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Abstract
In this paper we present a framework for the reduction and linking of physiologically based pharmacokinetic (PBPK)

models with models of systems biology to describe the effects of drug administration across multiple scales. To address the

issue of model complexity, we propose the reduction of each type of model separately prior to being linked. We highlight

the use of balanced truncation in reducing the linear components of PBPK models, whilst proper lumping is shown to be

efficient in reducing typically nonlinear systems biology type models. The overall methodology is demonstrated via two

example systems; a model of bacterial chemotactic signalling in Escherichia coli and a model of extracellular regulatory

kinase activation mediated via the extracellular growth factor and nerve growth factor receptor pathways. Each system is

tested under the simulated administration of three hypothetical compounds; a strong base, a weak base, and an acid,

mirroring the parameterisation of pindolol, midazolam, and thiopental, respectively. Our method can produce up to an 80%

decrease in simulation time, allowing substantial speed-up for computationally intensive applications including parameter

fitting or agent based modelling. The approach provides a straightforward means to construct simplified Quantitative

Systems Pharmacology models that still provide significant insight into the mechanisms of drug action. Such a framework

can potentially bridge pre-clinical and clinical modelling - providing an intermediate level of model granularity between

classical, empirical approaches and mechanistic systems describing the molecular scale.
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Introduction

Within the past decade quantitative systems pharmacology

(QSP) has emerged as a novel discipline proposing the use

of integrated, multidisciplinary models that bridge the gap

between the biological insight of modelling target scale

effects of drug action systemically with pharmacokinetic/

pharmacodynamic (PKPD) modelling approaches tradi-

tionally found in the field of clinical pharmacology

[49, 59, 61, 65]. The aim of such an approach is to obtain

mechanistic models of drug action that enable the predic-

tion of drug dose-exposure, efficacy and potential side

effects for a given subject and dose a priori. Some

researchers [60] see the approach as providing a partial

remedy to the current issues of candidate attrition troublingElectronic supplementary material The online version of this article
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the pharmaceutical industry and a stepping stone towards

an ultimate goal of personalised medicine.

The core principle of QSP is the bringing together of

data and knowledge from basic biological research and the

multiple stages of drug development into a single multi-

scale quantitative modelling framework describing drug

action. At its simplest this means the integration of cell

level signalling detail (e.g. protein-protein interaction net-

works) with multiscale models that span the effect of drug

binding at the molecular level up to the whole-body effects

of drug administration, absorption and clearance. The

approach has a number of potential benefits compared with

empirical compartmental modelling approaches commonly

used to describe population PKPD. Firstly, it offers an

integrated modelling approach to drug development

bringing together experimental results from preclinical,

animal and clinical studies into a unified quantitative model

of drug action, enabling a more mechanistic approach to

the study of translation. Secondly, it can provide greater

insight into the mechanisms of action underlying drug

efficacy and toxicity, with mathematical analysis of

molecular scale signalling models potentially enabling the

study and prediction of emergent cell scale network phe-

nomena that may not have been predictable via traditional

PKPD approaches. Thirdly, it can yield better mechanistic

understanding of the possible causes of between-patient

variability. Finally, it enables the integration of data from

previous drug candidates of similar classes (failures and

successes) that act on the same or related pathways. In

doing so, it can provide a more nuanced framework for

studying the causes of drug candidate failure and how they

can be avoided in future.

Whilst QSP offers an approach for integrating knowl-

edge across multiple scales in the prediction of drug effi-

cacy, it raises a number of mathematical challenges [61].

These include developing the tools to create and validate

multiscale models potentially ranging from the genetic to

population level, surmounting the issues of practicability

associated with highly complex, nonlinear models of bio-

chemical reaction cascades, and addressing the general

difficulties associated with meaningfully combining inter-

disciplinary data. In this paper we outline a framework for

the creation of QSP models through the reduction and

linkage of physiologically based pharmacokinetic (PBPK)

models with reduced systems biology type models

describing the biochemical activity of a drug at the cellular

and intracellular scales.

Pharmacological modelling of drug disposition now

commonly employs PBPK at multiple stages of research

and development [17, 18, 32]. Such systems describe the

movement of a drug throughout compartments corre-

sponding to realistic tissues that span the entire body.

PBPK models differ from the classical compartmental

approaches to pharmacokinetic modelling in that they

incorporate parameters informed via physiological and

biological knowledge of the body in order to more mech-

anistically, as opposed to empirically, describe pharma-

cokinetic activity. Due to the higher dimensionality of

these models, and associated issues of parameterisation to

which such a modelling approach can lead, PBPK remains

most commonly applied within the context of drug dis-

covery and for the scaling of in vitro or animal studies of

drug disposition. At clinical stages of drug development,

PBPK can still find use in drug-drug interaction or pediatric

studies, but where clinical trials are performed in order to

initially fit models to in vivo experimental data, simpler

and more empirical approaches to PK modelling still tend

to be preferred. In part, this is due to the fact that PBPK

models are often found to be structurally unidentifiable

[64], greatly hindering their practical use in the context of

clinical trial data. Partly in order to improve such proper-

ties of identifiability and to enable parameter fitting, pub-

lications concerning the reduction of PBPK models, have

begun to emerge [57].

As an approach to mathematically modelling biological

systems, systems biology differs philosophically from

preceding approaches in that it attempts to describe cells

and their signalling systems holistically [19, 20]. This

enables the creation of models that incorporate explanatory

power of underlying biological mechanisms at the cost of

significant model complexity. This is typically achieved by

describing systems at a molecular level of detail and

showing how their interaction can produce larger scale

phenomena of interest. Such approaches have gained some

traction within a pharmacological setting due to their

capacity to describe a drug’s mechanism of action

physiologically.

By combining PBPK and systems biology modelling

approaches, it is hence hypothetically possible to model

drug disposition and dose-response mechanistically as

opposed to the traditionally empirical description provided

by classical PKPD. Rather than fitting an abstract model to

the clinically observed data, the aim here is to produce a

model that describes in detail the main physiological pro-

cesses at work. This leads to a multiscale modelling

approach spanning the scales and processes depicted, for

example, in Fig. 1. Here, a PBPK model describes the

absorption, distribution and clearance of the drug through

the body, whilst in a given effective compartment a Sys-

tems Biology type model describes how the effective

concentration of the drug elicits a response at the target

scale. Figure 1 shows a receptor type target of drug bind-

ing, but the general idea is valid across many target types.

Despite their potential usefulness, however, models

attempting to span the scales of both PBPK and systems

biology will typically be significantly too complex to be of
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practical use in a clinical setting. This complexity can be

seen to stem from a number of common mathematical

properties. For instance, such models will often possess a

very large number of modelled species, concentrations and

reactions. Such systems are often modelled using the the-

ory of deterministic ordinary differential equations (ODEs)

and as such can comprise tens to hundreds of state-vari-

ables. Such models thus often come with associated issues

of high simulation time and numerical error. Models also

frequently describe a wide range of kinetic rates observed

across the multiple scales of drug action and as a result,

portions of the system are likely to evolve on greatly dif-

ferent time-scales resulting in model stiffness. Such models

are also usually nonlinear, which can prohibit a number of

analytical approaches. Finally, due to the scope of these

systems, it can simply prove too difficult to readily intuit or

understand their biological implications. Often the param-

eter space is simply too large to convincingly explore or

understand what variation in the parameterisation may

mean.

