the glucagon receptors is taken to be equal to the total

amount of the insulin receptors reported in [16] and it is

about 1 pmol. This estimate of the total number of gluca-

gon receptors validates our assumption that the concen-

tration of glucagon in blood, which is about 14.3 pmol/L,

does not change much when glucagon binds to its receptor

on the surface of the liver cells.

To address the issues of parameter identifiability and to

help the parameter fitting routine, some of the parameters

are set to be constants reported in previous studies.

The glucagon receptor is a GPCR. The experimental

values of kon for 10 different GPCRs are gathered in [21]

which shows that most measurements report a value

between 6 � 10�5 to 0.06 (pM h)�1: The value that was

used, kon ¼ 0:0036 (pM h)�1 is in the middle of this range

and was taken from [22]. The dissociation rate constant

koff ¼ 0:24 min�1 was taken from the same reference.

Therefore the equilibrium dissociation constant is

Kd ¼ 4000 pmol.

It is assumed that the recycling rate of glucagon

receptors is equal to the recycling rate of the insulin

receptor krec ¼ 0:003 min�1 as reported in [16]. In [18, p.

120] this value is obtained by fitting and is reported to be

0.01 min�1: The former value will be used for the fitting in

this paper.

To estimate some of the parameters in the set of dif-

ferential equations (8) the smoothing approach proposed

by Ramsay et al. [12] is used. For the three parameters

kon; koff ; and krec the literature values were used as dis-

cussed, and were kept equal to the same constant for all

subjects. During the estimation procedure, two of the

parameters, k0in and Kii; collapsed to zero. Therefore they

were set to be zero for all subjects. The infusion rates and

the volumes of distribution are also equal for all subjects

and presented in Table 3.

For every subject, the parameter estimation was per-

formed twice: once with the data obtained before treat-

ment, and once with the data obtained after treatment.

During the parameter estimation, it was required that the

Table 3 The values of infusion rates and the volumes of distribution

obtained from [23]

QG QI QE
VG VI VE

0.24 g/h 480 mU/h 4134.7 pmol/h 4.44 L 1.52 L 19.6 L
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steady state equations as well as the relation (9) are satis-

fied. The details of the estimation method are explained in

Supplemental Material, and the results of parameter esti-

mation are presented in Table 4. A plot of the solution of

the ODEs using the average parameters is shown in Fig. 5

and the individual fittings are depicted in Supplemental

Material.

Analysis of the data

The fitted parameters for both before and after treatment

are presented in Table 4. To find out which parameters

were affected by the treatment, the Wilcoxon signed-rank

test was performed on each of the estimated parameters

separately. The Wilcoxon signed-rank test is used to

compare the distribution of paired observations. The null

hypothesis, in this case, is that the difference between the

median of the two data sets is zero. We have calculated the

p-values of the test for each parameter (see Table 4). The

p-values are corrected for multiple hypothesis testing with

the Benjamini–Hochberg false discovery rate (FDR) pro-

cedure [24]. Only the ones with an FDR less than 0.05

should be declared significant here which means only for

the parameter K 0
1 the p-value and the FDR satisfy the

condition (p ¼ 0:00781 and FDR ¼ 0:043). As this

parameter is inversely proportional to the total number of

receptors, we infer that the drug has effectively changed

the number of receptors. For other parameters, the null

hypothesis can not be rejected. Therefore it cannot be

concluded that the drug had an effect on them.

Another measure with which the efficacy of the drug can

be studied is the change in the peak value of the measured

glucose concentration, see the last row in Table 4. The

reduction in Gmax after treatment is also statistically sig-

nificant, p ¼ 0:00781 and FDR ¼ 0:043:

Recall that K 0
1 ¼ K1=R

tot and assume that K1 does not

change considerably after treatment with the drug, i.e.,

K1ð Þbefore¼ K1ð Þafter: Then the relative change in the total

number of receptors denoted by D can be calculated as:

D ¼ Rtotð Þbefore� Rtotð Þafter

Rtotð Þbefore

¼

Rtot

K1

� �

before

� Rtot

K1

� �

after

Rtot

K1

� �

before

¼
K 0

1

� ��1

before
� K 0

1

� ��1

after

K 0
1

� ��1

before

:

The average value D is calculated in two different ways.