One methodology for tackling a number of these issues,

in an effort to bring understanding of the role of processes

within and across scales, is model reduction. Model

reduction here refers to any method designed to construct a

simplified formulation of a model with which some set of

the original dynamical behaviour can be satisfactorily

approximated and within which some degree of predictive

power is retained. A wide variety of such methods exist in

the literature [2, 34, 47] and they have commonly been

employed for alleviating issues of complexity in other

fields of modelling (for example chemical engineering

[34], control theory [44], and weather prediction [26]).

Within the context of integrative QSP, model reduction can

potentially be applied at multiple levels. In this paper we

evaluate two particular uses in this context; firstly, model

reduction can be used to yield a simplified description of

the pharmacokinetic disposition of a drug that retains a

physiological basis. Secondly, it be can be used to produce

a reduced description of the biochemical activity of the

drug at the target scale through the simplification of sys-

tems biology type models.

The simplification of PBPK models has been relatively

well explored in the literature through the use of linear,

proper lumping [4, 10, 12, 33, 37]. The aim is typically to

reduce the more complex models of PBPK to the point

where they can be fit against clinical trial data as in the case

of traditional compartmental PK models [57]. Proper

lumping has also seen application in the broader contexts

of Systems Biology [7, 9, 21, 50, 51] and Systems Phar-

macology [14] type models. Other model reduction

approaches including time-scale exploitation

[6, 13, 22, 23, 36, 39, 43, 52–54], sensitivity analysis

[3, 8, 28, 29, 45], optimisation based approaches

[1, 30, 38, 55] and balanced truncation [15, 27, 48] have

also seen published application within a systems biology

setting. Here, we focus specifically on two of these meth-

ods - proper lumping and balanced truncation. Proper

lumping seeks to reduce a system by modelling the

dynamical behaviour of subsets of the original state-vari-

ables en masse as opposed to individually. Meanwhile

balanced truncation transforms the model’s state-variables

into a form where those portions of the network least

responsible for some input–output type relationship of

interest can be easily removed.

The ideal scope and complexity of model depends

necessarily on the specific questions that we are seeking to

address, the level of approximation we are willing to

accommodate, the prior knowledge we have at hand, and

the actual data available. In practice, modelling often boils

down to a balance between these factors. When con-

structing models from the ground up, these considerations

often have to be repeatedly assessed—and discussions

around how to achieve this do exist in the literature [63].

One of the key advantages of model reduction, however, is

Fig. 1 Multiple scales of drug action. Our approach seeks to bring

together models from across multiple scales of drug action into a

single framework. Here the whole body scale is represented by a

model of pharmacokinetics, where the effective compartment (in this

case the tissue) comprises a model of diffusing drug molecules. The

molecular or target scale incorporates a description of drug-receptor

binding and the underlying signalling cascade dynamics (the systems

biology scale). The example given here applies to G protein-coupled

receptor type drugs targets, but the approach is valid more generally
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that we can instead start by constructing a complex model

based upon the full extent of the literature available, and

then use automated methods to reduce it down to a scale

appropriate to its intended application. It is this approach

that we seek to leverage throughout this paper—by first

assembling a holistic, physiological description of a drug’s

mechanism of action alongside its pharmacokinetic dispo-

sition, we then aim to apply model reduction to the indi-

vidual components of this model in order to automatically

extract a practical and usable system that retains an explicit

link back to this physiological scale.

The literature concerning the other step of linking of PK

modelling efforts with those of systems biology is less

developed than that of model reduction. Krippendorff et al.

[24] have demonstrated a simple linking procedure

whereby a mass-action model is built integrating the

whole-body and cellular scales. Both normal and diseased

cells exist in a well-stirred compartment of the PK model

each with receptors able to bind to the drug. They

demonstrate that this approach can potentially be used to

study how such differences in receptor affinity affects the

clinical response of drugs with the same proposed mech-

anism of action. It is this approach to model linkage that we

employ throughout our work.

Given the context outlined above, our paper demon-

strates how methods of model reduction and model linkage

can be brought together under a single framework in order

to yield simplified Systems Pharmacology or enhanced

pharmacodynamics models [16]. The developed method-

ology is applicable to models formulated using determin-

istic nonlinear and linear ODEs. For a given drug, the

framework presented here starts with a model of PBPK and

a relevant systems biology model describing the drug’s

hypothesised mechanism of action at the target scale. The

approach applies differing methods of model reduction to

individual components of the network based on their suit-

ability, and then recombines the reduced components to

finally obtain a simplified system. This work is related to

our previous paper [46] which developed a combined

model reduction algorithm that sequentially applied mul-

tiple methods of reduction in order to obtain highly accu-

rate reduced systems.The overall method, however, does

not sequentially apply reduction methods, but instead seeks

to decompose the overall network into linear and nonlinear

sub-modules and then reduce them independently using the

most appropriate method for each. By focusing on the

maintenance of input–output relations for each sub-module

throughout its reduction, we allow the overall model to

remain highly accurate when recombined. As is demon-

strated, these models continue to provide an accurate

description of drug action across multiple scales whilst also

having been reduced to a significantly more tractable size.

Additionally, our approach in the reduction of PBPK

models is differentiated from those previously published in

that we seek to apply balanced truncation, as opposed to

proper lumping, as a means of simplification. The frame-

work is demonstrated using a generalised PBPK model and

systems biology models of differing complexity: an 11

dimensional model of bacterial chemotactic signalling in

Escherichia coli [56] and a 99 dimensional model of

extracellular signal-regulated kinase (ERK) phosphoryla-

tion mediated via the epidermal growth factor (EGF) and

nerve growth factor (NGF) receptor pathways [42].

Methodology

There are several possible approaches for the creation of a

reduced model spanning the multiple scales of drug

activity. This paper assumes that one begins with, or is able

to develop, models of the drug’s pharmacokinetic beha-

viour and the target scale activity describing its proposed

mechanism of action. The aim is then to create a single

system encapsulating the dynamics of both models whilst

also being simple enough to be practically usable within a

clinical setting.

Given this starting point, the overall aim is comprised of

two major steps; model reduction and model linkage. There

are two possible routes to achieving this:

1. Linking the models together initially and reducing the

entire linked system under a single approach to obtain

the reduced linked system; or

2. Initially seeking to separate or decompose the con-

stituent models into sub-modules with related proper-

ties. Then, seek to reduce these modules in isolation,

using the most appropriate method of reduction for

each model component. Finally we can then link the

reduced modules together, again yielding a reduced

linked system.

Whilst the first approach may allow a simpler mathe-

matical implementation by only requiring a single model

reduction approach, this fact is also its main disadvantage

in that the method employed must be valid for all aspects

of the model and is unlikely to be optimal for any of them.

Instead this paper outlines the use of the second approach,

which allows us to tailor the methods of model reduction to

specific model components and hence obtain better, more

accurate overall reduced systems. The reasons for wanting

to achieve this are twofold.

Firstly, although models of PBPK are often nonlinear,

they can often be decomposed into linear and nonlinear

components. The linear components would typically

include a description of the inter-compartmental distribu-

tion of the drug throughout various tissues of the system,

whilst the nonlinear components tend to include intra-
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compartmental components (covering examples such as

Michaelis-Menten like metabolism in the liver, saturable

plasma protein binding, and interaction with transporters or

target-mediated drug disposition within some effective

compartment). These nonlinear components can often be

‘disintegrated’ from the linear model, and intead repre-

sented by arbitrary input and output terms within the linear

network. Similar decomposition approaches have previ-

ously been described in the area of modular response the-

ory and applied to systems biology type models to good

effect [5, 27]. An example of such a decomposition is

presented in Fig. 2. Given such a decomposition it is

possible to employ more efficient, linear methods of model

reduction that globally preserve the input–output relation-

ship of the system (such as balanced truncation) for the

reduction of the linear portion of the network.

Secondly, the timescales of PBPK models are typically

significantly slower than those of biochemical reaction

network models. As a result, reduction of the pre-linked

system will often remove much more of the detail from the

systems biology model which may not be ideal in the case

where mechanistic explanatory power at this scale is

intended to be retained.

The overall approach for achieving a reduced linked

system proposed here is depicted in Fig. 3b. The method

begins with the unreduced PBPK and systems biology

intracellular biochemical reaction network models. To

reduce the PBPK model we then decompose it into its

linear and nonlinear components as previously described.

Inputs and outputs are then defined based upon this

decomposition, the specific modelled phenomena of inter-

est, and to represent how the PK drives the modelled sys-

tems biology processes. Next the linear components of the

model are reduced via balanced truncation under the

defined input–output terms. All nonlinear components,

typically including the biochemical reaction network, are

then reduced via proper lumping. Finally, the reduced

model components are then linked.

Crucially, points of coupling between models or model

components, as well as any imposed model linkages, can

be addressed by defining the outputs of one model or

component to represent the inputs of those it affects; an

example of which is given in Fig. 2. The reduced models

are then constructed so as to be able to maintain this input–

output behaviour, thus guaranteeing the relative accuracy

of the reduced ensemble of models when recombined.

Once constructed, the performance of such reduced linked

systems can be compared to the ‘unreduced linked system’

as depicted in Fig. 3a.

Given this overall framework, the remainder of this

methodology section provides more specific, mathematical

detail on the overall problem and a basic account of the

reduction methods – proper lumping and balanced

truncation.

Model reduction and approximation error

Throughout this paper we seek to reduce both PBPK and

Systems Biology type models. In both cases such physical

systems are generally described by systems of coupled,

nonlinear ODEs. For our purposes here, we additionally

formulate these systems as initial value problems and

express them via a control affine, state-space representation

such that

A B

Fig. 2 Example depiction of a linear/nonlinear decomposition of a

PBPK model. a Depicts an example schematic of a PBPK model,

which includes some nonlinear description of metabolism occurring

in the liver compartment. Here inputs u1ðtÞ and u2ðtÞ refer to the time-

courses of IV doses and oral doses respectively. b Shows how the

model can be decomposed into linear and nonlinear components. y1ðtÞ
represents an output of the linear portion of the model which feeds

into the liver compartment, and u3ðtÞ is an input into the model,

representing the distribution of the drug from the liver to the venous

compartment
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_xðtÞ ¼ f ðxðtÞÞ þ
Xl

i¼1

giðxðtÞÞuiðtÞ; ð1aÞ

yðtÞ ¼ hðxðtÞÞ; ð1bÞ

with initial conditions xð0Þ ¼ x0 and where the over-dot

represents the time-derivative (such that, _x ¼ dx
dt
). Here

xðtÞ 2 Rn represents the model state-variables (e.g. the

time-varying concentrations of the modelled species or the

compartmental drug concentrations), uðtÞ 2 Rl (such that

uiðtÞ 2 uðtÞ) represent the input variables (e.g. the initial,

repeated or continuous doses that are mapped to the rele-

vant pharmacokinetic compartments), and y 2 Rp represent

the output variables. Here, fðxðtÞÞ is the set of functions

describing the dynamical interaction between the state-

variables, each set of functions giðxðtÞÞ describes how the

inputs feed into the state-variable dynamics and hðxðtÞÞ
describes the combinations of the state-variables corre-

sponding to each of the outputs. Note that in the linear case,

common in the study of pharmacokinetics, the original

system (1) can be expressed in the form

_xðtÞ ¼AxðtÞ þ BuðtÞ; ð2aÞ

yðtÞ ¼CxðtÞ; ð2bÞ

where A, B, and C are linear operators, such that

A : Rn ! Rn, B : Rl ! Rn and C : Rn ! Rr.

Whilst model input and output can be fairly abstract

concepts, within a pharmacological context they can be

reasonably concretely understood. In the case of a PBPK

type model the input could, for example, describe the

dosing regimen administered, whilst the output might

correspond to the concentration of the compound in some

subset of the modelled compartments. In the case of a

systems biology type model describing a receptor sig-

nalling pathway, the input might represent the time-vary-

ing, extracellular concentration of a specific ligand, whilst

the output may represent the concentration of a specific

intracellular protein associated with a cellular response of

interest.

Given such a formulation, we then seek a reduced model

of the form

_~xðtÞ ¼ ~f ð~xðtÞÞ þ
Xl

i¼1

~gið~xðtÞÞuiðtÞ; ð3aÞ

�yðtÞ ¼ ~hð~xðtÞÞ; ð3bÞ

A BFig. 3 Proposed schematics for

the reduction and linking of

PBPK and systems biology

modelling approaches.

a Depicts a schematic for the

creation of what is here referred

to as the ‘unreduced linked

model’. b Depicts the

recommended schematic for the

creation of what is here referred

to as the ‘reduced linked

model’. Circles indicate a

methodology to be applied

whilst the rounded rectangles

indicate the type of model

thereby produced
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where � denotes an approximation of reduced dimension

for the equivalent, original term in Eq. (1). Additionally,

�yðtÞ 2 Rp represents an approximation of the original out-

put y calculated from the values of the reduced state-

variables ~x.
The accuracy of the reduced models can be quantified

by a number of approaches, often dependent upon the

specific aims of reduction. The most common approaches

are based upon measures of the instantaneous error

between the outputs of the two systems, yðtÞ � �yðtÞj j.
Throughout this paper we use a measure of maximal rel-

ative error e, such that

e ¼ yðtÞ � �yðtÞk k1
yðtÞk k1

: ð4Þ

Here, the relative error is selected such that the accuracy of

the reduced models can be compared across a range of

different inputs and initial conditions whilst retaining the

same relative meaning.

It is important to note that all model reduction will result

in some degree of error e. As a result the specific choice of
reduced model to use in a given situation essentially boils

down to a compromise between simplicity and accuracy.

Inevitably this choice will depend upon the specific aims

and context associated with the modelling work being

performed, and as such it is hard to give a catch-all rule for

choosing the best level of reduction to employ. In this

paper we have selected the target of 5% error for our

reduced linked models, and aimed to construct the minimal

dimensional model that remains within this degree of error.

Proper lumping

Proper lumping is a method of model reduction which

seeks to create a lower dimensional representation of a

system by partitioning the state-variables xðtÞ into subsets,

and modelling the dynamics of these subsets en masse.