First the value of D for each subject is calculated sepa-

rately. In this way, the average value is

AVðDÞ ¼ �0:47 � 0:25:

It is also possible to use the average values of K 0
1 from

Table 4 and calculate the relative decrease,

AV K 0
1

� �

after

� 	� ��1� AV K 0
1

� �

before

� 	� ��1

AV K 0
1

� �

before

� 	� ��1

¼ 1=0:011 � 1=0:005

1=0:005

¼ �0:55:

In this way, a 55% decrease in the total number of gluca-

gon receptors is predicted. Both ways of calculating the

relative change in the total number of glucagon receptors

show a significant decrease after treatment.

The fitted value of bG for subjects 30, 31 (after treat-

ment), and subject 38 (before treatment) are orders of

magnitude higher than the values of this parameter for

other subjects. This discrepancy is the result of our choice

to fix the Hill coefficient to 2 and compensate for it by

adding bG to the HGP rate Fhgp: It was observed that by

setting the parameter bG to 0 for these two subjects, the

fitting does not get close enough to the data. This problem

Table 4 The average and the

standard deviation of estimated

parameters, p-values obtained

from comparing the before and

after treatment parameters using

the Wilcoxon signed rank test

together with the Benjamini–

Hochberg FDR are reported.

The parameter Gmax is directly

calculated from the data. A

complete table with the fitted

parameters for every subject is

provided in the Supplemental

Material

Unit Before average Before SD After average After SD p-values FDR

V1 (1/h) 5.63 1.97 6.81 1.85 0.0391 0.143

Vii (1/h) 0.896 0.319 0.936 0.294 0.742 1

Vh (L) 4.65 2.28 4.96 1.77 1 1

Kid (g/L) 11 6.62 10.3 5.5 0.945 1

kdegI (1/h) 30.5 8.27 30.9 7.93 0.641 1

kdegE (1/h) 5.73 1.84 5.76 1.51 0.844 1

kin (1/h) 21.5 15.2 12.1 3.15 0.109 0.301

K 0
1 – 0.00501 0.00257 0.0109 0.0045 0.00781 0.043

bG (g/L/h) 0.0804 0.228 0.18 0.371 0.945 1

Vid (1/h) 1.52 0.963 1.66 0.768 0.547 1

Gmax (g/L) 2.71 0.353 2 0.336 0.00781 0.043
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could have been avoided by choosing to estimate the Hill

coefficient, however that would make our model too non-

linear and the parameter fitting algorithm would fail to fit

the data.

The time scales of the receptor kinetics are very long

and it does not reach a steady state for most of the subjects.

To explain this outcome, note that this speed is dictated by

the rates konVhE � 0:0036 � 4:65 � 20 ¼ 0:335 (1/h),

koff ¼ 14:4 (1/h), krec ¼ 0:18 (1/h), and kin12:1 (1/h). After

infusion of glucagon, the rate limiting step that prevents

stabilization of the receptor subsystem is the binding step

of glucagon to its receptor. The value of kon was taken from

literature and, as stated previously, is consistent with the

experimentally measured values of kon for other GPCRs.

The parameter fitting procedure has the freedom to choose

a bigger value for Vh and increase the speed of this rate

limiting binding process. But it successfully fits the data at

the given rate, resulting in a slow kinetics of the receptor

subsystem.

Discussion

In this paper, we started by describing the interaction

between glucose and two associated regulatory hormones:

insulin and glucagon. Understanding the mechanisms

involved in the complex dynamics of these three will help

in designing better ways to treat diabetes. A special focus

was on recent data obtained by a glucagon challenge test,

which is a standardized way of measuring the effect of

glucagon on hepatic glucose release [3]. A mathematical

model for glucose–insulin–glucagon interaction was pro-

posed, and used to interpret the clinical trial data obtained

from the glucagon challenge test.