This is achieved via a linear operator L : Rn ! Rn̂ that can

be applied to the original state-variables, such that

~xðtÞ ¼ LxðtÞ; ð5Þ

where ~xðtÞ 2 Rn̂ represents a reduced set of state-variables,

with n̂\n. Given such a lumping matrix L, a more detailed

mathematical account of how to obtain the reduced,

dynamical description of the model under this projection

can be found in Appendix 2.

There is a range of literature describing different

approaches for finding the optimal lumping matrix L to

produce a reduced system of dimension n̂ for a given

system. Here we employ the scheme described by Dok-

oumetzidis and Aarons [9]. This algorithm runs an

exhaustive search of possible lumping matrices to

determine which produces the lowest error between simu-

lation of the original model and the reduced model. To

speed up this process, it is assumed (from justifications

given in the original paper) that the lowest error k dimen-

sional reduction obtained via lumping of an n dimensional

system can also be found as the optimal lumping of two

states in the k þ 1 dimensional reduction. This yields a

‘forward selection’ strategy, where 2 of the state-variables

are lumped at each step, which greatly decreases the

combinatorial burden of possible lumping matrices that

must be evaluated.

Balanced truncation

Balanced truncation is a method of model reduction for the

simplification of systems describing an input–output type

process. It is most commonly employed in the field of

control theory and was originally devised in the early

1980s [31]. The method was further refined by a number of

authors (e.g. [35]) and has subsequently become a well-

developed one [11, 44]. Typically, it is used in the sim-

plification of time-invariant, linear systems and seeks to

remove those portions of the dynamics that contribute least

to the overall input–output relationship of the model. As

such it begins with systems in the form of Eq. (2) and

assumes that A is a stable or Hurwitz matrix, such that its

eigenvalues all have negative real components. This

implies that the system is asymptotically stable; a property

that will typically hold true for all biochemical systems.

Central to the application of balanced truncation to such

a system are the concepts of observability and controlla-

bility. Broadly speaking, controllability asks to what

degree the state-variables xðtÞ of the system can be

‘moved’ or affected by the input uðtÞ. Meanwhile observ-

ability asks to what degree the state-variables of the system

can be inferred or ‘observed’ from the output yðtÞ. Both
concepts go some way to addressing a crucial question; to

what extent and by what means does the input into the

system affect its output?

To quantify these concepts requires the calculation of

two matrices known as the controllability and observability

Gramians (P and Q, respectively) for the system. Once

obtained, the aim is to find a balancing transformation for

the system. This is a transformation of the state-variables

for which the Gramians are equalised and diagonalised and

which can be achieved via use of the singular value

decomposition. As a result, the state-variables produced by

such a transformation are somewhat obfuscated in terms of

their meaning with respect to the original model. Much like

other singular value decomposition based methodologies,

such as the statistical method of principle component

analysis, they instead represent orthogonal directions in

state-space that, when treated as the new variables of our
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system, describe the input–output behaviour in order of

contribution. Thus the first transformed state-variable

accounts for the largest contribution to the input–output

relationship and each succeeding component in turn

describes the most of the input–output behaviour possible

under the constraint that it is orthogonal to the preceding

state-variables. By omitting or ‘truncating’ the transformed

state-variables that contribute least to the input–output

relationship we can construct a reduced model whilst los-

ing only relatively little accuracy.

Whilst the state-variables themselves are obscured, it is

always possible to obtain an accurate description of any of

the defined outputs and there is no limit on the outputs that

can be defined. This is achieved via use of a generalised

right inverse, that, when applied to the reduced state-vari-

ables can be used to recover approximations of the original

outputs based upon the reduced system.

Such an approach has significant advantages over proper

lumping; firstly, it is designed for an input–output formu-

lation which fits well within a pharmacokinetic context.

Secondly, as is shown in Dullerud and Paganini [11], an a

priori error bound can be obtained for reduction under

balanced truncation. A more detailed description of the

mathematical steps needed to calculate and apply such a

balanced truncation is given in Appendix 3.

Results and discussion

Reducing a PBPK model

Here we demonstrate the application of balanced truncation

in reducing a PBPK model. This serves two purposes.

Firstly, it allows us to reduce the model in preparation for

linking with a Systems Biology type model. Secondly, it

allows us to compare reduction via balanced truncation

with the more commonly employed approach of proper

lumping.

A number of general frameworks for modelling PBPK

have been described in the literature. Here we employ the

model published by Jones and Rowland-Yeo in their recent

review of PBPK modelling [17] and shown in Fig. 4. This

model describes the movement of a drug between sixteen

physiological compartments – adipose tissue, bone, the

brain, the gut, the heart, the kidneys, the liver, the lungs,

muscle tissue, the skin, the spleen, the testes, venous blood,

arterial blood, an oral dosing compartment and a single

compartment representing the remainder of the body. A

detailed account of this PBPK model and its reduction are

given in Additional file 1 - Supplementary Information.

Here we consider this general model within a control

theoretic framework as earlier described by Eq. (1). When

trying to understand how the administration of a particular

drug propagates throughout the body, such a formulation of

the problem represents a logical framework for its

description. Mathematically, this model can therefore be

represented by a 16 dimensional system of non-conserved,

linear ODEs, which can be expressed in the form described

by Eq. (2). In this case A 2 R16�16 is a matrix representing

the kinetic rates with which the concentration of drug

moves between the compartments and x 2 R16 represents

the vector of instantaneous drug concentrations in each of

the physiological compartments. Our inputs, uðtÞ, represent
the times and magnitudes of the doses administered. These

doses are then mapped to the compartments to which they

contribute by the matrix B. For instance, an orally admin-

istered drug would be mapped directly to the oral dosing

compartment. The outputs, yðtÞ, and their mapping C from

the original compartment concentrations are those combi-

nations of the compartments that the modeller seeks to

predict with the system. It is possible to simply set C equal

to the identity matrix such that all compartments are con-

sidered, however it is often the case that only some subset

of the compartments (often the intravenous and effective

compartments) are of clinical relevance.

Crucially to PBPK modelling, the specific values and

form of the matrix A depends upon the model’s particular

parameterisation. For models of this type, the parameters

can be split into two sets.

Set 1: The physiological parameters, found in Table 1.

These parameters represent the various physio-

logical properties of the individual to which the

drug is administered. The values presented here

represent a 70 kg male human with average

measures of liver and kidney function, fractional

tissue volumes, and blood flow from Jones and

Rowland-Yeo [17].

Set 2: The compound-specific parameters, found in

Table 2. These parameters represent specific

properties of the drug that has been administered.

Parameterisations for three specific compounds

across a reasonable pH range are given here: a

strong base represented by the beta-blocker

pindolol, a weak base represented by the benzo-

diazepine midazolam, and an acid represented by

the barbiturate thiopental. Compound specific

parameters were taken from Pilari and Huisinga

[4]. Tissue to plasma partition coefficients were

then estimated via the formulae outlined by

Rodgers et al. [40, 41].

We now seek to apply balanced truncation for the

reduction of this system as compared with the linear,

proper lumping approach as described by Pilari and Hui-

singa [4] which employs the algorithm originally
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developed by Dokoumetzidis and Aarons [9]. To test the

application of balanced truncation we sought to reduce the

model described above by treating the concentration of the

drug in the venous compartment as the only output of

interest. The dose was modelled as being orally adminis-

tered in each case, with the timing and magnitude of these

doses representing the model input. Given this framework,

calculating reduced versions of the model via both proper

lumping and balanced truncation under the given com-

pound specific parameters yields the results given in

Table 3.

As can be seen, balanced truncation provides good

reduction results even down to 3 dimensions and can often

produce more accurate reductions than those obtained

under lumping. Figure 5 compares the 3 dimensional

reduced models obtained under balanced truncation and

lumping to the original system; here, across the 3 com-

pounds, the lumped reduction had an average maximal

relative error of 19.3% whilst balanced truncation was able

to attain an error of only 7.1%.

Table 1 Physiological

parameters for the PBPK model

shown in Fig. 4, their meaning,

and the values used

Parameter Meaning Value

BW Body weight (kg) 70

QC Cardiac output (L/h) 3:90� 102

MPPGL mg microsomal protein per g liver 45

FVad Fractional volume of adipose (L/kg) 2:13� 10�1

FVbo Fractional volume of bone (L/kg) 8:56� 10�2

FVbr Fractional volume of the brain (L/kg) 2� 10�2

FVgu Fractional volume of the gut (L/kg) 1:71� 10�2

FVhe Fractional volume of the heart (L/kg) 4:7� 10�3

FVki Fractional volume of the kidneys (L/kg) 4:4� 10�3

FVli Fractional volume of the liver (L/kg) 2:1� 10�2

FVlu Fractional volume of the lungs (L/kg) 7:6� 10�3

FVmu Fractional volume of muscle (L/kg) 4� 10�1

FVsk Fractional volume of skin (L/kg) 3:71� 10�2

FVsp Fractional volume of the spleen (L/kg) 2:6� 10�3

FVte Fractional volume of testes (L/kg) 1� 10�2

FVve Fractional venous volume (L/kg) 5:14� 10�2

FVar Fractional arterial volume (L/kg) 2:57� 10�2

FVpl Fractional volume of plasma (L/kg) 4:24� 10�2

FVrb Fractional volume of red blood cells (L/kg) 3:47� 10�2

FVre Fractional volume of rest of body (L/kg) 9:98� 10�2

FQad Fractional adipose blood flow 5� 10�2

FQbo Fractional bone blood flow 5� 10�2

FQbr Fractional brain blood flow 1:2� 10�1

FQgu Fractional gut blood flow 1:46� 10�1

FQhe Fractional heart blood flow 4� 10�2

FQki Fractional kidney blood flow 1:9� 10�1

FQh Fractional hepatic blood flow (venous) 2:15� 10�1

FQlu Fractional lung blood flow 1

FQmu Fractional muscle blood flow 1:7� 10�1

FQsk Fractional skin blood flow 5� 10�2

FQsp Fractional spleen blood flow 1:72� 10�2

These values represent a 70 kg male human with average measures of liver and kidney function, fractional

tissue volumes and blood flow. Fractional volumes represent the rough volume of each tissue proportional

to overall bodyweight and the tissue specific fractional blood flows are proportional to the overall cardiac

output. Parameter values are sourced from Jones and Rowland-Yeo [17]
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Systems biology model reduction and linking

We now seek to demonstrate the potential application of

our model linkage and reduction methodology via appli-

cation to two example models. In the first instance we

consider an 11 dimensional model of bacterial chemotaxis

in E. coli - the modest scope of this model allows the

application of our methods to be more easily intuited. After

this we address a significantly more complex, 99

dimensional model describing the mediation of ERK acti-

vation via both the EGF and NGF receptor pathways. In

both cases we employ pindolol, midazolam and thiopental

as example compound specific parameterisations to repre-

sent a hypothetical drug acting on the pathways described.

To demonstrate our approach, we begin by first reducing

each model via lumping before linking their reduced forms

with the reduced PBPK model detailed in the preceding

section.

Table 2 Compound specific

parameters for the PBPK model

shown in Fig. 4 and their

meaning

Parameter Meaning Pindolol Midazolam Thiopental

BP Blood to plasma ratio 0.81 0.53 0.88

fup Fraction unbound in plasma 0.41 0.05 0.18

Ka Rate constant of absorption (h�1) 2.08 1.13 5.64

CLbl Hepatic blood clearance (mL kg/min) 4.20 8.70 2.02

Kpad Adipose partition coefficient 1.52 2.41 12.17

Kpbo Bone partition coefficient 2.79 2.26 1.64

Kpbr Brain partition coefficient 2.26 5.12 1.09

Kpgu Gut partition coefficient 9.01 5.38 2.03

Kphe Heart partition coefficient 8.43 2.25 1.72

Kpki Kidney partition coefficient 17.94 2.51 4.85

Kpli Liver partition coefficient 16.40 2.77 3.60

Kplu Lung partition coefficient 14.11 3.33 1.72

Kpmu Muscle partition coefficient 6.08 1.61 0.78

Kpsk Skin partition coefficient 5.13 7.84 1.25

Kpsp Spleen partition coefficient 11.70 1.47 0.94

Values have been given for a strong base (pindolol), a weak base (midazolam), and an acid (thiopental).

Parameter values are sourced from Pilari and Huisinga [4] and tissue-to-plasma partition coefficients were

approximated using the formulae of Rodgers et al. [40, 41]

Table 3 Percentage maximal

relative error, e, associated with

the reduction of the PBPK

model via both lumping and

balanced truncation

Dimensions Pindolol Midazolam Thiopental

Lumping (%) BT (%) Lumping (%) BT (%) Lumping (%) BT (%)

13 0.02 0 0.02 0 0.02 0

12 0.04 0 0.02 0 0.03 0

11 0.08 0 0.03 0 0.08 0

10 0.20 � 0 0.27 � 0 0.10 � 0

9 0.23 � 0 0.43 � 0 0.41 � 0

8 0.44 � 0 0.57 � 0 1.00 � 0

7 4.15 � 0 2.41 � 0 3.34 0.01

6 4.72 � 0 2.93 0.05 12.36 0.14

5 7.94 0.21 10.47 0.18 3.88 0.14

4 15.11 0.19 3.84 1.01 21.85 4.43

3 26.87 7.86 11.29 5.41 20.03 8.13

2 37.68 72.67 19.71 10.99 77.71 40.82

1 67.13 71.17 209.29 86.79 73.80 37.78

In each case the system is simulated under the administration of a 500 mg oral dose of the respective

compound. Physiological parameters were taken to represent a 70 kg male human with average measures of

liver and kidney function, fractional tissue volumes and blood flow. Here � 0% implies that oðeÞ\10�6
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Note that the examples discussed do not relate to

specific clinical cases of experimentally tested drugs, but

are representative of a general case. Both examples do,

however, represent receptor targets; the general method-

ology presented in this paper will work for any target type,

but receptor signalling pathways are the most common

variety of model found in the systems biology literature.