The model contains a subsystem for the glucagon

receptors on the surface of the liver cells. This enabled us

to answer the two questions that were posed in the intro-

duction. The first question was to show how the glucagon

receptor internalization leads to tolerance against gluca-

gon-induced hyperglycemia. In Fig. 5, where the average

response is depicted, it is observed that in the second 3 h of

the test there is a decrease in the amount of free receptor on

the surface of the liver cells; around 15% for before

treatment data and 8% for after-treatment data, a difference

which is significant. Most of these free receptors first bind
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Fig. 5 The plot of all the data

points and the solution to the

model equations using average

parameters reported in Table 4,

before and after treatment
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to the glucagon molecules and then internalize very fast. A

small portion remains bound. The time course of the con-

centration of re and the value of FhgpðreÞ show an initial

rise due to the abundance of glucagon followed by a slow

decay due to internalization. The average values for the

internalization rate kin; 21.022 1/h for before treatment and

12.05 1/h for after treatment, imply that the internalization

process is quite fast.

The second question dealt with the quantitative assess-

ment of the efficacy of a novel antisense drug aimed at

blocking the production of the glucagon receptor. By fitting

and comparing the data of the glucagon challenge test

before and after treatment with the drug (400 mg admin-

istration), an average decrease of 47 to 55% was found in

the number of glucagon receptors in liver cells.

A few comments on some aspects of this work are

presented below.

The size of the model

We claim that the set of Eqs. (7) and (8) describes the least

complex model that is (a) based on the physiology of

glucose homeostasis, (b) based on the biochemistry of

glucagon receptor, and (c) can successfully fit the data of

the glucagon challenge test. By using simpler kinetics for

the rates or by modeling with fewer equations, some of the

three conditions required for the modeling will get

violated.

The glucagon receptor compartment

Three basic reactions—binding, internalization, and recy-

cling—were introduced to represent the complex systems

biology of the glucagon receptor. The model is complex

enough to describe the data, yet not too complex to

encounter parameter identifiability issues. In case more

data on the action of glucagon receptor are available, the

model should be improved to include more details such as

the binding of glucagon to the GLP-1 receptor [25], or

different modes of internalization of the glucagon receptor

[15].

The parameter estimation method

ODE parameter inference is a notoriously difficult com-

putational problem. The smooth profiling method was

chosen because compared to various other methods that

require numerical solution of ODEs, this method is faster

and more successful in avoiding local optima [26]. It can

also handle problems with unmeasured components which

is necessary for the problem dealt with in this study. In the

present study simple application of nonlinear least squares

estimation is not possible because the set of equations is

not explicitly solvable. The use of NONMEM also brought

some limitations to the fitting. Performing parameter esti-

mation on the entire 6 h of the test was problematic due to

the very long time it took to stabilize in the initial phase of

the test as well as the need to introduce step functions for

infusions which slows down the fitting time even further.

Alternatively, one could consider using NONMEM only on

the 3 h of the challenge, but then glucose baseline needs to

be expressed in terms of other parameters while the alge-

braic steady state equations are not explicitly solvable.

Tuning parameters of the smooth profiling
method

A drawback of the smooth profiling method is that it

requires extensive tuning of control parameters w and k to

gradually update the initial guess, starting with large values

for k; and eventually reach an optimum fit. But once a

satisfactory fit is found, the optimum solution is almost

independent of perturbations of the tuning parameters. A

slight change in the tuning parameters will not result in a

different estimate for parameters. These parameters had to

be tuned for each separate fit. The method was not used in a

mixed effect setting where all data are treated at once.

Other approaches, such as a Bayesian approach, could

provide a convenient framework for dealing with mixed

effect models, and that remains for future work.

Applicability of this study

The glucagon challenge test together with the model and

the data fitting procedure presented in this paper could be

used to study the efficacy of any glucagon receptor anti-

sense drug. Moreover, the model presented here, or some

extension of it, could be incorporated into recently devel-

oped models for an artificial pancreas [27].
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