A model of bacterial chemotaxis

The first example is a model of chemotactic signalling in

E. coli outlined in a 2009 paper by Tindall et al. [56]. A

large body of literature exists around E. coli due to its

popularity within experimental settings for its ease of

growth and manipulation. It is a common, rod shaped,

gram-negative bacteria with a large number of strains

present in nature. The model discussed here pertains

specifically to those strains that exhibit a chemotactic

response. Chemotaxis is the process by which a cell senses

an environmental chemical gradient and biases its move-

ment towards those regions most suitable for growth and

reproduction. In the model presented here, this process

involves the transmembrane receptors on the surface of the

bacterium sensing the local concentrations of an attractant

or repellent; a decrease in attractant or an increase in

repellent will cause the receptors to activate a signalling

pathway inside the cell resulting in an increase of the

intracellular concentration of the phosphorylated chemo-

tactic Y protein, referred to here as CheYP. This

concentration, in turn, modulates the flagellum’s move-

ment, resulting in a change of direction for the cell.

A model of bacterial chemotaxis signalling represents a

good example to work with as:

1. The attractant-receptor binding mimics the typical

drug-receptor binding seen in QSP modelling with the

chemotactic cell response acting as the clinical

endpoint;

2. Such signalling networks are typically not overly

complex, but are large enough for model reduction to

be warranted; and

3. Chemotaxis is well characterised in the literature, and

as such models are typically fully parameterised.

Hence, it is possible to consider the external concen-

tration of the chemotactic attractant as the input into the

system and the total concentration of CheYP as the model’s

output, the latter being strongly correlated with cell

movement. Here we aim to create a linked reduced system

bringing together a reduced version of the E. coli model

with a reduced version of the PBPK model previously

described. When the model is linked with a PBPK system,

the concentration of the metabolised drug in the effective

compartment is then treated as the total extracellular

chemotactic attractant concentration. The full form of the

chemotaxis model is given in detail in Additional file 1 -

Supplementary Information.

In this instance, it was chosen that the E. coli cells were

limited to the liver and that this represented the effective

Fig. 5 A comparison of time

courses for the concentration of

venous drug in the original 16

dimensional PBPK model of

Fig. 4 with the 3 dimensional

lumped and 3 dimensional

balanced truncated reduced

models. Here the oral

administration of three

compounds—pindolol,

midazolam, and thiopental—

have been simulated under the

administration of a 500 mg

dose. Physiological parameters

were taken to represent a 70 kg

male human with average

measures of liver and kidney

function, fractional tissue

volumes and blood flow.

Parameters are detailed in

Tables 1 and 2
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compartment. In the case of the input, it was modelled that

a 150 mg dose of a chemotactic attractant was adminis-

tered orally at t ¼ 0 with the model parameterised using

those values detailed in [56]. Additionally, the PBPK

model again employed the parameterisations defined by

Tables 1 and 2, using pindolol, midazolam and thiopental

as example compound specific parameterisations.

Reducing the PBPK model via balanced truncation,

whilst seeking to preserve accuracy in the intravenous and

liver compartments, allowed a reduction of the model to 3

dimensions with a maximal relative error e (in either

compartment) of 15:6, 11:4, and 17.6% for pindolol,

midazolam, and thiopental, respectively. The chemotaxis

model was reduced through the application of conservation

analysis, used to eliminate 4 of the system’s state-variables,

followed by proper lumping under the previously described

forward selection strategy. This gave the results presented

in Table 4. Here, the 4 dimensional lumped model repre-

sents an excellent choice for further use in linking due to

the relatively large increase in reduction error seen in going

to the 3 dimensional case.

As the individual methods of reduction are designed to

preserve the input–output relationships of each model, the

reduced PBPK and chemotaxis models can then be linked in

exactly the sameway as the original systems. Specifically, by

setting an output of the PBPKmodel (the concentration of the

drug in the liver) to represent the input into the chemotaxis

model (which is defined as the extracellular concentration of

the chemotactic attractant). Hence, linking the reduced 3

dimensional PBPK system to the reduced 4 dimensional

version of the chemotaxis model yields the results given in

Fig. 6. Overall, it was possible to integrate both systems

whilst retaining amaximal relative error e of less than 4.6, 1.4

and 31% for the drug specific parameterisations of pindolol,

midazolam and thiopental respectively. Clearly the approach

provides accurate reduced models in the cases of pindolol

and midazolam, but is somewhat less convincing in repli-

cating the behaviour of thiopental; this systemwould require

us to retain a higher number of state-variables in order to

account for this drug’s faster pharmacokinetic profile. If, for

example, the reduced PBPKmodel retains a single additional

state variable (such that the PBPK model is 4 dimensional

and the overall reduced model is 8 dimensional) this maxi-

mal relative error is reduced to 4.8% giving the profile also

depicted in Fig. 6. Hence our methodology resulted in a

reduction between the unreduced linked model and the

reduced linked model from 25 state-variables to either 7 or 8

state-variables. This scale of reduction additionally yields a

speed up in simulation time – through repeated simulations

under Matlab’s inbuilt ode45 numerical solver (a 4th/5th

order Runga-Kutta solver) a roughly 80% reduction in sim-

ulation times between the unreduced and reduced linked

models was observed. For computationally intensive appli-

cations, such as parameter fitting or agent-based modelling,

such a speed up in computational time provides a substantial

benefit. The explicit equations for the reduced linked model

are given in Additional file 1 - Supplementary Information.

A model of ERK activation

The second example employed here is a model of extra-

cellular signal-regulated kinase (ERK) phosphorylation

mediated via the epidermal growth factor (EGF) and the

nerve growth factor (NGF) receptor pathways that was

originally detailed in Sasagawa et al. [42]. This biological

system commonly arises in the study of cancer and pain,

and remains an area of ongoing clinical significance. This

is a relatively large biochemical model describing 150

reactions and 99 species. It is also an interesting model in

that it integrates two receptor pathways into one, allowing

studies to be undertaken as to how they interact. Due to its

size and clinical relevance, the model represents a prime

candidate for the application of model reduction tech-

niques. The SBML representation of the Sasagawa et al.

model employed in this example is available at www.ebi.

ac.uk/biomodels-main/BIOMD0000000049.

The total concentration of phosphorylated ERK, either

in isolation or in complex, was considered as the model

output. Meanwhile, EGF binding was chosen to represent

the input under consideration, such that only one of the

pathways described in the initial model is assumed to have

a significant effect on the output of interest, therefore

providing a significant opportunity for reduction. The ini-

tial condition of the system was set to be the steady-state of

the network without any input. Given this framework, the

model was reduced through a combination of conservation

Table 4 Error results for the application of proper lumping to the

E. coli chemotaxis model

Model dimensions Lumping error (%)

6 0.15

5 0.51

4 0.54

3 4.77

2 12.88

1 75.56

The errors stated represent the maximal relative error between the

outputs of original and reduced systems, relating to the total con-

centration of phosphorylated chemotactic protein Y. In order to

ascertain the best lumping at a given dimensionality of reduction a

wide range of attractant concentrations were tested, here however we

have obtained representative error values by simulating the system

under the introduction of a 10 lM concentration of attractant ligand at

t = 0. This is based upon the original paper introducing the chemo-

taxis model [56] and the representative ligand concentration given

there
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analysis and proper linear lumping. Conservation analysis

was applied by finding the left-null space of the model’s

associated stoichiometry matrix under the approach of QR-

factorisation by Householder reflections outlined by

Vallbhajosyula et al. [58]. This revealed 23 conservation

relations enabling the reduction of the system to 76 state-

variables. Proper lumping via the forward selection strat-

egy as described in the methodology was then applied,

yielding the results presented in Table 5.

In the case of the PBPK model, it was assumed that the

therapeutic compartment of interest was the brain and that

a dose of an antagonist that binds with the EGF receptor

was administered orally at t ¼ 0. Once again the model

parameterisation is given in Tables 1 and 2. We sought to

reduce the PBPK model via balanced truncation whilst

seeking to preserve accuracy in the intravenous and brain

compartments. In order to maintain sufficient accuracy in

the brain compartment reduction via balanced truncation

required the retention of 4 state-variables in the reduced

PBPK model. This yielded a maximal relative error across

both the intravenous and brain compartments of 4.9, 3.8,

and 9.2% in modelling the pharmacokinetics of pindolol,

midazolam, and thiopental respectively.

The reduced PBPK model was then linked to the reduced

ERK activation model by defining the output of the PBPK

(concentration of the drug in the brain) to represent the input

of the ERK activation model (the extracellular concentration

of an antagonist that binds with and inhibits the EGF

receptor). Employing the 11 dimensional version of the

ERK-activation model and 4 dimensional PBPK model

yielded the results given in Fig. 7. Here we simulated the

system for doses of 30 mg of hypothetical ERK antagonists

Fig. 6 Simulated time courses

for the total concentration of the

phosphorylated forms of

chemotactic protein CheY under

the original and reduced PBPK

linked chemotaxis models after

oral administration of a 150 mg

dose of a hypothetical

chemotactic attractant. Drug

specific parameters are

represented by pindolol,

midazolam and thiopental.

Physiological parameters were

taken to represent a 70 kg male

human with average measures

of liver and kidney function,

fractional tissue volumes and

blood flow. Parameters are

detailed in Tables 1 and 2

Table 5 Maximal relative error e results for the reduction of the ERK

activation model via proper lumping

Dimension Lumping error (%)

75 � 0

50 0.01

25 0.52

15 1.26

14 2.21

13 2.29

12 1.21

11 3.07

10 6.02

9 10.96

8 13.12

7 14.18

6 29.53

5 39.03

4 46.47

3 54.67

2 53.52

1 55.73
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using the respective model parameterisations for pindolol,

midazolam, and thiopental. This yielded a maximal relative

error e of 1, 4.2, and 5.9% for pindolol, midazolam and

thiopental, respectively. Overall this resulted in a reduction

between the unreduced linked model and the reduced linked

model from 115 state-variables to 15 and a speed up in

simulation time, under Matlab’s inbuilt ode45 numerical

solver, from an average of 1.764 to 0.541 s. Matlab files

detailing the reduction of the ERK activation model have

been made available in Additional file 2 - ERK Activation

Reduction Files, use of these files requires the Matlab

Symbolic package.

Conclusions

This article has provided an account of how a model of

PBPK can both be reduced and linked to systems biology

type models describing target scale responses to drug

administration. Doing so yields a model of enhanced

pharmacodynamics or QSP that describes drug adminis-

tration, metabolism, and action across multiple scales.

Crucial to the practical use of such systems is the

application of model reduction methods, such as lumping

and balanced truncation. Without such methods, models

will typically be highly complex and intractable in the

context of clinical trial data. However, as has been

demonstrated throughout this paper these approaches can

enable the construction of significantly simplified systems

that still accurately replicate the model’s original beha-

viour. These models are then sufficiently simplified to be

informed by and fitted against clinical trial data whilst

maintaining their descriptive power across multiple scales.

This paper has focused specifically on the methods of

balanced truncation and lumping for their ability to pre-

serve input–output behaviour in reduced systems across a

range of inputs. Balanced truncation was employed for the

decomposed linear components of the network due to its

superior properties in this regard, whilst lumping is

employed for the nonlinear components. Other methods

such as time-scale analysis or sensitivity analysis based

approaches (outlined in much greater detail in our recent

review paper [47]) could also have been considered, but

their specific emphases and approaches make them less

obvious choices. Throughout the paper we have sought to

show how the methods might be best deployed in parallel,

by aiming to decompose the overall model based upon the

property of linearity and then applying each method due to

its suitability based upon this criterion.

We compared the use of balanced truncation in reducing

PBPK models to the more commonly applied method of

proper lumping. It was demonstrated that balanced trun-

cation can produce a more accurate reduced system than

lumping. Additionally, the method is also guaranteed to

produce reduced systems that reproduce the input–output

behaviour not only locally to the tested inputs, but globally.

As a result it represents an excellent choice for reducing the

overall ‘gateway’ of the model—the point at which the

Fig. 7 Timecourses for the total

concentration of the

phosphorylated forms of ERK

under the original 115

dimensional and the reduced 15

dimensional PBPK linked ERK

activation models after oral

administration of a hypothetical

EGFR antagonist. Here we

simulated the system for doses

of 30 mg of a hypothetical ERK

antagonist represented by the

drug specific parameterisations

of pindolol, midazolam, and

thiopental
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main input, dosing, interacts with the system. The down-

side is that this approach somewhat obfuscates the meaning

of the compartments in the reduced system. As a result, it is

best employed in situations where a ‘black-box’ reduced

system is acceptable; more specifically, it is most appro-

priate in situations where the structure of the reduced

model is not of crucial importance, but the accuracy of its

predictions as compared with the original model are.

Whilst the linkedmodels created by the approachdescribed

in this paper have a wide range of potential benefits, there also

exist a number of current limitations to their application. In

particular, validation of such models is challenging; whilst

clinical trials often collect data on intravenous drug concen-

tration over time and data on the clinical endpoints observed,

in vivo data on the dynamics of the subcellular species is

typically not available. Additionally, mechanistically mod-

elling how subcellular effects map to the clinical outcomes

observed at the whole-body scale may require further mod-

elling efforts. At a simpler level, even questions such as what

degreeof error shouldbe tolerated inmodel reduction andhow

to select the most appropriate reduced model for a specific

application remain unanswered.

Finally, the question of how best to link the intracellular

and pharmacokinetic scales remains an important one. The

method presented here seeks to couple the models in such a

way that the outputs of one model can be treated as the

inputs of the other, and vice versa. By using automated

methods of reduction guaranteed to maintain the input–

output behaviour across a reasonable range of inputs, this

approach will give accurate reduced linked models. How-

ever, the specific form and extent of the inputs and outputs

that it is necessary to define to achieve this coupling will

end up limiting and defining the reduction it is possible to

achieve. In short the overall reduction obtainable is likely

to be improved the fewer points of coupling are required.

Whilst reduction is likely to perform better the fewer inputs

and outputs are defined, and the examples given in this

paper possess only a single input and single output, the

overall methodology remains valid for the general case of

any number of defined inputs and outputs.

Irrespective of these limitations, however, the value of

employing model reduction and linking in the construction

of QSP models should not be understated. This approach

enables us to start with pre-existing physiologically based

models at multiple scales of drug activity and construct

integrated, reduced models that maintain a mechanistic

basis, but that are of a tractable scale. Through the use of

model reduction, it is possible to shrink both the parameter

space and the number of state-variables modelled. In

combination with the often substantial speed-ups in simu-

lation times observed, these approaches can make a range

of computational approaches (including parameter fitting)

more attainable. By selectively applying model reduction

to specific portions of a network it is further possible to

produce simplified systems that maintain physiological,

molecular-scale detail for specific mechanisms of interest.

The influence of the remainder of the system can be

accounted for with a lesser degree of specificity. These

directly reduced networks enable the study of specific

forms of parameter variation including, for example, how

patient variability at the level of protein expression might

feed through to differences in dose-response. Overall, the

approach outlined in this paper can be seen as providing a

route to models that contain a medium level of granularity

between the fully systemic level of modern approaches and

the more empirical classical approaches, whilst still

maintaining a physiological basis in model interpretability.

By providing the tools to predict differences in patient

response and consider optimal dosing strategies in a more

mechanistic light, this can be seen as one stepping stone

towards the ultimate goal of personalised medicine.

We feel that methods of model reduction have a vital

role to play in the continuing development of QSP and that

the topics discussed in this paper are fertile ground for

future research. Where researchers now seek to quantita-

tively describe drug action in more complete terms than

historical approaches allow, it is necessary that we reflect

on the perennial issue of model complexity and the

preservation of practical applicability.
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Appendix

Appendix 1: The Petrov–Galerkin projection

Methods ofmodel reduction can be considered as a projection

of the state-variables to a lower dimensional subspace V :

dim Vð Þ ¼ n̂ of the original phase-space, within which some

relevant set of the system’s trajectories can be adequately

approximated. Mathematically, applying such a projection to

obtain a reduced dynamical system is underpinned by the

Petrov–Galerkin projection which will be introduced here.

Consider a basis B of the subspace V such that

B ¼ b1; . . .; bn̂½ � 2 Rn�n̂. Assuming B has been selected

such that it provides an adequately accurate approximation
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of the original state-variables xðtÞ within the subspace V,
then

xðtÞ � B~xðtÞ ð6Þ

with ~xðtÞ 2 Rn̂ representing the reduced set of state-vari-

ables. Substituting this approximation into the original

model form yields

B
d~x

dt
¼ f ðB~xðtÞÞ þ

Xl

i¼1

giðB~xðtÞÞuiðtÞ þ qðtÞ ð7Þ

where it is assumed that B is time-invariant. Additionally,

qðtÞ 2 Rn is termed the residual and addresses the dis-

crepancy emerging from the fact that B~x is typically not an

exact solution of the system for all times.

Now let W represent a subspace that is orthogonal to the

residual qðtÞ with a basis C 2 Rn�n̂ such that C|qðtÞ ¼ 0

(where | represents the standard definition of the trans-

pose). Hence, left multiplying Eq. (7) by C| produces

C|B
d~x

dt
¼ C|f ðB~xðtÞÞ þ

Xl

i¼1

C|giðB~xðtÞÞuiðtÞ ð8Þ

Assuming C|B is non-singular, this finally leads to a

reduced dynamical system of the form

d~x

dt
¼ C|Bð Þ�1

C|f ðB~xðtÞÞ þ
Xl

i¼1

C|Bð Þ�1
C|giðB~xðtÞÞuiðtÞ:

ð9Þ

This simplification of a dynamical system to a lower

dimensional subspace is known as the Petrov–Galerkin

projection. In the special case where B ¼ C it is known

simply as the Galerkin projection. In that case

B|Bð Þ�1
B| ¼ �B ð10Þ

Such that �B is a generalised left inverse of B and �BB ¼ In̂
(the n̂ dimensional identity matrix).

Whilst the explanation given above provides an expla-

nation of how to apply a Petrov–Galerkin projection, it

does not provide a methodology for finding suitable bases

B and C for a given model. It is methodologies of this kind

that comprise the majority of the model reduction

literature.

Appendix 2: Lumping

For a general system of ODEs of the form represented by

Eq. (1), a lumping is some mapping L : Rn ! Rn̂ of the

original state variables xðtÞ 2 Rn to a reduced set ~xðtÞ 2 Rn̂

where n̂\n. In the case of a linear lumping this can be

expressed as a projection of the form

~xðtÞ ¼ LxðtÞ: ð11Þ

In the case of a proper lumping this projection L becomes a

matrix L 2 0; 1f gn̂�n
where each column is pairwise

orthogonal, implying that each of the original state-vari-

ables corresponds to, at most, one of the lumped state-

variables in the reduced model.

Given the operator L, the dynamics of the reduced

variables ~xðtÞ can be obtained via a Galerkin projection

(see Appendix 1) applied to the original system, such that

_~xðtÞ ¼ Lf ð�L~xðtÞÞ þ
Xl

i¼1

Lgið�L~xðtÞÞuiðtÞ;

with ~xð0Þ ¼ ~x0 ¼ Lx0;

ð12aÞ

�yðtÞ ¼ hð�L~xðtÞÞ; ð12bÞ

where �L 2 Rn�n̂ represents a generalised right inverse of L

such that L�L ¼ In̂, In̂ the n̂� n̂ identity matrix. An

approximation for the original state variables from the

reduced variables can be computed as

xðtÞ � �L~xðtÞ: ð13Þ

�L can be any generalised right-inverse of L and, as such,

there exists an infinite number of ways to construct this

matrix, with the specific choice affecting the error incurred

by the reduced model. In this paper we follow the approach

of the original lumping papers by Wei and Kuo [25, 62]

which suggest selecting the generalised inverse �L that

reconstructs the steady-state of the system such that xðtÞ ¼
�L~xðtÞ for t ! 1. This can be constructed as

�L ¼ XL| LXL|ð Þ�1; ð14Þ

and

X :¼ diag x�f g

and x� represents the steady-state of the system such that

limt!þ1 xðtÞ ¼ x�.

Appendix 3: Balanced truncation

The application of balanced truncation begins with a con-

trolled, linear system of the form described by Eq. (2).

Given such a form, we then proceed by calculating two

matrices known as the controllability and observability

Gramians (P and Q, respectively) for the system. These

can be obtained via solving the following Lyapunov

equations,

AP þ PA| þ BB| ¼ 0;

A|QþQAþ C|C ¼ 0:

Balanced truncation then requires the computation the

balancing transformation, which equalises and diagonalises

these matrices. This can be computed in a numerically
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stable manner by following the proceeding steps; first,

perform a Cholesky factorisation of both of the Gramians

to give

P ¼ L|L; and Q ¼ R|R:

Now take a singular value decomposition of the newly

formed matrix LR| to obtain

LR| ¼ URV|;

using this, the balancing transformation T and its inverse �T

can be computed as

T ¼ R�1
2V|R and �T ¼ L|UR�1

2:

Given a reduced dimensionality n̂ the reduced model can

be constructed via the following transformations

x ! ~x ¼ PTx;

A ! ~A ¼ PTA�TP|;

B ! ~B ¼ PTB;

C ! ~C ¼ C �TP|;

Where P is an n̂� n matrix of the form P ¼ In̂0½ �. This
gives a reduced, n̂ dimensional model of the form

_~x ¼ ~A~xþ ~Bu;

�y ¼ ~C~x:
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50. Sunnåker M, Schmidt H, Jirstrand M, Cedersund G (2010)

Zooming of states and parameters using a lumping approach

including back-translation. BMC Syst Biol 4(1):28
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